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              Presentation Notes
Slide 1: Science Signaling logo

The slideshow and notes for this presenta-

tion are provided by Science Signaling (http://

www.sciencesignaling.org).

Slide 2: Network-based tools for the 

identifi cation of novel drug targets

Despite considerable efforts and re-

sources, the number of novel drug targets 

identifi ed during the past decade has fallen 

behind expectations. This presentation sum-

marizes several network-based approaches 

to aid drug target identifi cation. Phosphopro-

teomes, kinomes, and signaling networks are 

especially powerful systems-based resources 

for predicting novel therapeutic targets (1–5). 

We show how different methods of analyzing 

network topology and dynamics may help 

drug discovery.

Slide 3: Advantages of the network 

approach

Real-world networks have many general 

properties, such as small-worldness (a con-

cept fi rst described by the Hungarian writer 

Frigyes Karinthy in 1929); scale-free type 

degree distribution, which is an increased 

prevalence of network hubs compared with 

random networks; hierarchical and nested 

topology; as well as a key role of links that 

are long-range, low-affi nity, low-probability, 

and weak in terms of both information trans-

fer and network stability (6–10). The surpris-

ingly high number of patterns shared by vari-

ous real-world networks endows the network 

approach with at least two special advantages 

for researchers. First, the investigator is able 

to judge the importance of his or her discov-

ery by determining whether a fi nding has any 

of the generalities that appear in many molec-

ular, technological, and social networks and 

ecosystems. Secondly, the network approach 

provides a route for the systematic translation 

of the original ideas into the context of other 

scientifi c fi elds that may differ linguistically 

from the researcher’s fi eld of expertise. This 

often solves creativity deadlocks, because the 

novel context may offer additional and even 

unexpected associations and solutions. There-

fore, the network-based systematic approach 

offers both a gauge of importance and a boost 

to creativity.

Slide 4: Aging as an early warning 

signal of a critical phase transition: death

Sometimes insight into a system can arise 

from an unexpected source. Such a surprising 

system-based transfer of knowledge from one 

context to another came when I (P.C.) read the 

seminal review by Scheffer et al. (11) on the 

“Early warning signals of critical phase tran-

sitions,” wherein the authors examined the 

common signs of pre−crisis periods in eco-

systems, markets, and climate. In this review, 

three major warning signals were highlight-

ed: (i) “slower recovery from perturbations,” 

(ii) the “increased self-similarity of behavior,” 

and (iii) the “increased variance of fl uctuation 

patterns.” Based on our earlier studies on ag-

ing (12, 13), it was imminently clear to me 

that an aging organism shows the very same 

three signs of change. Thus, aging can be per-

ceived as an early warning signal of a critical 

phase transition, wherein the phase transition 

is death. However, this sobering message also 

has a positive implication: Phase transitions 

of complex systems can be slowed down, 

postponed, or prevented by elements of inde-

pendent and unpredictable behavior, such as 

stem cells (in the case of aging), top preda-

tors (in ecosystems), or the actions of market 

gurus (in economies). Thus, the good news 

is that the identifi cation of interactome or 

signaling nodes with unpredictable behavior 

may offer novel molecular targets for anti-

aging therapies.

Slide 5: Creative elements as possible 

network targets of anti-aging therapies

Networks can be characterized by a few 

distinct types of behavior. Most nodes are 

“problem solvers.” These nodes are special-

ized to a certain task that they can complete 

(solve) with high effi ciency. A few nodes are 

“problem distributors.” These nodes have a 

large number of neighbors, meaning that they 
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In the past few years, network-based tools have become increasingly important 
in the identifi cation of novel molecular targets for drug development. Systems-
based approaches to predict signal transduction–related drug targets have 
developed into an especially promising fi eld. Here, we summarize our studies, 
which indicate that modular bridges and overlaps of protein-protein interaction 
and signaling networks may be of key importance in future drug design. Inter-
modular nodes are very effi cient in mediating the transmission of perturbations 
between signaling modules and are important in network cooperation. The analy-
sis of stress-induced rearrangements of the yeast interactome by the ModuLand 
modularization algorithm indicated that components of modular overlap are key 
players in cellular adaptation to stress. Signaling crosstalk was much more pro-
nounced in humans than in Caenorhabditis elegans or Drosophila melanogaster 
in the SignaLink (http://www.SignaLink.org) database, a uniformly curated data-
base of eight major signaling pathways. We also showed that signaling proteins 
that participate in multiple pathways included multiple established drug targets 
and drug target candidates. Lastly, we caution that the pervasive overlap of cellu-
lar network modules implies that wider use of multitarget drugs to partially inhibit 
multiple individual proteins will be necessary to modify specifi c cellular func-
tions, because targeting single proteins for complete disruption usually affects 
multiple cellular functions with little specifi city for a particular process. Tools for 
analyzing network topology and especially network dynamics have great poten-
tial to identify alternative sets of targets for developing multitarget drugs.
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are hubs, and are specialized to the distribu-

tion of perturbations and signals. Both prob-

lem solvers and problem distributors have 

rather predictable behavior patterns. Nodes 

of the third type exhibit more exotic behav-

ior. These “creative elements” are extremely 

dynamic, and, by continuous change in the 

structure of their links, sample practically the 

entire network. Creative elements also have 

rather few links at any given time, and many 

of these links connect the creative elements 

with hubs or other key nodes of modules and 

intermodular connections. Furthermore, the 

internal structure of creative elements (the 

underlying network of atoms, proteins, cells, 

or persons that constitute the creative node of 

the upper-level network of proteins, cells, per-

sons, or society) is more fl exible than that of 

problem solvers or distributors. In contrast to 

the other two types of nodes, the actions and 

outputs of creative elements are highly unpre-

dictable (14–16). This high unpredictability 

makes the creative elements of protein-pro-

tein interaction networks, such as molecular 

chaperones, promising targets of anti-aging 

therapies (10, 12, 13). The three types of 

behaviors described above can be mixed in 

more complex networks, particularly those 

encountered in the real world.

Slide 6: Creative elements as dynamic 

bridges and overlaps of network modules

Creative elements occupy central posi-

tions in their networks and connect network 

regions that would otherwise be distant. 

Such positions bridge the “structural holes” 

of social networks described by Ronald S. 

Burt (15). The active centers and binding 

sites of proteins often occupy such positions 

in protein structure networks. As the com-

plexity of the system increases, the mobil-

ity of individual creative elements expands 

so that these elements cover more and more 

of the network. (We are yet unable to judge 

whether the number of creative elements in-

deed increases with the level of complexity, 

as one would expect.) Creative elements are 

often found in regions of overlap between 

modules and so belong to a certain extent 

to two or more modules, or bridge two or 

more modules, meaning that their neighbor-

hoods occupy a comparably large space in 

multiple modules (14–16). Unique and mo-

nopolistic intermodular positions have also 

been termed “bottlenecks” (17), because 

almost all information fl owing through the 

network must pass through these key nodes. 

Creative elements may often behave as tem-

porary bottlenecks, with other nodes later 

substituting for the creative element.

Slide 7: The interrelated network-set 

helping drug discovery

Drug discovery is facilitated when mul-

tiple networks describing the relationships 

of patients and their genetics, symptoms, 

diseases, therapies, drug targets, and drugs 

are considered. In most cases these networks 

are bipartite networks, wherein two separate 

groups of data are linked, such as patients 

being linked with symptoms, medications, 

therapies, or genetic background. Similarly, 

bipartite networks may be formed by link-

ing a disease with the genes involved in the 

etiology of that disease, or by linking drugs 

with their targets or the therapies in which 

they are employed. On the slide, white arrows 

mark data sets for which bipartite networks 

have already been published, whereas black 

arrows denote some possibilities for future 

network analysis studies. All these bipartite 

networks can be visualized and analyzed as 

corresponding pairs of networks, wherein, for 

example, two drugs are linked if they have a 

common target, or two drug targets are linked 

if there is a drug that affects both (18, 19). 

The large number of disease- and drug-relat-

ed networks (18) will have a major impact on 

therapeutic approaches for targeting signaling 

pathways (1–5).

Slide 8: Examples of promising network 

positions for drug target candidates

Examination of the complex topology of 

protein-protein interaction networks and sig-

naling networks highlights several key nodes 

that may be important for drug design. Hubs 

are nodes with more neighbors than the av-

erage for other nodes in the network. Hub 

connections are specifi c interactions that 

link hubs. Overlapping elements are nodes 

that belong to two or more network modules. 

Bridges are nodes that connect two network 

modules and play a substantial role in each 

module. All of these are promising drug tar-

get candidates, because targeting such nodes 

or links may infl uence many more nodes re-

sponsible for a cellular function that affects 

a particular disease (20). In our work, we 

have studied the properties of overlapping 

elements and bridges, both of which can be 

identifi ed by their special positions in the 

structure of complex networks.

Slide 9: Turbine: A widely applicable 

algorithm for assessing network perturba-

tion dynamics

The examination of network dynamics 

is of paramount importance for understand-

ing network topology. Analysis of network 

dynamics also increases our understanding 

of cellular signaling. We have developed Tur-

bine, a widely applicable, Matlab-compatible 

tool kit, to assess the propagation of pertur-

bations through cellular networks, includ-

ing interactomes and signalomes. This fl ow 

chart illustrates how the Turbine software (21, 

22), which is freely available at http://www.

linkgroup.hu/Turbine.php, works. Turbine re-

quires the list of network contacts (marked as 

“pajek,” referring to one of the input format 

of the network data) and the perturbation 

model (“model.dll”) as inputs. The program 

supplies a few perturbation models, such as 

the “communicating vessels” model, but may 

be extended by the addition of any other mod-

els, by multiple perturbations, or by models 

for the propagation and dissipation of pertur-

bations. The program may simulate the per-

turbations of real-world networks that include 

1 million nodes and 10 million links per gi-

gabyte of free system memory. The output, 

marked as “mat,” reports the level of pertur-

bation at any network node at any time point. 

Numerical data can be converted to a visual 

form by using the Turbine viewer software 

(“Turbine GUI”).

Slide 10: Modular overlaps and bridges 

are primary transmitters of network 

perturbations

As an example highlighting the impor-

tance of intermodular nodes (overlapping ele-

ments and bridges), we compared the propa-

gation of a perturbation from a starting node 

in the module center of the modular scale-free 

benchmark network of Lancichinetti et al. 

(23) (left diagram) with that same perturba-

tion initiated from a node that bridges two 

modules (right diagram) (22). The number of 

nodes affected by the perturbation after 600 

iterations (shown as yellow, orange, and red 

dots) is much larger when the perturbation 

started from the bridge node (arrow in right 

diagram) than the center node (arrow in left 

diagram) in this sample network with relative-

ly condensed modules. Intermodular nodes 

play a prominent role in signal transduction 

(4) and in the propagation of allosteric signals 

in protein structures (24). Recently we pro-

posed that signaling through “cumulus-type” 

networks, which have limited overlap be-

tween modules and a more compact module 

structure, can be generally described by an 

energy-transfer mechanism, which has been 

observed between “independent dynamic 

segments of proteins” behaving as “discrete 

breathers,” which are smaller parts of proteins 

that move independently of other protein seg-

ments (16, 24). In “stratus-type” networks, 

in which modules overlap considerably, in-

formation transfer inside modules occurs 
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through multiple trajectories. These signaling 

trajectories converge at modular boundaries 

to a few bridging nodes. Bridging nodes, such 

as the intermodular node highlighted by the 

arrow in the right diagram, may have a key 

role in regulating signal transmission from 

one network module to another (24).

Slide 11: NetworGame: A versatile 

spatial game program package

Another modeling strategy that reveals key 

aspects of network dynamics is that of spa-

tial games. In these, agents playing repeated 

rounds of social dilemma–type games, such 

as the prisoner’s dilemma game, can play only 

with their neighbors. Spatial games reveal the 

level of overall cooperation achieved by the 

complex system, as well as the contribution 

of individual nodes to this cooperation. Co-

operation, in the dynamic and complex set-

ting of spatial games, is a good example of 

the emergent properties of networks. Emer-

gent properties cannot be predicted from the 

behavior of individual nodes, but characterize 

the functions of the complex system encoded 

by the network structure. Although spatial 

games are generally played by conscious 

agents (humans), spatial games can be used 

for understanding networks of nonconscious 

agents, such as amino acids, proteins, or 

signaling components. These game theory–

based simulations reveal the degree of coop-

eration within the complex system (16, 25). 

Strategies that combine learning and creativi-

ty (wherein the former was introduced by tak-

ing into account the outcome of several previ-

ous rounds of the game in the defi nition of the 

strategy update rule of the agent and the latter 

was modeled by introducing a small amount 

of random noise to the strategy update rules) 

have been shown to induce a great amount of 

cooperation irrespective of network topology 

(25). We have developed NetworGame, a ver-

satile program package that models any type 

of two-agent game with two to fi ve strategies 

in any real-world or model network by using 

any type of strategy update rules, update dy-

namics, and starting strategies. The Networ-

Game algorithm is freely available at http;//

www.linkgroup.hu/NetworGame.php.

Slide 12: Modular overlaps and bridges 

are key determinants of network cooperation

To illustrate the power of spatial game 

analysis and to show the decisive role of 

bridges in determining network-wide coop-

eration, we analyzed Michael’s strike network 

(26). Nodes in this network are workers in a 

small forest product factory, and links repre-

sent the workers’ social contacts. The leader-

ship of the factory wanted to introduce a new 

set of rules, and convinced the union leaders, 

Sam and Wende (marked with red dots), on 

the benefi ts of this new work scheme. Despite 

this agreement, however, a strike broke out. 

The director hired a sociologist, who assem-

bled the sociogram shown in the fi gure and 

suggested that the leadership try to convince 

Bob and Norm, who were workers that occu-

pied central positions within the network. Bob 

and Norm were designated “BC” for their 

high betweenness centrality in the network: 

They connected the three communities of 

young, old, and Hispanic workers. The strike 

ended when Bob and Norm had been con-

vinced. By simulating the worker-to-worker 

cooperation that was needed to start and 

maintain the strike as the role of cooperating 

doves in a hawk-dove game, and by selecting 

Sam and Wende as the only noncooperating 

(strike-breaking) hawks at the beginning of 

the game, their small infl uence resulted in a 

mostly cooperating (dove) community that 

together resisted the new work scheme and 

supported the strike. In contrast, by selecting 

Bob and Norm as the only noncooperating 

hawks in the starting strategy distribution, the 

community became predominantly noncoop-

erating (strike-breaking, hawk), which shows 

the large infl uence their bridging position 

had on the dynamics of the whole system. In 

addition to the hawk-dove game, other simu-

lations of spatial games, like the prisoner’s 

dilemma or stag-hunt game, have also illus-

trated the infl uence of modular overlaps and 

bridges in the determination of the coopera-

tion of biological networks, such as protein 

structure networks or interactomes (27).

Slide 13: Adaptive rearrangements of the 

yeast interactome as a model of systems-

level signaling

Changes in gene expression patterns after 

heat shock, an archetype of stress, represent 

a widely used model for adaptive response 

(28, 29). We assessed the systems-level rear-

rangement of a yeast protein-protein interac-

tion network derived from the BioGRID inter-

action database [http://www.thebiogrid.com 

(30)] that consisted of 5223 nodes and 44,314 

interactions after a variety of stress conditions, 

including heat shock. Link weights of the un-

stressed yeast interactome were calculated 

from the abundances of mRNAs encoding the 

individual proteins (31), and stress-induced 

changes of link weights were approximated 

by using changes in the abundance of these 

mRNAs (32). Several alternative methods 

have been used for calculating the initial and 

stress-induced network link weights. Our most 

important fi nding, that the modules of the 

yeast interactome partially disassemble after 

stress, was a key discovery that was supported 

by using link weights calculated by mRNA 

abundance or any of the alternative methods 

for calculating link weights (29, 33).

Slide 14: ModuLand: A family of methods 

for detecting overlapping network modules

The determination of network modules (in 

other words, network communities, a group 

of nodes having a greater link density than 

others in their neighborhood) is a rather enig-

matic, key problem of network studies. After 

initial efforts provided a clear “yes” or “no” 

assignment of nodes to various modules, re-

cent studies emphasized the importance of 

overlaps (34, 35), which represent well the 

multitude of protein functions exemplifi ed 

by signaling crosstalk (4). We analyzed the 

overlap between the modules of the yeast 

interactome by using a novel method, the re-

cently published ModuLand framework (35). 

In the fi gure, we show the four major steps of 

the method using the network of network sci-

entists as assembled by Mark Newman (36). 

This network represents the collaborative 

interactions between 379 scientists studying 

networks as defi ned by their coauthorships. 

In the fi rst step of the method, local infl uence 

zones of each set of links (or nodes) were 

defi ned. The infl uence zones A1, A2, and A3 

show the infl uence of the collaborative links 

of Barabási and Vicsek (A1), Girvan and 

Newman (A2), and a composite subnetwork 

of the Arenas and Pastor-Satorras collabora-

tive link merged with that of Guimera and 

Amaral (A3). All these well-known network 

scientists had a rather large infl uence zone as 

determined by the LinkLand method, one of 

the ModuLand algorithms. Panel B illustrates 

the community landscape, in which the ver-

tical scale is the sum of the infl uence zones 

containing the given link (or node). The value 

of the vertical scale also represents commu-

nity centrality, because it characterizes the in-

fl uence of the entire network on a given link 

or node. Panel C shows the overlapping mod-

ules as colored hills of the community land-

scape determined by the TotalHill algorithm, 

one of the module membership assignment 

methods in the ModuLand collection. Panel 

D illustrates a coarse-grained representation 

of the network in which the nodes correspond 

to the modules of the original network and 

the link weights denote the extent of overlap 

between modules (35). The algorithms of 

several versions of the ModuLand program 

package (including all those mentioned here-

in) are freely available at the Web site http://

www.linkgroup.hu/modules.php.
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Slide 15: Modular overlaps as keys of 

adaptation processes

Modular analysis of the rearrangements of 

the yeast interactome showed that the overlap 

between the modules decreased signifi cantly 

(Wilcoxon paired test, P < 2.2 × 10−16) after 

heat shock. Similar decoupling of interac-

tome modules was observed after other types 

of stress, such as oxidative stress, nutrient 

limitation, and hypo- or hyperosmotic stress. 

This reduced overlap refl ects a lower density 

of short- and long-range interactions between 

large protein assemblies (mega-complexes) 

of the yeast cell during stress. This stress-

induced decrease of intermodular connec-

tions is benefi cial to the cell, because it allows 

better focusing on vital functions, thus spar-

ing resources, and localizes damage (by free 

radicals, for example) to only the most sensi-

tive modules. It also reduces the propagation 

of noise throughout the network, allows the 

individual modules a larger degree of free-

dom for exploring different adaptation strat-

egies, and helps reduce intermodular con-

fl icts during a period of major intramodular 

changes. Therefore, modular overlaps emerge 

as keys to adaptive processes in cells, as well 

as in other complex systems, including social 

networks (28, 29, 33).

Slide 16: SignaLink: A high-quality 

signaling network database

To assess the complexity of signaling 

in three organisms—Caenorhabditis elegans, 

Drosophila melanogaster, and humans—we 

assembled a manually curated signaling net-

work database called SignaLink. The network 

contains 1550 components and cofactors of 

the following eight major signaling pathways: 

epidermal growth factor–activated mitogen-

activated protein kinase (EGF-MAPK), nu-

clear hormone receptor (NHR), Janus kinase–

signal transducer and activator of transcription 

(JAK-STAT), Hedgehog (HH), Notch, insulin 

and insulin-like growth factor (IGF), trans-

forming growth factor–β (TGF-β), and Wnt 

(4). The database is freely available at http://

www.SignaLink.org. The April 2011 ver-

sion of the database predicted 253 previously 

unknown signaling orthologs (“signalogs”) 

in the three organisms (37). (Signalogs are 

proteins that are predicted to participate in a 

signaling pathway in one organism on the ba-

sis of their homology to similar proteins that 

participate in the same signaling pathway in 

another organism.) Signalogs can be searched 

and viewed by using the online tool available 

at http://www.signalink.org/signalog. Each 

of the six predicted, previously unknown sig-

nalogs of the C. elegans Notch pathway have 

been experimentally verifi ed to participate in 

C. elegans Notch–dependent vulval develop-

ment in the expected manner (37).

Slide 17: Overlaps of signaling path-

ways are most pronounced in humans

In this fi gure, crosstalk between the eight 

pathways in the SignaLink database (4, 37) 

are represented by links in which the width of 

a link is proportional to the weighted number 

of directed signaling interactions between the 

two pathways. The fi gure shows that crosstalk 

was greater in D. melanogaster (panel B) than 

in C. elegans (panel A). Most importantly, in 

humans (panel C), any two pathways were 

found to interact with one other. Crosstalk be-

tween classes of signaling components from 

different pathways (such as ligands, recep-

tors, mediators, cofactors, and transcription 

factors) showed an even more dramatic in-

crease—mostly between differing classes of 

signaling components—in D. melanogaster 

(panel E) as compared with C. elegans (panel 

D). Here again, all classes of signaling com-

ponents of pathways were found to interact 

with all classes of signaling components of 

all the other seven pathways in humans (panel 

F), whereas crosstalk in the other two species 

was mostly limited to cofactors (proteins that 

modulate the function of other signaling pro-

teins) and mediators [pathway members that 

mediate signals from receptors to transcrip-

tion factors (4, 37)]. These observations illus-

trate the importance of modular overlaps and 

bridges in human signaling pathways.

Slide 18: Summary: Modular overlaps 

and bridges as potential drug targets

In summary, our studies showed that 

modular overlaps (nodes or links belonging 

to two or more modules) and bridges (nodes 

or links having a signifi cant portion of their 

neighborhood in two or more modules) are 

the primary transmitters of cellular perturba-

tions and signals and are key determinants 

of cooperation between network nodes and 

modules. Overlaps and bridges are also the 

predominant sites of modulation during cel-

lular adaptation, such as during stress, and 

are prevalent in human signaling processes. 

These properties of modular overlaps and 

bridges all suggest the importance of these 

proteins as potential drug targets.

Slide 19: Multipathway signaling proteins 

as established and potential drug targets

We assessed the prevalence of multipath-

way proteins of the eight major human sig-

naling pathways represented in the SignaLink 

database (4, 37): the modular overlaps and 

bridges of the human signaling network that 

would represent good potential drug targets. 

For this assessment, the following four com-

mon determinants of drug target molecules 

were taken into account: membrane local-

ization, enzyme activity, presence of kinase 

domains, and association with diseases. 

The fi gure shows that 13 of these human 

multipathway proteins have three or four of 

these drug target–like properties. Six of these 

are, in fact, established drug targets: EGFR 

(epidermal growth factor receptor), IGFR1 

(insulin-like growth factor 1), and the kinases 

AKT1, GSK3B, MEK1, and p38a (4, 37).

Slide 20: Modular overlaps imply the 

necessity of multitarget drugs

Modules of protein-protein interaction 

and signaling networks often correspond to 

cellular functions, such as protein synthesis, 

protein degradation, and signaling responses. 

A large number of cellular proteins belong to 

multiple modules of either protein-protein in-

teraction or signaling networks, or both. Thus, 

the complete inhibition of a protein may de-

crease the effi ciency of many cellular func-

tions at the same time. In contrast, effi cient 

inhibition of a particular cellular function can 

often be accomplished only by the inhibition 

of many proteins, wherein the inhibition of 

each protein is only partial (20, 34, 35). Multi-

target drugs often have a parallel inhibition of 

alternative pathways, thus requiring a smaller 

dose for effi cacy and therefore exhibiting 

lower toxicity (20, 38). The partial inhibition 

of proteins converts their high probability, 

high affi nity, strong links to lower probability, 

lower affi nity, weaker links. Because of the 

general stabilizing role of weak links in com-

plex networks (9, 10), multitarget drugs may 

stabilize the biology of otherwise perturbed 

cells in the diseased organism (this effect is 

summarized as “more weak links: more stable 

cell” on the slide). This is in contrast to the ac-

tion of many single-target drugs, which often 

enhance the destabilization of affected cells 

and by this action may hinder the recovery of 

the individual from disease (20, 38).

Slide 21: Multitarget drugs are target 

multipliers

Single-target drugs usually target those 

proteins that are predominantly associated 

with a disease. This limits the pool of po-

tential targets for future drug development. 

Moreover, many of these disease-associated 

proteins are not druggable in the sense that 

they do not have a hydrophobic binding site 

for a potential orally delivered, membrane-

permeable drug molecule. This restricts the 

number of available drug targets even fur-

ther. In contrast, the application of multitar-

get drugs increases the likelihood of effec-
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tive treatment by targeting multiple proteins, 

each of which may only slightly infl uence the 

disease-associated proteins through signaling 

crosstalk, for example. Moreover, the eased 

constraints of low-affi nity binding allow the 

targeting of partially hydrophilic binding sites 

by orally deliverable, hydrophobic molecules. 

This dual increase of both the pool of disease-

associated proteins and the pool of proteins 

binding orally deliverable, hydrophobic mol-

ecules predicts a very promising increase of 

the number of proteins in the overlap of the 

two pools (the proteins that are both disease-

associated and available for targeting by orally 

delivered drugs) and allows the exploration of 

novel drug target families. Thus, multitarget 

drugs are, in fact, target multipliers (20, 38).

Slide 22: Network analysis as an option 

to identify alternative multitarget sets

The development of multitarget drugs is 

a very promising area of drug design. How-

ever, the experimental identifi cation of a set 

of target proteins is a much harder task than 

the already diffi cult identifi cation and target-

ing of a single disease-related protein. This is 

why systems-based approaches, and, in par-

ticular, network analysis, may be extremely 

helpful to fi nd target sets for developing mul-

titarget drugs. The application of the tools for 

analyzing network topology and dynamics 

introduced in this study may help to identify 

alternative target sets, the inhibition of which 

by a multitarget drug selectively inhibits the 

set of proteins primarily associated with the 

disease (21).
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