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SUMMARY

Chromatin interactions play important roles in tran-
scription regulation. To better understand the under-
lying evolutionary and functional constraints of these
interactions, we implemented a systems approach to
examine RNA polymerase-II-associated chromatin
interactions in human cells. We found that 40% of
the total genomic elements involved in chromatin
interactions converged to a giant, scale-free-like,
hierarchical network organized into chromatin com-
munities. The communities were enriched in specific
functions and were syntenic through evolution.
Disease-associated SNPs from genome-wide asso-
ciation studies were enriched among the nodes
with fewer interactions, implying their selection
against deleterious interactions by limiting the total
number of interactions, a model that we further
reconciled using somatic and germline cancer muta-
tion data. The hubs lackeddisease-associatedSNPs,
constituted a nonrandomly interconnected core of
key cellular functions, and exhibited lethality in
mousemutants, supporting an evolutionary selection
that favored the nonrandom spatial clustering of the
least-evolving key genomic domains against random
genetic or transcriptional errors in the genome.
Altogether, our analyses reveal a systems-level
evolutionary framework that shapes functionally
compartmentalized and error-tolerant transcriptional
regulation of human genome in three dimensions.
INTRODUCTION

Long-range chromatin interactions are pervasive in the human

genome and serve to regulate gene expression (Göndör and
Cell Re
Ohlsson, 2009; Schoenfelder et al., 2010). Proximity ligation in

combination with next-generation sequencing has recently

enabled us to explore genome-wide spatial crosstalk in the

chromatin (Fullwood et al., 2009; Lieberman-Aiden et al.,

2009). By implementing Chromatin Interaction Analysis using

Paired End Tags (ChIA-PET) (Fullwood et al., 2009), we recently

mapped all-to-all chromatin interactions associated with RNA

polymerase II (RNAPII) at base-pair resolution. In addition to

widespread promoter-enhancer chromatin interactions, our

analysis revealed a range of distinct types of chromatin cross-

wirings, including promoter-enhancer, enhancer-enhancer,

promoter-terminator, and, intriguingly, promoter-promoter inter-

actions. These interactions constitute a basic topological

template for transcriptional coordination (Li et al., 2012). The

observation of most interest was that interacting promoters

not only correlate with gene coexpression, but can also regulate

each other’s transcriptional states, which blurs the traditional

definitions of gene-regulatory elements in the genome. These

observations support the notion of a chromatin interactome

encompassing a dense repertoire of regulatory elements for

transcriptional regulation.

Whole-genome chromatin interaction data sets are too com-

plex to be analyzed by conventional approaches. To gain a better

understanding of these interactions, we performed a complex

network analysis by integrating chromatin interactions and

several other genomic data sets (Table S1). Network analysis

has emerged as a powerful tool for obtaining novel insights

into complex systems. The nonrandom topological properties

of most real-world networks are strongly associated with their

robustness and functional organization (Albert et al., 2000;

Barabási and Albert, 1999; Barabási and Oltvai, 2004), which

has motivated molecular biologists to explore cellular regulation

using a systems approach. Although most cellular networks,

such as gene-regulatory, metabolic, protein-protein interaction,

and signaling networks, are being widely studied, the extensive

communications among regulatory elements in the genome

have not been viewed in a complex-network context (Singh

Sandhu et al., 2011).
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Figure 1. Simplified Illustration of the ChIA-PET Technique and the

Network Construction

(A) ChIA-PET technique.

(B) Network construction.

Formaldehyde crosslinked chromatin was sonicated and chromatin com-

plexes bound with RNAPII (green) were pulled down using 8WG16 antibody

(blue). Specific linkers were added to the open ends and subsequently ligated

in the diluted conditions. After the chromatin complexes were decrosslinked,

DNA material was subjected to PET extraction and next-generation

sequencing using the Illumina GAIIx platform. Unique PETs were mapped

back to the reference genome (Hg19) and statistically significant interactions

were called at FDR % 0.05 using the ChIA-PET tool (Li et al., 2010). To

construct the network, the redundancy in the data were removed by merging

the overlapping interaction sites. The cutoff taken to merge the overlapping

sites is shown in Figure S1A.
We show that a large proportion of the human genome

converges to a complex hierarchical network to orchestrate tran-

scription in functionally compartmentalized and evolutionarily

constrained chromatin communities. We demonstrate that the

hubs (i.e., nodes with a disproportionately high number of inter-

actions) and spokes (i.e., nodes with fewer interactions) of the

network exhibit distinct functional and etiological properties.

Together, our findings present a chromatin-level explanation

for how disease-associated mutations are tolerated during

development and how the key cellular genes maintain their

consistent and error-free expression.

RESULTS

Transcription-Associated Chromatin Interactions
Form a Complex Hierarchical Network
ChIA-PET is a logical extension of proximity-ligation-based tech-

niques such as chromosomal conformation capture (3C) and

circularized 3C (4C). In brief, the chromatin is crosslinked using

1%paraformaldehyde and sonicated, and chromatin complexes

are pulled down using a specific antibody against a particular

protein factor (in this case, 8WG16 antibody against RNAPII).

Specific linkers are added to the open ends and the complexes

are ligated in the diluted conditions. The ligated material is then

subjected to PET extraction and next-generation sequencing
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(Figure 1A). Using K562 and/or MCF7 ChIA-PET data sets (Li

et al., 2012), we constructed an RNAPII-associated chromatin

interaction network (ChIN) by denoting the distinct genomic sites

as vertices (nodes) and statistically significant (false discovery

rate [FDR] < 0.05; Extended Experimental Procedures) chro-

matin interactions among those sites as edges (links) (Figures

1B and S1A; Extended Experimental Procedures). To remove

redundancy from the ChIA-PET data, we merged the neigh-

boring overlapping sites as illustrated in Figures 1B (left panel)

and S1A. Several randomly selected intra- (cis) and interchromo-

somal (trans) interactions had been validated with Chromosomal

Conformation Capture (3C) and DNA fluorescence in situ hybrid-

ization (FISH) assays in our earlier study (Li et al., 2012). The

topological and functional properties of the ChIN presented in

this study were also scrutinized against the artifacts of genomic

rearrangements in the MCF7 and K562 cell lines (Figures S1C,

S1D, S3C, S4C, S5C, and S6A).

The strategy elaborated in Figure 1 and Extended Experi-

mental Procedures yielded a comprehensive network map of

chromatin interactions with �10,000 connected network com-

ponents. Surprisingly, however,�40% of the total nodes formed

a giant network component of 36,748 nodes sharing 55,039 links

among them (Figure S1E; Tables S2 and S3), suggesting that the

vast majority of the transcriptionally active genome displays

widespread communication, implying an unprecedented level

of regulatory influence among genes and their associated

genetic elements. This could lead to common pleiotropic gene

effects. It is obvious that most of these interactions would not

occur at the same time in the same cell due to spatial constraints,

but rather represent highly dynamic interactions across a large

population of cells (Sandhu et al., 2009).

Except for some of the properties concerning the topology of

the network, which were determined using the giant network

component, most analyses presented in this study were per-

formed on the whole network map, including the smaller com-

ponents. Functional analyses were performed on the K562

and/or MCF7 data sets, depending on the availability of other

related genomic data sets, although the overall properties were

coherent between the two cell lines as shown in Figure S1.

The giant network component of ChIN followed a scale-free-

like degree distribution, according to which very few nodes

would have a disproportionately large number of interactions,

and most others would be weakly connected (Barabási and

Albert, 1999) (Figure 2A, top panel). We confirmed this obser-

vation for the complete networks for both the cell lines, as well

as for the publicly available Hi-C data set (Lieberman-Aiden

et al., 2009) (Figure S1F). Most real-world networks exhibit

scale-free-like behavior (Albert et al., 2000), and the property

ascribes error tolerance against randommalfunctions, indicating

that the ChINs allow for robust systems.

Furthermore, the ChIN displayed a hallmark of hierarchical

network topology, characterized by a strong negative correlation

between the degree (i.e., number of interactions per locus) and

the clustering coefficient (i.e., the tendency of a node to form

triangles; Pearson correlation coefficient [PCC] = �0.81; Fig-

ure 2A, lower panel). A hierarchical network exhibits high modu-

larity in addition to scale-freeness and is an inherent property

of biological networks that governs functional organization
hors



Figure 2. Topological Properties of Transcription-Associated ChIN

(A) Top panel: Log-log plot of the node degree distribution for ChIN constructed from the K562ChIA-PET dataset (plots for other data sets are given in Figure S1F).

The plot shows heavy tailed distribution atypical of scale-free-like networks. Bottom panel: Log-log scatter plot of node clustering coefficients and degree. The

strong inverse correlation is atypical of hierarchical (scale-free + modular) networks.

(B) An example of hierarchical chromatin organization on chromosome 6. Three distant HIST1 gene clusters (HC1, HC2, and HC3) converge in a hierarchical

manner, as shown in the heat-map representation of ChIA-PET data.

(C) Hierarchical topology of K562 ChIN. The color gradient represents the hierarchical organization of chromatin communities (#1173); red and blue indicate the

most central and most peripheral chromatin communities, respectively, as identified by the ModuLand algorithm. Other network properties for K562 and MCF7

ChINs are given in Figures S1 and S2.

(D) Community centralities of nodes having distinct chromHMM profiles (Ernst et al., 2011) in the K562 cell line. Red, active/weak promoter; magenta, poised

promoter; orange, strong enhancer; yellow, weak enhancer; blue, insulator; green, transcribed region; gray, repressed region; white, all. Asterisks indicate the

chromatin types for which the community centralities were significantly greater when compared with all nodes. The Mann-Whitney U test was used to calculate

the p values (<2.2e-16 for each asterisk). See also Figure S2J.

(E) Public and private nature of enhancers. Shown is the bar plot for the proportion of strong andweak enhancers in private and public enhancers. The p value was

calculated using Fisher’s exact test. A box-plot representation of overall promoter interactions of strong and weak enhancers is given in Figure S2K.

(F) High-resolution example of physical interactions among distinct chromatin types. Shown are the tracks for UCSC known genes, RNA-Seq, RNAPII enrich-

ment, ChIA-PET, and chromatin types (chromHMM) in the K562 cell line. The network constructed from this locus is shown in the right panel. Nodes are colored

according to their chromatin types and their size is scaled to their degree.
(Barabási andOltvai, 2004).We further illustrated the hierarchical

nature of the ChIN in an example in which the long-range

(<200 Kb) interaction clusters, namely the HIST1 gene clusters,

further converge via super-long-range (>500 Kb) interactions

in a hierarchical manner (Figure 2B). The convergence of these

three HIST1 clusters correlates significantly with their coexpres-

sion (Li et al., 2012), suggesting that super-long-range interac-

tions are important for the global coordination of distant gene

clusters. Indeed, we observed that the super-long-range and

trans chromatin interactions are critical for maintaining the

overall ChIN topology, despite having a lower frequency of
Cell Re
interactions and accounting for a smaller proportion of all

chromatin interactions (Figure S1G). Abolishment of these

interactions would break the ChIN into smaller disconnected

components and consequently alter the global coordination

among distant genes, as in the case of HIST1 clusters.

Strong Regulatory Marks Govern the Modular Topology
of the ChIN
To further investigate the modular nature of the ChIN, we used

the ModuLand algorithm (Kovács et al., 2010) and mapped the

network modules, which we refer to as chromatin communities.
ports 2, 1207–1219, November 29, 2012 ª2012 The Authors 1209



A chromatin community can include loci from different parts

of the genome and, therefore, represents an extension of the

multigene complex (Li et al., 2012) that was methodically

restricted in the genomic range of 1 Mb. The ModuLand algo-

rithm identified 1,173 communities in the giant component of

the K562 ChIN (Figure 2C). Most of the intracommunity inter-

actions were enriched with cis interactions, whereas intercom-

munity interactions were mostly mediated by super-long-range

or trans chromatin interactions (Figure S1H), adhering to the

fractal nature of chromatin folding (Lieberman-Aiden et al.,

2009; Sexton et al., 2012). We then asked whether distinct

genomic elements and chromatin types, as identified by Ernst

et al. (2011), could contribute distinctly to the modular topology

of theChIN (Figures 2D and S2).We calculated a centrality score,

called the community centrality score, which is a cumulative

measure of the influence of the entire network to the given

node, and is maximal at the central core of the network modules

(Kovács et al., 2010). The active/weak promoter and the strong

enhancer elements showed significantly greater community

centrality scores than the other categories, suggesting that the

modular structure of the ChIN is primarily shaped around these

genomic elements (Figures 2D and S2J). Therefore, a single

promoter can have multiple enhancers, and a single enhancer

can have multiple target promoters, mounting the regulatory

complexity of the genome. We further classified the enhancer

nodes as private or public enhancers based on their attainment

by one or multiple (R2) gene promoters, respectively. Interest-

ingly, >70% of the public enhancers were also strong enhancers

(p < 2.2e-16), whereas private enhancers were equally repre-

sented by strong and weak enhancers (Figures 2E and S2K).

We scrutinized and confirmed this observation against the

possibility of differential enrichment of RNAPII at strong and

weak enhancer sites by restricting the analysis to sites of similar

levels of RNAPII enrichment (Figure S2L). A specific example is

shown in Figure 2F. Three active promoters, three strong

enhancers, and three weak enhancers converged to a network

complex. Here again, the active promoters b, d, and g were

central to the network segment, undergoing three, five, and

five interactions, respectively. Similarly, the strong enhancer c

interacted with all three active promoters in the locus, whereas

the other strong enhancer, h, interacted with two of the three

active promoters (Figure 2F). On the other hand, the weak

enhancers f, i, and j were peripheral to the chromatin communi-

ties connecting to individual genes (Figure 2F). Therefore, strong

enhancers not only have a greater enhancing effect on transcrip-

tion, which is the original definition of strong enhancers (Ernst

et al., 2011), but also have the potential to regulate multiple

genes (pleiotropic regulation).

We then sought a possible explanation for the greater

centrality of strong/public enhancers. We assessed the correla-

tions with individual histone modifications (Figure S2E). Hyper-

acetylation of nodes was associated with higher degree, which

is in line with the supposition that hyperacetylation endows

greater chromatin mobility (Brown et al., 2008; Krajewski and

Becker, 1998). We previously showed that the abundance of

chromatin interactions correlates with genomic descriptors

such as SINE and LINE densities (Li et al., 2012). Therefore, we

controlled our present analyses for these genomic correlates.
1210 Cell Reports 2, 1207–1219, November 29, 2012 ª2012 The Aut
The partial correlations controlled for SINE and LINE densities

clearly suggested that the correlations between degree and

SINE/LINE densities do not account for the correlations ob-

served between node degree and enrichment of chromatin

marks (Figures S2H and S2I). Furthermore, the elements bound

with chromatin remodeling factors such as BRG1 and INI1 were

more interactive than the rest (Figure S2M). We hypothesize

a prominent role for chromatin-remodeling factors in determining

the ChIN topology, which is also in line with earlier reports on

individual loci (Kim et al., 2009; Ni et al., 2008; Zhang et al.,

2006). Surprisingly, contrary to the prevailing view on the role

of CTCF in chromatin architecture, we did not observe strong

association between CTCF binding and the number of RNAPII-

associated chromatin interactions (Figures 2D and S2E), sug-

gesting that CTCF orchestrates the genome architecture in a

manner reasonably distinct from that of RNAPII, possibly by

enclosing the chromatin communities in large chromatin

compartments and thus ascribing a basic chromatin skeleton

for transcription-associated complex connectivity (G.L. et al.,

unpublished data). Therefore, the notion that CTCF is the

‘‘master-weaver of the genome’’ needs to be reconciled by

taking into account the role of other factors in three-dimensional

genome organization.

Chromatin Communities Organize Functional
Compartmentalization
Themodular nature of theChIN raises the possibility of functional

compartmentalization of chromatin in the nucleus. To assess

the functional enrichment in chromatin communities using

network-based ontology tools (see Experimental Procedures),

we focused only on promoter-promoter interactions. This re-

sulted in the decomposition of the giant network into several

smaller network components (Figures S3A and S3B). We

analyzed the enrichment of gene ontology (GO) terms among

the top 30 network components, containing at least 20 genes

each (Extended Experimental Procedures; Table S4). Out of

30 such subnetworks, we observed the enrichment (FDR <

0.01) of one or more functions in 18 (60%; Figure 3A, left panel).

Using an example of a network component, we further showed

that the enrichments of multiple functions were localized in

distinct chromatin communities within a network component

(Figure 3A, right panel; Table S4). Figure S3C illustrates that

the observed functional organization is not an artifact of genomic

rearrangements. We further validated two interesting examples

usingDNA FISH experiments: (1) A common enhancer interacted

with two brain-related proteases, both expressed in MCF7, in

cis and trans. Interestingly, the enhancer locus was specifically

conserved among primates, hinting at the possibility of

primate-specific gene expression regulated via long-range chro-

matin interactions (Figure S3D). (2) Two small nuclear noncoding

RNA loci were found to be interacting in trans (Figure S3E). DNA

FISH experiments confirmed the significant interaction frequen-

cies among the loci involved (p = 6.8e-07 and 2.2e-16, respec-

tively; binomial test; Figures S3D and S3E).

Often, not all of the genes in a community served the same

function, suggesting that the chromatin communities were not

absolutely dedicated to a particular function and often incorpo-

rated overlapping secondary functions, whichmight be indirectly
hors



Figure 3. Functional Compartmentalization of Promoter-Promoter

Interactions in ChIN

(A) Enrichment of GO process terms in the top 30 network components

(size > 20 genes each) in MCF7 ChIN compared with the whole genome. Each

row separated by a gap represents a network component. Enrichment of GO

terms is represented as scaled proportions of the observed number of hits in

a ChIN component (orange) versus the expected number of hits in the genome

(blue). Only significant terms (FDR < 0.01) are shown. Gray-colored bars

represent the network components that had no significant GO enrichment. The

network topology shown in the right panel represents a ChIN component

(n = �600) with distinct chromatin communities as determined by the Modu-

Land algorithm. Nearly 50% of the communities were enriched with distinct

functions (colored modules). Red, chromatin assembly; blue, response to

stimuli and RNA processing; orange, lymphocyte-mediated immunity;

magenta, fatty acid biosynthesis; pink, antigen processing and presenting;

green, brain development; yellow, muscle filament sliding; cyan, proline

biosynthesis; gray, no functional enrichment or only one representative gene.

Edges are weighted by the PCC of the interacting genes across estrogen-

induced time-course GRO-seq experiments (Hah et al., 2011).

(B) Example of chromatin interactions among cellular defense/immunity

related genes on chromosome 11. Noninteracting genes (black) have unre-

lated functions such as testes-specific function and intracellular trafficking.

Nodes with dual colors represent neighboring genes with bidirectional

promoters. DNA FISH validations of a few interesting examples are given in

Figures S3D and S3E.
related to the primary function. For instance, a protease (SIPA1),

a protease inhibitor (CST6), and a DNA repair-related factor

(MUS81) were embedded in a community significantly enriched

in defense/immunity-related genes (FDR < 0.01; Figure 3B).

We hypothesize that such interactions might orchestrate a
Cell Re
coordinated response to external stimuli. The overlapping func-

tional enrichments in chromatin communities could also help in

efficient reconfiguration of community function in response to

external signals, as proposed earlier (Mihalik and Csermely,

2011; Pál et al., 2006).

Importantly, the community structures were largely conserved

between MCF7 and K562 cell lines. Out of 1,783 total gene

communities with at least three genes each, 1,279 (71%)

showed >75% overlap in MCF7 and K562 cell lines (Figure S3F).

Upon closer examination, we observed that the nodes with

K562- and MCF7-specific interactions were often embedded in

the communities enriched with genes common to both cell lines

(Figure S3G). Therefore, the cell-line specificity is defined either

by individual long-range transient interactions that do not

converge to the same community or by fine level differences in

chromatin looping within communities. Such fine differences

in chromatin architectures have also been observed by others

in different contexts (Filion and van Steensel, 2010; Lienert

et al., 2011; Peric-Hupkes et al., 2010).

Chromatin Communities Are Evolutionarily Constrained
We speculated that evolutionary constraints may have shaped

the functional compartmentalization of chromatin. To test this,

we analyzed the density of interactions (i.e., the number of inter-

actions per Mb) within genomic blocks that were syntenic or

nonsyntenic to chimp andmouse genomes.We used amoderate

level of coarse graining tomap syntenic blocks using theCinteny

algorithm (Sinha and Meller, 2007) (Table S1), which revealed

human-chimp and human-mouse syntenic blocks covering

48% and 45% of the human genome, respectively. Subsequent

analysis revealed a nonrandomly higher density of chromatin

interactions within the syntenic blocks than in the nonsyntenic

blocks (Figures 4A–4C). Moreover, the frequency of loops con-

necting syntenic and nonsyntenic blocks was also very low

(four and seven loops per megabase for human genomic blocks

syntenic to chimp and mouse genomes, respectively). Because

syntenic regions are expected to show higher gene density and

expression, we performed some control analyses by selecting

syntenic and nonsyntenic regions of similar gene density and

expression. The analysis consistently showed a significantly

higher density of chromatin interactions in the syntenic blocks

(Figure S4A). Furthermore, a brief analysis on some of our

unpublished ChIA-PET data for mouse embryonic fibroblasts

(MEFs) suggests that RNAPII-mediated chromatin interactions

tend to accumulate in mouse regions that are syntenic to the

human genome (Figure S4B), reconciling the evolutionarily con-

strained nature of chromatin communities. The observed syn-

teny of chromatin communities was also robust against the

possibility of artifacts due to genomic rearrangements in human

cancer cell lines (Figure S4C). The above observations were

also supported by our analyses of human-mouse orthologous

genes, conservation of genomic neighborhood, asynonymous

sequence divergence between human-chimp genomes, and

mammalian phastCons conservation scores (Figures S4D–S4G).

To obtain further details, we plotted the genomic distance

between interacting loci of human genome against that of

corresponding sites in the mouse genome (UCSC’s liftOver;

95% sequence similarity; Figure 4B). We had three key
ports 2, 1207–1219, November 29, 2012 ª2012 The Authors 1211



Figure 4. Evolutionary Constraints of Chro-

matin Communities

(A) Enrichment of chromatin interactions (K562) in

the genomic blocks that were syntenic between

human and chimp/mouse genomes. The p values

for the difference between syntenic and non-

syntenic blocks were calculated using binomial

tests. The data for MCF7 are given in Figure S4C.

(B) Scatter plot of genomic spans between inter-

acting sites in human and corresponding sites in

the mouse genome. The red line represents the

linear regression (PCC = 0.90) and dashed lines

mark the 1 Mb span. The top-left quadrant, high-

lighted in gray, represents the genomic sites that

are distant in the mouse genome but proximal in

the human genome.

(C) Example of an �10.5 Mb region on chromo-

some 8, illustrating the preferred interactions

within syntenic blocks. Red, green, and blue

bars represent blocks in the human genome that

are syntenic with chimp, mouse, and zebra fish

genomes, respectively. Only those interactions

that span the 10.5 Mb region are shown.

(D) Mean divergence in expression (human versus

chimp) across different tissues for genes having

promoter-promoter interactions (orange) and the

rest of the genes (blue). Additional supporting

data are given in Figure S4. The p values were

calculated using the Mann-Whitney U test.
observations: (1) Paired coordinates for 32% and 38% of total

interactions in K562 and MCF7 cell lines, respectively, could be

directly mapped to the mouse genome as compared with 13%

of randomly selected coordinates with the same span distribu-

tion (p < 2.2e-16). (2) The correlation between locus distances

in human and mouse genomes was significantly higher for

interacting loci than for randomly selected pairs of loci of the

same span distribution, supporting the higher conservation of

synteny for interacting pairs (PCC = 0.90, FDR = 0.004; Figures

4B and S4H). (3) There were very few instances in which proximal

mouse genomic sites were rearranged to distant sites in the

human genome (Figure 4B), and in contrast, there was nonran-

domly higher representation (FDR = 0.009; Figure S4H) of sites

that were distant in the mouse genome but were rearranged to

proximal domains in the human genome. This suggests two

possibilities: (1) The physical interactions, if any, among distant

genomic sites in the ancestor genome may have served as an

evolutionary mechanism to translocate the interacting loci to

proximal regions in the human genome (Figure 4B). Indeed,

spatial proximity has been shown tomediate genome rearrange-

ments associated with cancer genomes (Lin et al., 2009). There-

fore, the evolution of gene clusters may have been mediated by

long-range chromatin interactions. (2) If the distant loci had no

interaction in the ancestor genome, then the newly acquired

linear proximity of loci through the process of translocation

may have been the sole driving force behind chromatin inter-

actions. A detailed analysis of RNAPII-associated chromatin

interaction data from other lower species would allow further

examination of such observations in the future.
1212 Cell Reports 2, 1207–1219, November 29, 2012 ª2012 The Aut
Wepreviously demonstrated a nonrandomly higher correlation

among expression profiles of interacting genes across several

gene-expression data sets (Li et al., 2012). Along similar lines,

we now asked whether the expression of genes with promoter-

promoter interactions is evolutionarily more conserved than the

rest. To address this issue, we obtained an expression-diver-

gence data set for multiple human and chimpanzee tissues

from the literature (Khaitovich et al., 2005). Indeed, the genes

that had promoter-promoter interactions showed a significantly

lower divergence of gene expression and sequence during the

evolutionary split of chimpanzees and humans (Figures 4D and

S4F). These observations highlight the strong evolutionary

selection of advantageous chromatin communities for functional

coordination of related genes.

Disease-Associated Genetic Errors Are Enriched
Among Spokes
Genetic errors in distal noncoding elements could influence the

expressivity of the genome (Freedman et al., 2011; Mu et al.,

2011). One way in which genetic errors could influence gene

activity and, consequently, the phenotype is via long-range

chromatin interactions (Ahmadiyeh et al., 2010; Ferrai and

Pombo, 2009; Sandhu et al., 2009; Steidl et al., 2007; Visel

et al., 2009). Therefore, we focused on disease-associated

SNP data obtained from the genome-wide association studies

(GWAS) catalog (Hindorff et al., 2009). The representation of

GWAS SNPs among genic and intergenic sites did not differ

from that of the overall representation of genic and intergenic

sites in the giant ChIN (Figures S5A and S5B), suggesting that
hors



Figure 5. Disease-Associated Mutations in the ChIN

(A) Number of nodes (red) containing at least one GWAS SNP with respect to the degree cutoff. FDRs (gray) were calculated by randomizing the SNP position in

the network 103 times at each degree cutoff.

(B) Degree distribution of TSS nodes for genes having somatic and germlinemutations in cancer phenotypes. The p valuewas calculated using theMann-Whitney

U test.

(C and D) Examples of ‘‘within-community’’ chromatin interactions of disease-associated noncoding SNPs at the (C) beta-hemoglobin and (D) MYC locus in

the K562 cell line. Yellow bars highlight the noncoding SNP positions, and red color highlights the locations of interacting promoters. Phenotypes associated

with SNPs: rs2071348, beta-thalassemia/hemoglobin E disease; rs9642880, bladder cancer; rs2648875, end-stage renal disease; and rs2608053/rs2019960,

Hodgkin lymphoma. Both of the example loci fall in the normal-copy-number range in the K562 cell line (as illustrated in Figure S1C).
disease-associated SNPs are equally probable for genic or

intergenic regions in the ChIN. Although the target genes of

intergenic GWAS SNPs determined by ChIA-PET showed

good correspondence (�70%) with the targets reported in the

GWAS catalogue, there were SNPs that had different or addi-

tional targets other than with the known ones (Figures S5D and

S5E), suggesting that the chromatin interaction data can help

one determine the precise targets of noncoding SNPs. Because

>95% of total genes engaged in RNAPII-associated long-range

interactions were related to the transcriptionally active state of

the genes (Li et al., 2012), we reason that if the gene is expressed

in the tissue for which the GWAS study was performed, most

likely it will also have the corresponding chromatin looping to

regulatory elements. This is also supported by the observation

that 79% of total interactions involving genes commonly ex-

pressed in the MCF7 and K562 cell lines were conserved among

cell lines. Therefore, the cell-lineage discrepancy of integrated

GWAS data and the ChIA-PET data sets might not be entirely

incoherent in this context.

By mapping the GWAS SNPs onto the ChIN, we further

showed that genomic elements with at least one disease-associ-

ated SNPwere enriched to a lower degree (3–6; spokes) and that
Cell Re
theChINhubsweredevoidof suchSNPs (FDR=0.001; Figure 5A;

for examples, see Figures 5C, 5D, S5D, and S5E, and Li et al.

[2012]). This observation was also true for distinct types of

promoters or enhancer loci (Figure S5F). A relatively weaker

second dip in the FDR curve in Figure 5A appeared to be due to

a locus having an abnormally high copy number. Therefore, we

assessed the representation of all of the nodes with GWAS

SNPs in the normal- and abnormal-copy-number regions. More

than 90% of the disease-associated SNPs were found to be

in the normal-copy-number regions (Figure S5C). Thus, we

argue that our observation is not an artifact of the genomic

abnormalities of cancer genomes. Furthermore, 80%of the chro-

matin interactions mediated by the nodes having GWAS SNP

were generally restricted within the chromatin community (p =

1.07e-07, Fisher’s exact test), suggesting that in general, the

chromatin interactions of disease-linked SNPs associate with

the spatially localized dysregulation of a limited number of genes.

Similar observations were reported for most disease genes

from the morbid entries in the Online Mendelian Inheritance in

Man (OMIM) database (Hamosh et al., 2000), where hubs were

mostly devoid of genes associated with disease phenotypes

(Figure S5G). Therefore, we asked whether disease-associated
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Figure 6. Rich-Club Organization of Key Cellular Functions in the ChIN

(A) XY plot of rich-club coefficient versus degree. Coefficient values > 1, for high degree nodes, signify the presence of a rich-club, i.e., a network core of in-

terconnected hubs. The black curve represents the rich-club coefficient (s(k)/sran(k); Extended Experimental Procedures), and gray curves represent the 95%

confidence interval based on the distribution of rich-club coefficient values of 103 randomly rewired networks.

(B) Network representation of rich-club (total 25 hub loci linked to 385 promoters and 2,386 other genomic elements). Distinct colors of the hub nodes signify

distinct chromosomes. For simplicity, only the links that connect to hub loci are shown.

(C) Overrepresented GO terms among the rich-club loci (orange) with respect to spoke loci (blue). The p values are corrected for multiple-hypothesis testing using

the Benjamini-Hochberg method. GO comparisons with genes associated with GWAS SNPs in genic and intergenic regions are shown in Figures S6D and S7A.

(D) Promoter-promoter interactions (n = 3,933) among all of the genes (n = 385) in the rich-club. The red color represents the genes that showed a lethal/death/

mortality phenotype (n = 54) in the MGI database. Black nodes depict the genes that had a nonlethal phenotype (n = 33) in MGI. Gray-colored nodes are genes

for which mutation information was not available in MGI (n = 298). (E) An example locus (�14 Mb genomic spans) showing super-long-range chromatin

interactions among hubs. Red and white bars represent lethal and unknown phenotypes of the representative hub loci (within the local cluster), respectively. Only

those interactions that span the 14 Mb region are shown.
regulatory loci were selected against the possibility of erroneous

interactions, like those reported elsewhere (De and Michor,

2011; Lin et al., 2009) or otherwise, by restricting themselves

to fewer interactions. To test this, we compared the chromatin

interactions of loci associated with germline and somatic cancer

mutations (Futreal et al., 2004). Comparison revealed that the

loci harboring cancer-associated germline mutations are less

interactive than the ones with somatic mutations, despite the

least difference in RNAPII enrichment between the two types

of loci (Figures 5B and S5H). The data suggest that disease-

associated regulatory elements generally function locally and

have a rather limited repertoire of interactions. We propose

that the possibility of erroneous genomic interactions and conse-

quently functional dysregulation is minimized by means of re-

stricting the total number of interactions of loci that are important

for normal organism development. The germline transmission of
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genetic lesions having fewer interactions can thus be better

tolerated. By contrast, somatic mutations are not under any

selection pressure and thus could have a relatively wider expo-

sure to the regulatory cross-wirings in the chromatin. Therefore,

based on our analysis, we propose that disease-causing SNPs

may generally be trapped in local chromatin communities that

affect rather limited phenotypic traits, such as those shown in

Figures 5C, 5D, S5D, and S5E.

Hubs Conform to a ‘‘Rich-Club’’ Organization
of Key Cellular Functions
Given that the hubs had different characteristics as compared

to spokes, we focused on the hubs (degree R 60) to determine

whether the hubs showed any particular behavior. Interestingly,

we found that the top hubs had a preferential link structure, i.e.,

a rich-club, among themselves (Figure 6A and 6B; total 385
hors



Figure 7. Hubs and Spokes Demarcation of Transcription-Associ-

ated ChIN

The grey curve shows the nodes (genes) sorted in order of their number of

interactions. The blue bar represents the interaction range of spokes (degrees

1–6) and the orange bar represents the rich-club. Relative functional inter-

pretations are given at the bottom. The original plot for expression breadth

analysis is given in Figure S2O. Plots for evolutionary divergence of sequence

and gene expression are given in Figures S7B and S7C.
promoters and 2,386 other elements centered on 25 hubs). By

analyzing our in-house data sets of genomic rearrangements

uncovered by the genomic DNA paired end tag (G-PET or

DNA-PET) sequencing approach (Hillmer et al., 2011), we

ensured that the rich-club is not an artifact of genomic rearrange-

ments (Figure S6A).

Rich-clubs in several real-world networks were previously

reported and were proposed to contribute to the greater robust-

ness of the network against random hub failures (Colizza et al.,

2006; Shi and Mondragon, 2004) and to enhance global co-

operation in several biological systems (Bastolla et al., 2009;

Saavedra et al., 2011). To test this hypothesis, we disrupted

rich-club connectivity and performed a network-resilience

analysis of the ChIN. We observed that the ChIN with an intact

rich-club had greater topological robustness than the one with

a disrupted rich-club (p = 0.004; Figures S6B and S6C).

Functionally, the rich-club genes (n = 385) were enriched in

essential cellular functions, including chromatin assembly (e.g.,

HIST1 genes, TTF2, MTA2, TAF6, and BRD2), cellular organiza-

tion (e.g., ACTB, ACTG1, CIT, KIF1B, KIF2C, and TRIP6), and

primary metabolic processes (e.g., SLC17A7, SlC3A2, ITPA,

ATP1A2, DHX29, MAP4K4, EEF1A2, and PLEC1), when com-

pared to spokes (degree 1–6) or the target genes of GWAS

SNPs, which were relatively enriched in development-related

functions (FDR < 0.05; Figures 6C, S6D, and S7A). More impor-

tantly, 62%of the rich-club genes, and the genes interacting with

them, which could be mapped to mouse phenotype information

available from the Mouse Genome Informatics (MGI) database

(Shaw, 2009), had ‘‘lethal,’’ ‘‘death,’’ or ‘‘mortality’’ phenotypes

in mouse (red-colored nodes in Figure 6D and Table S5),
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whereas only �23% of the mouse genes had shown these

phenotypes (Shaw, 2009; p = 6.34e-08). A specific example of

rich-club organization across an�14Mb region on chr6 is shown

in Figure 6E. The hubs centered on JARID2 (chromatin modi-

fying), E2F3 (transcription factor), and c6orf62 and HIST1 (chro-

matin assembly) genes converge via super-long-range interac-

tions. These observations indicate that the hubs collectively

perform essential cellular functions by conforming to a rich-

club. Nonrandom spatial clustering of essential genomic loci

might also relate to an evolutionary strategy to reduce expres-

sion noise by locating the essential loci to site(s) of abundant

transcription, as discussed below.

DISCUSSION

In brief, we have demonstrated that chromatin interactions form

a giant, interconnected network organized into three key interre-

lated structures: communities, hubs, and peripheral spokes.

Communities are primarily centered on hyperacetylated, strong

regulatory marks and organize the genome into distinct func-

tional compartments. Hubs conform to an interconnected core,

or rich-club, of key cellular functions, whereas spokes are rela-

tively enriched in development-related and lineage-specific

genes (Figure 7). This peculiar nonrandom functional organiza-

tion of hubs and spokes might have evolved to keep the inter-

actome healthy and robust against random deleterious genetic

or transcriptional errors in the genome.

Functional enrichment of chromatin communities could be

a potent constraint that ties together transcription-associated

chromatin in the nucleus. Our observation strongly supports

the notion of specialized transcription factories (Pombo et al.,

2000; Xu and Cook, 2008), wherein promoters with common

properties, such as binding sites for a particular transcription

factor, share the same transcription factory. We reason that

the enrichment of secondary functions in the same community

might relate to (1) the limitation of available GO knowledge, (2)

the transcription of genes that need to be expressed as a co-

ordinated response to external stimuli, or (3) neutral coexpres-

sion clusters, which were previously proposed to be a result of

neutral coevolution (Sémon and Duret, 2006). Interestingly, the

chromatin communities are weakly interconnected with each

other through trans or super-long-range cis interactions, which

are generally transient in nature, suggesting that the trans

chromatin interactions might be critical for cross-functional

communication of genes to enable a coordinated response to

external signals and allow the genome to easily reconfigure

under environmental changes.

Evolutionary conservation of genomic neighborhood, se-

quence, and gene expression clearly supports the evolutionary

constraints of transcription-associated chromatin proximity.

This is also in line with a recent Hi-C study on human and mouse

embryonic stem cells (Dixon et al., 2012), which appeared when

this work was in communication. Interestingly, we observed

a population of interacting loci that were distant in the mouse

genome but proximal in the human genome, hinting at the

possibility of evolution of gene clusters by means of long-range

chromatin interactions. Loci that are to be transcribed in a

cooperative manner may have been located at genomically
ports 2, 1207–1219, November 29, 2012 ª2012 The Authors 1215



distant but spatially proximal sites in the ancestor genome,

and may have translocated to proximal genomic sites in higher

primates by a similar mechanism that mediates the genomic

rearrangements in cancer genomes (Lin et al., 2009). Such

hypotheses can be tested further when high-resolution

RNAPII-associated chromatin interaction data become available

for other mammalian and vertebrate species in the future.

The nonrandom enrichment of disease SNPs and germline

mutations among the spokes hints at their selection against

diverse chromatin interactions. This might be important for

the fine-level regulation of development-related genes. Highly

diverse interactions at these loci might increase their suscepti-

bility to erroneous interactions and eventually to transcriptional

dysregulation. Moreover, it was previously shown that chromatin

interactions can mediate mutations (De and Michor, 2011; Lin

et al., 2009). Therefore, the genomic loci with disease-associ-

ated mutations would survive through development only if their

interactions were limited. The mutations that occur at the hub

loci would be lethal and would not be observed in the population.

Nevertheless, the ChIN had hubs that were enriched in key

cellular functions. How do these hubs escape random malfunc-

tions? Based on our analysis, we reason that (1) the ChIN

follows a scale-free-like distribution of node degrees, which

means that the number of hubs would be very low in the network

and hence the probability of an error hitting a hub would also

be very low; and (2) hubs are not randomly distributed in the

ChIN and instead are arranged nonrandomly into an intercon-

nected core or rich-club, which further reduces the probability

of being hit by random malfunctions.

A rich-club of key cellular functions implies two things: (1) In

addition to the partial or complete loss of the known protein

function, which may or may not explain the lethality, genetic or

epigenetic errors in the top hub loci in the ChIN may have other

consequences, such as alteration of transcription of other genes

through promoter-promoter interactions (Li et al., 2012), fol-

lowed by a cascading dysregulation of the downstream gene

regulatory network, and eventually contributing to lethality.

Because the top hubs are directly interconnected through

promoter-promoter interactions, we hypothesize that it is this

core, rather than a single gene, that gets transcriptionally

dysregulated to cause lethality. (2) Nonrandom rich-club organi-

zation in the chromatin interactome may have evolved to shield

the genes with key biological functions from random malfunc-

tioning and also ensure their robust, high, and synchronized

transcription through promoter-promoter interactions (Li et al.,

2012; Figure S2G, degree correlation with gene expression).

Indeed, nonrandom linear genomic clustering of essential genes

was previously proposed to be associated with lower expres-

sion noise (Batada and Hurst, 2007). Along similar lines, non-

random three-dimensional (3D) clustering of essential cellular

genes at nuclear sites of abundant transcription may regulate

their lower expression noise. This clustering can be attributed

to 3D organization of gene-dense regions (�70% of hubs were

located in regions with >20 genes per Mb) in the nuclear core,

which was previously shown to be evolutionarily conserved

(Neusser et al., 2007; Tanabe et al., 2002). Therefore, an inter-

connected core of housekeeping genes might suggest a selec-

tion mechanism that evolved to reduce the variation in gene
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expression at essential gene loci associated with core cellular

functions. In contrast, such variations in expression in the

peripheral, nonhub nodes associated with lineage-specific and

developmental functions may have been relatively tolerant in

the context of cell survival. Nonetheless, certain type of genetic

errors and dysregulated expression levels at these loci could

be lethal in the context of organism survival.

Interestingly, the rich-club remains intact after the genomically

rearranged regions are removed from the network, hinting at

two possibilities: (1) either the loci in the rich-club are protected

against DNA breaks, possibly via efficient DNA repair and

protection mechanisms, or (2) the genomic rearrangements at

these loci are deleterious in the cell-survival context and hence

not observed in the cancer cell lines. The former possibility is

also supported by the fact that these loci are hyperacetylated,

which also allows for efficient DNA repair (Ikura et al., 2007),

and the hub loci generally locate to early replicating domains

(Figure S2N), which are less susceptible to genetic errors (Sta-

matoyannopoulos et al., 2009) due to lower accumulation of

single-stranded DNA.

Taken together, our results obtained via a network approach

uncover evolutionary and functional constraints, which might

have shaped the 3D organization of the human genome. We

propose that the human genome exhibits a robust systems

organization of chromatin interactions to regulate transcription

by compartmentalizing biological functions into distinct chro-

matin communities, and by ensuring the robust and consistent

transcription of key essential genes in the interconnected dense

core. The modular topology of the chromatin interactome may

also guide GWAS studies to prioritize the SNPs for genotype-

phenotype associations.

This work also suggests several future perspectives. First, by

integrating the gene regulatory circuitry into the ChIN, investiga-

tors would be able to study and predict the erroneous waves a

genetic or epigenetic lesion might radiate in a diseased genome.

Second, for a full exploration of the emergent properties of

chromatin interactome networks that arise over time, the

dynamics of chromatin interactions during normal cell-lineage

specification and evolution will need to be examined.

EXPERIMENTAL PROCEDURES

Data Sets

We used our previously published RNAPII ChIA-PET data sets (Li et al., 2012)

to perform the comprehensive network analysis. These data sets are available

from the Gene Expression Omnibus (GEO, GSE33664; Edgar et al., 2002) and

from our in-house server. Other genomic data sets were taken from the

resources listed in Table S1.

Network Construction

The ChIN was constructed using nonoverlapping distant genomic sites

present in our RNAPII ChIA-PET libraries. The detailed strategy for network

construction is elaborated in the Extended Experimental Procedures. Nodes

were then demarcated as TSS, TES, GBD, and IGN, and as distinct chromatin

types using genome annotations from the University of California Santa Cruz

(UCSC) and ENCODE (Ernst et al., 2011).

Network Analysis

Weused the igraph library on theR platform to analyze topological descriptors,

such as the node degree (k), average degree of nearest neighbors (knn),
hors



average path length, clustering coefficient, and various node or edge central-

ities of ChIN. To assign communities and their centralities, we used the

ModuLand algorithm (Kovács et al., 2010). We detected the rich-club using

the recently proposed rich-club coefficient (Colizza et al., 2006). We performed

a network resilience analysis by progressively deleting random nodes from

the ChIN and measuring the network destruction as a function of the average

path length or the number of disconnected network components (Albert

et al., 2000).

GO Analysis

We used network ontology analysis (NOA; Wang et al., 2011), BiNGO (Maere

et al., 2005), and PANTHER (Mi et al., 2010) to assess the enrichment of

specific functions in chromatin communities.

Visualization

Networks were visualized on Cytoscape (Kohl et al., 2011) and Gephi. Spring-

embedded layouts were used throughout the analysis. Chromatin loops and

associated genomic features were browsed and analyzed on an advance

genomic browser developed in-house (F.H.M. et al., unpublished data).

Most of the plots were made on the R platform.

Statistics

Statistical tests of significance (i.e., Wilcoxon’s rank sum test, Fisher’s exact

test, and binomial tests) were performed on the R platform. The FDR, when

applicable, was calculated by randomizing the data sets several thousand

times.
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UCSC, http://genome.ucsc.edu/
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

ChIA-PET Data Analysis
ChIA-PET reads were analyzed using the ChIA-PET tool (Li et al., 2010) and the strategy elaborated elsewhere (Li et al., 2012). Statis-

tically significant chromatin interactions were identified using a random null model, which assumes that the probability of a ChIP en-

riched fragment to get ligated to another ChIP enriched region is random. Under this model, the probability of finding a particular

cross-ligated product would follow a hypergeometric distribution. This probability was used to assign a p value to each chromatin

interaction. FDR was calculated by adjusting p values using Benjamini-Hochberg correction method of multiple comparisons. The

raw data are available from ChIA-PET and from GEO. The detailed properties of the data sets are elaborated elsewhere (Li et al.,

2012). Numbers of uniquely mapped PETs are as follows:

ChIA-PET library # unique PETs

K562 replicate1 14,177,547

K562 replicate2 14,365,592

MCF7 replicate1 15,283,270

MCF7 replicate2 15,622,720

Construction of the RNAP II-Associated ChIN
A large proportion (�50%) of interaction sites or anchors (average sizez500bp) was redundant, i.e., closely overlapping, in the orig-

inal dataset (red peak in Figure S1A). We observed a clear separation of overlapping (redundant) and nonoverlapping interaction sites

present in our ChIA-PET dataset (Figure S1A). We, therefore, merged the neighboring overlapping anchors and the maximum PET

signal in the region was taken as the anchor-center. For further data-mining purpose, we extended each anchor +/� 2.5kb upstream

and downstream from the anchor center to acquire nodes of 5kb size. Nodes were then connected as per their connectivity in the

ChIA-PET dataset. Pairs of interacting nodes were imported to igraph library, available for R-package, to construct an undirected

graph of chromatin interactions. The graph consisted of several small network components and one giant network, which covered

upto 40% of total nodes present in the network. Though we used the complete graph for genomic, epigenomic and functional char-

acterization of the chromatin interactome, only the giant network component was used to decipher topological properties of RNAPII

associated chromatin interaction network (ChIN). Copy number variations in cancer genomes might contribute to bias in number of

interactions of involved loci. To address this, we performed some control analyses as mentioned in the section 1.12.

Analysis of Network, Node, and Edge Descriptors
Several network descriptors like scale-freeness, network hierarchy, disassortativity were assessed using log-log plots of node

descriptors. We performed Kolmogorov-Smirnov test in combination with maximum-likelihood for goodness-of-fit for power-law

distribution (fðkÞ=C=kb ; for k = 1, 2, .) of node degrees (k). The test was positive for non-TSS sites in ChIN, while it failed for

TSS sites (Table S6). Several real world networks do not have a strict scale-free degree distribution but possess a scale-free like,

heavy tailed degree distribution, which is sufficient for the explanation of our data as explained in detail elsewhere (Clauset et al.,

2009). Therefore, we use the term ‘‘scale-free-like network’’ throughout this work. Networkmodularity was analyzed usingModuLand

algorithm (Kovács et al., 2010). The existence of rich club was identified using the rich-club coefficient proposed by others (Colizza

et al., 2006). Node descriptors namely degree, betweenness (number of shortest paths passing through a node), closeness (number

of shortest paths required to reach any other node in the network), eigen vector centrality, transitivity (clustering coefficient), knn

(average degree of nearest neighbors) etc were calculated using igraph functions on R platform. Community centrality scores

were assigned using theModuLand algorithm (Kovács et al., 2010). Edge betweennesswas calculated using igraph to assign central-

ities to cis and trans chromatin interactions. Global topological properties ofMCF7 andK562ChINwere compared using log-log plots

among the node descriptors. The two networks appear to be very similar topologically (Figure S1). Detailed properties of MCF7 and

K562 ChIN nodes are given in Tables S2 and S3.

Detection of Rich-Club
We detected rich-club by calculating the following rich-club coefficient as proposed by Colizza et al. (2006):

sðkÞ= 2E>k

N>kðN>k � 1Þ;

where

E > k = number of observed edges at degree cut-off k

N > k = number of nodes at degree cut-off k

N > k(N > k � 1) = number of expected edges at degree cut-off k.
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The coefficient,s(k), was calculated for the original network and for 103 randomly rewired networks. The average ratio of original

versus randoms(k)/sran(k) was then plotted against degree cut-off. The 95% confidence interval was based on the distribution

of sran(k)values.

Analysis of Genomic and Epigenomic Descriptors
Genomic and epigenomic descriptors such as local SINE & LINE density, H3K4me3, H3K4me1, H3K9me3, H3K27me3, H3K9ac,

H3K14ac, FAIRE, CTCF, replication timing, chromatin types (chromHMM) were taken from databases and published literature (Han-

sen et al., 2010; Joseph et al., 2010; Li et al., 2012; http://genome.ucsc.edu; http://www.genome.gov/10005107). Enrichment of each

of the descriptors was calculated in 5kb bins across the whole genome. Two kinds of analyses were performed: 1) the correlation of

node centrality (degree or community centrality) with enrichment of genomic/epigenomic marks to identify which mark associates

best with number of interactions, 2) Pair-wise correlation analysis for interacting nodes to analyze the marks associated with chro-

matin interactions. Analysis of chromatin types (K562) is presented in Figures 2D and 2F, while plots for individual genomic and epi-

genomic marks are shown in Figure S2. Gene expression data sets used in the study are our in-house RNA-Seq and time course

microarray data sets (Fullwood et al., 2009; Li et al., 2012). We analyzed MCF7 and/or K562 ChIN based on the availability of other

epigenomic and functional data sets, including chromatin types, replication timing, and time-course microarray data.

Expression Breadth Analysis
RNaseq data for GM12878, HCT116, HeLa, K562 and MCF7 cell-line were downloaded from ENCODE. Expression breadth was

calculated as the number of cell-lines a particular gene is expressed in (RPKM > 0). Expression breadth of 1 means that the gene

is highly cell-line specific, while the value 5 signifies house-keeping gene.

GO Analysis
Most of the GO analyses shown in the article were performed using hypergeometric test available in BiNGO, a plugin for Cytoscape

software. To confirm our observations by edge based ontology methods, we used Network Ontology Analysis (NOA). PANTHERwas

used occasionally to validate the enrichments. In each of methods, p values were corrected using standard Benjamini-Hochberg

method.

Analysis of Evolutionary Conservation
Genomic blocks syntenic between human and chimp, mouse and zebra fish genome were downloaded from Cinteny database. The

number of chromatin interactions per Mb were calculated for syntenic and nonsyntenic blocks. The interactions between syntenic

and nonsyntenic blocks were negligible. These observations were also confirmed using data from ECRbase (not shown). Mouse

genomic coordinates for corresponding interacting genomic sites in human genome, were lifted-over using the liftOver utility from

UCSC browser. The FDRs were calculated using the approach given in the section 1.15. Conservation of genomic neighborhood

(CGN) scores were taken from De et al. (2009). Sequence and expression divergence data were taken from Khaitovich et al.

(2005). Human-mouse orthologs were downloaded from MGI.

Analysis of Disease-Associated Genetic Mutations
A list of disease-associated SNPs identified by genome-wide association studies (GWAS) was downloaded fromGWAS catalog (Hin-

dorff et al., 2009). SNPs were mapped to all types of nodes (TSS,TES, GBD, IGN and different chromatin types) of uniform size as

mentioned in the previous section. FDR at each degree cut-off was calculated using 103 randomizations of GWAS SNP locations

in the ChIN. OMIM (Hamosh et al., 2000) data were used to analyze other disease-associated mutations. Cancer associated somatic

and germline mutations were downloaded from the cancer census (Futreal et al., 2004). Only the TSS nodes were considered for

genic mutations.

Mouse Phenotype Analysis
Mouse phenotype information was taken from MGI database. The phenotypes showing the terms ‘‘lethal,’’ ‘‘death’’ or ‘‘morality’’

were considered as lethal phenotypes. MGI showed a total of 10,692 genotypes with these terms out of total 46,178 mouse geno-

types available.

Network Resilience Analysis
To assess whether the rich club of critical biological functions could indeed make the ChIN relatively more robust, we performed

a network resilience analysis of ChIN. We gradually deleted the random nodes (mutation) from the ChIN with intact rich club and

with disrupted rich-club. The expansion of average path length (average of all shortest path lengths in the network) and the increase

in number of network components were taken asmeasures to calculate network disruption. From Figures S6B andS6C, it is clear that

ChINwith intact rich club is relatively more tolerant to node deletions when compared to ChINwith disrupted (disconnected) rich-club

suggesting that the rich club structure is indeed important for the robustness of ChIN topology against random errors.
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Control Analyses for Genomic Rearrangements
Structural abnormalities of cancer genomes can alter the network and functional analyses and interpretations presented in this study.

To scrutinize our observations, we performed some control analysis of genomic rearrangements in MCF7 and K562 genomes. We

used our in-house G-PET data on several different kinds of structural variations (Hillmer et al., 2011). The plots shown in Figure S1C

suggest that the copy numbers 1.25 to 4 are the most common in the MCF7 and K562 genomes. We, therefore, filtered out genomic

regions having less than 1.25 or more than 4 copies in the MCF7/K562 genomes. We, then, removed the other abnormities like trans-

location, inversion, insertion, deletions, which mapped proximal to chromatin interaction sites. We then re-plotted important topo-

logical descriptors, like degree, centrality and clustering coefficient as well the key observations of the study before and after filtering

of structural abnormalities. We did not observe any significant bias which could influence the overall conclusions presented in the

article (Figure S1D).

Control Analyses for Genomic Correlates
Genomic descriptors like SINE, LINE & gene densities and GC content strongly correlate with gene expressivity. In our earlier anal-

yses, we showed that these descriptors also correlate with density of chromatin interactions. Therefore, to assess the extent these

correlations account for the degree correlations shown in Figure S2E, we controlled our analyses using partial correlations by elim-

inating the effects of two such descriptors, namely SINE and LINE densities, which are anticorrelated with each other. The compar-

isons shown in Figure S2I, clearly suggest that these genomic variables do not account for the strong degree correlations observed in

Figure S2E.

Data Visualization
Spring embedded layouts of ChINwere visualized using Cytoscape (Kohl et al., 2011) andGephi software. Genomic tracks for genes,

chromatin interactions and other epigenomic marks were visualized using an in-house genome browser. Most plots were made on R

platform.

Statistics
Wilcoxon’s rank sum test was used to test the significance between distributions shown in the article. FDRs in Figure 5A were calcu-

lated using 103 randomizations of GWAS SNPs in the ChIN. FDR values in Figure 4B were calculated from 103 random data sets of

paired coordinates of same genomic span distribution as the original interacting pairs. Following equation, which represents the

upper bound of p value, was used to calculate the FDR:

Pupper =
ðb+ 1Þ
m

Where b = number of values R observed value, and m = number of permutations. All statistical tests were performed on R.
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Figure S1. Detailed Topological Description of ChIN, Related to Figures 1 and 2

(A) Distribution of genomic distances between neighboring interaction sites (anchors) in the RNAII ChIA-PET dataset (MCF7).

(B) Global comparison of network descriptors of MCF7 (red) and K562 (blue) ChINs. k: degree; b: betweenness centrality (i.e., the number of shortest paths

passing through a node); c: closeness centrality (i.e., the average number of shortest paths needed to reach from a node to all other nodes in the network); e:

eigenvector centrality; t: transitivity or clustering coefficient ([number of observed triangles/number of expected triangles] incident on a node); knn: average

degree of nearest neighbors. Overall, the two networks had similar topological properties.

(C) Copy-number variations in MCF7 and K562 cell lines. Regions with high or low copy numbers were discarded for control analyses.

(D) Topological descriptors were compared before and after removal of genomic abnormalities (high/low copy number and genomic rearrangements revealed by

G-PET analyses). The statistically significant difference was assessed via the Mann-Whitney U test. None of the descriptors showed a significant p value.

(E) Giant network components of ChINs constructed fromMCF7 ChIA-PET (left, 5 kb resolution) and K562 HiC (right, 1 Mb resolution) datasets. The colors of the

nodes depict distinct chromosomes.

(F) Scale-free-like degree distribution of ChINs constructed from MCF7/K562 ChIA-PET (left) and K562 HiC (right) data.

(G) Top panel: Distribution of edge centralities (edge betweenness) for cis (intra-chr) and trans (inter-chr) chromatin interactions in MCF7 and K562 cell lines.

Bottom panel: Correlation plots between edge centralities and genomic span of chromatin interactions in MCF7 and K562 cell lines. Edge betweenness

represents the number of shortest paths passing through a particular edge. The figure demonstrates the greater importance of superlong-range and trans

chromatin interactions inmaintaining the ChIN topology. Abolishment of these superlong-range and trans interactionswould break the ChIN topology into smaller

fractions.

(H) Left panel: Genomic span distribution of intra- and intercommunity interactions. Right Panel: Fraction of interchromosomal interactions in intra- and inter-

community interactions.
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Figure S2. Detailed Genomic and Epigenomic Characterization of ChIN Topology, Related to Figure 2

(A) Pie chart representing different types of nodes.

(B and C) Boxplots for the distribution of degree (k) (B) and the average degree of neighbors (knn) (C) of distinct types of nodes. TSS, transcription start site; TES,

transcription end site; GBD, gene BoDy; IGN, intergenic sites.

(D) Log-log plot of degree (k) and average degree of neighbors (knn). Inverse correlation suggests that ChIN is disassortative, i.e., highly connected nodes

preferably interact with weakly connected nodes. Disassortativity reflects a functional segregation of TSS (black), which have more neighbors and are mostly

connected to distal regulatory elements (non-TSS; gray) with relatively fewer neighbors. Note that the rich-club phenomenon, as reported in this article, and the

assortative/disassortative mixing properties of a network are not trivially related or derived from each other, as elaborated elsewhere (Colizza et al., 2006).

(E) Correlations of degree with distinct chromatin modifications (per 5 kb). The strongest correlation of degree was seen with H3K9 acetylation. These obser-

vations were true for all types of nodes (All, TSS, TES, GBD, and IGN). Numbers on the bottom are the PCC values for the correlation between degree and

enrichment of corresponding chromatin mark for all of the nodes in the network.

(F) Pairwise correlations between chromatin modifications at interacting sites. The X and Y axes are interacting partners.

(G) Correlation of degree with gene expression (RNA-Seq).

(H) Correlations of degree with SINE and LINE densities (per 50 Kb).

(I) Partial correlations of epigenomic marks with degree when controlled for SINE and LINE densities.

(J) Detailed distribution of community centrality scores among distinct chromatin types. Asterisks indicate the chromatin types for which community centralities

were significantly greater when compared with all nodes. The Mann Whitney U test was used to calculate the p values (<2.2e-16 for each asterisk).

(K) Distribution of the number of promoter interactions of nodes with strong andweak enhancermarks. The p valuewas calculated using theMannWhitney U test.

(L) Control analyses for degree distributions of strong and weak enhancers. Left panel: Correlation of RNAPII enrichment and degree. A subset of sufficiently

enriched RNAPII sites that did not show a significant correlation with degree was selected to compile control sets of strong and weak enhancers. Middle panel:

Control sites of strong and weak enhancers did not show a significant difference in RNAPII enrichment. Right panel: Significant difference in degree distribution of

control sites of strong and weak enhancers.

(M) Degree distribution of all active promoters and strong enhancers, and those marked with chromatin-remodeling factors BRG1 or INI1. Active promoters and

strong enhancers marked with BRG1/INI1 were significantly more interactive.

(N) Degree distribution for early- and late-replicating sites (per 5 kb).

(O) Correlation of degree with the expression breadth (i.e., the number of cell lines in which a gene is expressed) of genes.

(A)–(I) refer to MCF7, and (J)–(O) refer to K562 ChIN. Numbers shown on the scatter plots are PCCs.
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Figure S3. In Situ Validations and Other Details about the Functional Organization of ChIN, Related to Figure 3

(A) Component size analysis for ChIN containing only TSS sites; �600 nodes converge to a giant complex.

(B) Mapping of chromatin communities using the ModuLand algorithm. A total of 1,783 communities spread across all network components were identified. Only

components with at least 20 genes were considered for the GO analysis presented in Figure 3A.

(C) Functional organization of the giant network component before (+G-PET) and after (�G-PET) the removal of genomically rearranged regions. Loss of links

does not alter overall functional organization (related to Figure 3).

(D and E) DNA FISH validations of interchromosomal interactions between functionally related genes.

(D) A common enhancer interacts with PRSS22 (a brain-specific serine protease) in cis and with CASP2 (cysteine-aspartic acid protease, involved in neuro-

degenerative disorders) in trans. Interestingly, the enhancer locus appears to be primate specific. Both genes are expressed in the MCF7 cell line. Tracks for

regulatory marks (FAIRE, H3K14ac, H3K9ac, and CTCF), and RNA-Seq, and conservation across primates, mammals, and vertebrates are shown. Primate-

specific conservation of enhancer and brain-associated gene functions prompted us to test the underlying interactions by single-cell experiment.

(E) Small nuclear RNAs on chr3 and chr10 converge via trans chromatin interaction. This interaction was selected for FISH validation to illustrate the physical

association of noncoding gene loci. The p values were calculated via a binomial test.

(F) Proportion of cell-line-specific (MCF7, for illustration) communities and the communities common (>75% overlap) to MCF7 and K562 cell lines.

(G) Example of MCF7-specific (red) and K562-specific (blue) nodes embedded in housekeeping (common, yellow) chromatin communities.
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Figure S4. Control Analyses for Evolutionary Constraints in ChIN, Related to Figure 4

(A) Synteny analysis on genomic sites of similar gene density and expression. Left andmiddle panels: Distribution plots for gene density and expression values for

control syntenic and nonsyntenic blocks (human-mouse). Right panel: Density of K562 chromatin interactions in the syntenic and nonsyntenic regions.

(B) Density of MEF chromatin interactions in the mouse genomic blocks that are syntenic to the human genome.

(C) Synteny analysis before (+G-PET) and after (�G-PET) filtering the genomic rearrangements in the MCF7 cell line. The difference in interaction densities

between the syntenic and nonsyntenic regions remains significant.

(D) Distribution of human-mouse orthologous genes in the K562 chromatin communities and random chromatin communities of the same number of nodes.

(E) Conservation of the genomic neighborhood (CGN).

(F) Asynonymous sequence divergence of genes with and without promoter-promoter interactions, in human and chimp genomes.

(G) Correlation of degree (k) with mammalian sequence conservation (46way phastCons elements) for distinct types of nodes.

(H) Left and middle panels: Nonrandom covariance and PCC between genomic spans of chromatin loops in t human genome (K562) and corresponding sites in

the mouse genome. Right panel: Nonrandom enrichment of data points in the top-left quadrant (distant in themouse genome and proximal in t human genome) of

the plot in Figure 4B. The histograms are the distributions of values for random genomic spans of the same length as the original.
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Figure S5. Detailed Characterization of Nodes with GWAS SNPs, Related to Figure 5

(A and B) Distribution of genic and intergenic sites in (A) all nodes and (B) GWAS SNP-containing nodes in MCF7 ChIN. There is no observable difference in the

representation of genic and intergenic nodes in ChIN with and without GWAS SNPs.

(C) Distribution of GWAS SNP-containing nodes with normal and abnormal copy number in the MCF7 genome.

(D and E) Individual examples of long-range chromatin interactions between promoters (highlighted in gray) and intergenic nodes with GWAS SNP (highlighted in

orange). The phenotype and function of the linked gene are noted at the bottom. Functional correspondence between the phenotype and the gene function is

apparent.

(F) Degree distribution for distinct types of nodes with and without GWAS SNP. 1: active promoter; 2: weak promoter; 4–5: strong enhancer (class 1, 2); 6–7: weak

enhancer (class 1, 2).

(G) Degree distribution for nodes mapping to nondisease genes (NDG), single disease genes (SDG), and multidisease genes (MDG) as obtained from OMIM.

(H) RNAPII enrichment on promoters of genes having somatic or germline cancer mutations. There was no remarkable difference in RNAPII enrichment between

the two data sets.
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Figure S6. Topological and Functional Properties of Rich-Club Genes, Related Figure 6

(A) Rich-club analysis after removal of genomically rearranged regions. The rich-club remains intact.

(B and C) Network resilience analysis of ChIN (K562).

(B) Fold change (from the initial value) of the average path length after gradual deletion of random nodes fromChINwhen the intraconnectivity of the rich-club was

preserved (blue) and when edges (#48) connecting the hubs were disconnected and randomly rewired to other non-rich-club nodes (orange).

(C) The same analysis as in (B), except that the total number of network components was considered as a measure of network destruction. The expansion of

average path length and the increase in the number of network components represent the network destruction. The analyses consistently show slightly greater

resilience of ChIN with intact rich-club. After �1,500 nodes were deleted (highlighted in gray), the curves show a statistically significant difference.

(D) Functional enrichment among the rich-club genes versus the genes having disease SNPs at genic (promoter, terminator, exon, or intron) regions.
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Figure S7. Topological and Functional Properties of Rich-Club Genes—Continuation of Figure S6, Related to Figures 6 and 7

(A) Functional enrichment among the rich-club genes versus the genes having disease SNPs at intergenic regions. For intergenic SNPs, target genes were

determined by exploiting their chromatin interactions.

(B and C) Comparative analyses of evolutionary divergence in (B) sequence and (C) gene expression of spoke and rich-club genes.
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