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Despite considerable progress in genome- and proteome-based high-throughput screening methods and in
rational drug design, the increase in approved drugs in the past decade did not match the increase of drug
development costs. Network description and analysis not only give a systems-level understanding of drug
action and disease complexity, but can also help to improve the efficiency of drug design. We give a compre-
hensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of
chemical similarity, protein structure, protein–protein interaction, signaling, genetic interaction and meta-
bolic networks in the discovery of drug targets is summarized. We propose that network targeting follows
two basic strategies. The “central hit strategy” selectively targets central nodes/edges of the flexible networks
of infectious agents or cancer cells to kill them. The “network influence strategy” works against other dis-
eases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors
of central nodes/edges. It is shown how network techniques can help in the identification of single-target,
edgetic, multi-target and allo-network drug target candidates.We review the recent boom innetworkmethods
helping hit identification, lead selection optimizing drug efficacy, aswell asminimizing side-effects and drug tox-
icity. Successful network-based drug development strategies are shown through the examples of infections, can-
cer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an
optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug
quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by
a cohesive, global approach.
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Fig. 1. Number of new molecular entities (NME, a drug containing an active ingredient
that has not been previously approved by the US FDA) approved by the US Food and
Drug Administration (FDA). Blue bars represent the total number of NMEs, whereas
red bars represent “priority” NMEs that potentially offer a substantial advance over
conventional therapies.
Source: http://www.fda.gov/Drugs/default.htm.
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1. Introduction

‘Business as usual’ is no longer an option in drug industry (Begley
& Ellis, 2012). There is a growing recognition that systems-level
thinking is needed for the renewal of drug development efforts. How-
ever, interrelated data have grown to such an unforeseen complexity,
which argues for novel concepts and strategies. The Introduction aims
to convey to the Reader that the network description and analysis can
be a suitable method to describe the complexity of human diseases
and help the development of new drugs.

1.1. Drug design as an area requiring a complex approach

The population of Earth is growing and aging. Some of the major
health challenges, such as many types of cancers and infectious dis-
eases, diabetes and neurodegenerative diseases are in desperate need
of innovative medicines. Despite of this challenge, fast and affordable
drug development is a vision that contrasts sharply with the current
state of drug discovery. It takes an average of 12 to 15 years and
(depending on the therapeutic area) as much as 1 billion USD to bring
a single drug into market. In the USA, pharmaceutical industry was
the most R&D-intensive industry (defined as the ratio of R&D spend-
ing compared to total sales revenue)until 2003,when itwas overtakenby
communications equipment industry (Austin, 2006; Chong & Sullivan,
2007; Bunnage, 2011).

The increasingly high costs of drug development are partly associated

• with the high percentage of projects that fail in clinical trials,
• with the recent focus on chronic diseases requiring longer andmore
expensive clinical trials,

• with the increased safety concerns caused by catastrophic failures
in the market and

• with more expensive research technologies.
• Moreover, direct costs are doubled, where the second half comes
from the ‘opportunity cost’, i.e. the financial costs of tying up invest-
ment capital in multiyear drug development projects (Austin, 2006;
Chong & Sullivan, 2007; Bunnage, 2011).

We have a few hundreds of targets of approved drugs from the
>20,000 non-redundant proteins of the human proteome. Despite
the considerably higher R&D investment after the millennium, the
number of new molecular entities (NMEs) approved by the USA Food
and Drug Administration (FDA) remained constant at an annual 20
to 30 compounds. The number of NMEs potentially offering a sub-
stantial advance over conventional therapies is an even more sober-
ing number of 6 to 17 per year in the last decade (Fig. 1). However, it
is worth to note that looking only at the number of new drugs with-
out considering their therapeutic value omits an important factor in
the analysis (Austin, 2006; Overington et al., 2006; Chong & Sullivan,
2007; Bunnage, 2011; Edwards et al., 2011; Scannell et al., 2012).

Part of the slow progress is related to the high risks of invest-
ments. The development of an NME-drug costs approximately four
times more than that of a non-NME. Moreover, the ‘curse of attrition’
steadily remained the biggest issue of the pharmaceutical industry
in the last decades (Fig. 2). Each NME launched to the market needs
about 24 development candidates to enter the development pipeline.
Attrition of phase II studies is the key challenge, where only 25% of the
drug-candidates survive. The 25% survival includes new agents against
known targets (the ‘me-too’ or ‘me-better’ drugs), and therefore may
be a significant overestimate of the survival rate of drug-candidates
directed towards new targets. The low survival rate is exacerbated fur-
ther by the very high costs of a failing compound at this late develop-
ment stage (Brown & Superti-Furga, 2003; Austin, 2006; Bunnage,
2011; Ledford, 2012). These high risks made the drug industry cau-
tious, and sometimes perhaps over-cautious. As the pharmacologist
and Nobel Laureate James Black said: “themost fruitful basis for the dis-
covery of a new drug is to start with an old drug” (Chong & Sullivan,
2007). In fact, analysis of structure–activity relationship (SAR) pattern
evolution, drug–target network topology and literature mining studies
all showed the same behavior trend indicating that more than 80% of
the newdrugs tend to bind targets, which are connected to the network
of previous drug targets (Cokol et al., 2005; Yildirim et al., 2007; Iyer
et al., 2011a).

Improving the quality of target selection is widely considered as
the single most important factor to improve the productivity of the
pharmaceutical industry. From the 1970s target selection was in-
creasingly separated from lead identification. Drug development process
often fell to the ‘druggability trap’, where the attraction of working on
a chemically approachable target encouraged development teams to
push forward projects having a poor target quality. Additionally, chemi-
cal leads were often discovered to have unwanted side-effects and/or be
toxic at later development phases (Brown & Superti-Furga, 2003;
Hopkins, 2008; Bunnage, 2011).

The decline in the productivity of the pharmacological industry
may stem partly from the underestimation of the complexity of cells,
organisms and human disease (Lowe et al., 2010). We will illustrate
the high level of this complexity by three examples.

• Under ideal conditions only 34% of single-gene deletions in yeast
resulted in decrease in proliferation. However, when knockouts
were screened against a diverse small-molecule library and a wide
range of environmental conditions, 97% of the gene-deletions demon-
strated a fitness defect (Hillenmeyer et al., 2008).

• Many of the most prevalent diseases, such as cancer, diabetes and
coronary artery disease have a genetic background including a large
number of genes (see Section 5 and Brown & Superti-Furga, 2003;
Hopkins, 2008; Fliri et al., 2010). Following a treatment with a che-
motherapeutic agent almost all of 1000 tagged proteins of cancer
cells showed a dynamic response, when their temporal expression
levels and localization were tracked (Cohen et al., 2008).

• As Loscalzo andBarabasi (2011) summarized in their excellent review,
diseases are typically recognized and defined by their late-appearing
manifestations in a partially dysfunctional organ-system. As a part
of this, therapeutic strategies often do not focus on truly unique,
targeted disease determinants, but (rightfully) address the patho-
phenotypes of the already advanced disease stage. These advanced
patho-phenotypes have a large number of symptoms, which are not
primarily disease-specific (such as inflammation). This definition of
disease may obscure subtle, but potentially important differences
among patients with clinical presentations, and may also neglect
pathobiological mechanisms extending the disease-defining organ
system. Loscalzo and Barabasi (2011) argue that the complexity of

http://www.fda.gov/Drugs/default.htm


Fig. 2. Success rate of new molecular entities (NMEs) by R&D development phases. The figure shows the combined R&D survival by development phase for 14 large pharmaceutical
companies. Note that attrition figures for early phases might be even higher, since an early problem might be first neglected making a failure only at a later phase (Brown &
Superti-Furga, 2003).
Reprinted by permission from the Macmillan Publishers Ltd: Nature Chemical Biology, Bunnage, 2011, Copyright, 2011.
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disease should be viewed as an emergent property of a pathobiological
system, i.e. a property, which cannot be predicted by studying only
the parts of the system, but emerges from the complex interrelation-
ships of all system components. Kola and Bell (2011) arrive to the
same conclusion urging the reformof the taxonomy of human disease.

These examples illustrate the extent of non-linearity and inter-
dependence of cellular and organismal responses. To understand these
observations and outcomes, we need novel approaches.

Over-reliance on inadequate animal or cellular models of disease
has been considered to play a major part in the poor levels of Phase
II drug candidate survival-rate. We illustrate the limitations and dan-
gers of model-selection by three examples.

• 41% of the proteins expressed in rat lungs were absent from equiv-
alent cultured cells (Lindsay, 2005).

• Animal strains are often in-bred, and are examined in a young age
for diseases having an onset in elderly people (Lindsay, 2005).

• In psychological clinical studies 96% of the patients cover 12% of
the world population (Henrich et al., 2010). A more equal coverage
is also required by the geographic clustering of rare genetic variants
affecting drug efficacy (Nelson et al., 2012).

There is a growing recognition that systems-level thinking may
help to overcome many of the current troubles of drug development
(Brown & Superti-Furga, 2003; Csermely et al., 2005; Lindsay, 2005;
Korcsmáros et al., 2007; Henney & Superti-Furga, 2008; Hopkins, 2008;
Westerhoff et al., 2008; Bunnage, 2011; Chua & Roth, 2011; Farkas
et al., 2011; Penrod et al., 2011; Begley & Ellis, 2012). As a sign of this,
leading systems biologists aim to construct a computer replica of the
whole human body, called as the ‘silicon human’ by 2038 (Kolodkin
et al., 2012).

In fact, systems-level thinking characterized drug development until
the 1970s, when mechanistic drug-targets were unknown. Until the
late 1970s even the concept of the receptor was not based on sequence
and structural data, but on the chemical similarities of ligands exerting
similar pharmacological actions (Brown& Superti-Furga, 2003; Keiser et
al., 2010). It was only after the early 1980s, that the focus shifted from
physiological observations to the molecular level (Pujol et al., 2010).

The renewal of systems-based thinking in drug discovery was
helped by the following three factors. 1.) The development of robust
high-throughput platforms to gather large amounts of comparablemolec-
ular data. 2.) The assembly and availability of curated databases integrat-
ing the knowledge of the field. 3.) The emergence of interdisciplinary
research to understand these data (Arrell & Terzic, 2010). Most of the
current largest pharmaceutical firms are products of horizontalmergers
between two or more large drug companies which have been taking
place since 1989. Though larger companies have the advantage to
fund and sustain a broader range of larger researchprograms, the devel-
opment of large firms and research enterprises was often considered
to decrease flexible responses to novel development opportunities
(Austin, 2006; Gros, 2012). An increased efficiency needs coordinated
networking of large drug development firms, biotechnological compa-
nies and research institutions (Hasan et al., 2012; Heemskerk et al.,
2012). Moreover, systems-level thinking needs a new behavior code
of sharing data and approaches. This new alliance is characterized by
the following behavior.

• In systems-level drug development, quality and not quantity of data
is a key issue. A reliable data pipeline must be assembled using ap-
propriate standards and quality control-metrics keeping in mind
the needs of systems biology. This is all the more important, since
it may also overcome the unreliability problems which surfaced re-
cently, when Amgen tried to reproduce data from 53 published pre-
clinical studies of potential anticancer drugs, and it failed in all but 6
cases (11% reproducibility rate), or Bayer Health Care could repro-
duce only 25% of previously published preclinical studies (Henney
& Superti-Furga, 2008; Prinz et al., 2011; Begley & Ellis, 2012; Landis
et al., 2012).

• Sharing of systems-level results led to a fast development of predictive
toxicology, which is a key step of a more efficient progress (Henney
& Superti-Furga, 2008).

Datasets are growing to dimensions, where the three billion nu-
cleotides that comprise the human genome (International Human
Genome Sequencing Consortium, 2004; ENCODE Project Consortium,
2012) became millionths of the ~1 petabyte data we had in 2008
(Schadt et al., 2009), which have grown well over 1 exabyte (billion
times billion bytes) by 2012. These magnitudes require appropriate
computational tools to understand them. Through this review we
hope to convince the Reader that network description and analysis
offer novel tools, which can help us to understand the complexity of
human disease and enable the integration of knowledge towards a
more efficient combat strategy for healthier life.

1.2. Molecular networks as efficient tools in
the description of cellular and organism behavior

Complexity can be described through the rather simple saying that
‘in a complex system thewhole ismore than the sumof its parts: cutting
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Fig. 3. Network-application in drug-design related publications. Data are from PubMed
using the query of “network AND drug” for title and abstract words. The number of
publications in 2012 is an extrapolation.
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a horse to two will not result in two small horses’ (Kolodkin et al.,
2012; SanMiguel et al., 2012). Newman (2011) summarized a number
of excellent sources to study complexity. A recent summary listed the
following hallmarks of complex systems and their behavior: many
heterogeneous interacting parts; multiple scales; combinatorial ex-
plosion of possible states; complicated transition laws; unexpected
or unpredicted emergent properties; sensitivity to initial conditions;
path-dependent dynamics; networked hierarchical connectivity; in-
teraction of autonomous agents; self-organization, collective shifts;
non-equilibrium dynamics; adaptivity to changing environments;
co-evolving subsystems; ill-defined boundaries and multilevel dynam-
ics (SanMiguel et al., 2012). Though this list is certainly still incomplete,
and not all of its parts are characterizing the complex systems of drug
discovery, the list shows the tremendous difficulties we face when
trying to understand complex structures and their behavior. The same
report (San Miguel et al., 2012) listed the following major challenges
of complex system studies:

• data gathering by large-scale experiments, data sharing and data as-
sembly using mutually agreed curation rules, management of huge,
distributed, dynamic and heterogeneous databases;

• moving from data to dynamical models going beyond correlations to
cause–effect relationships, understanding the relationship between
simple and comprehensive models with appropriate choices of vari-
ables, ensemblemodeling and data assimilation,modeling the ‘systems
of systems of systems’withmany levels betweenmicro andmacro; and

• formulating new approaches to prediction, forecasting, and risk,
especially in systems that can reflect on and change their behavior in re-
sponse to predictions and in systems, whose apparently predictable be-
havior is disrupted by apparently unpredictable rare or extreme events.

Due to the complexity of the cells, organisms and diseases, extreme
reductionism often fails in drug design. However, the other extreme,
taking into account all possible variables of all possible components, is
neither feasible, nor doable. Fortunately we do not have to challenge
the impossible when thinking on complexity in drug design for two
major reasons. On the one hand, the structure of complex systems is
not only complicated, but also modular, and has a number of degener-
ate segments. This enables us to identify the most important system
segments as we will show in Section 2. On the other hand, complex
systems often determine a state space, which is also modular, and
has a surprisingly low number of major attractors. In fact, this is what
makes the discrimination of phenotypes possible at all. In other words:
complexity has a side of simplicity. As fortunate ‘side-effects’ of the
attractor-segmented, modular state space, many of the emergent prop-
erties of complex systems tolerate a number of errors in the individual
data determining them. The above features of drug design-related com-
plex systems make those descriptions successful, which are ‘complex’
themselves, meaning that they are neither too simplistic, nor go too
much into details (Bar-Yam et al., 2009; Csermely, 2009; Huang et al.,
2009; Mar & Quackenbush, 2009; Kolodkin et al., 2012). In agreement
with these considerations, mathematical systems theory states that
“the scale and complexity of the solution should match the scale and
complexity of the problem” (Bar-Yam, 2004).

Network-approach is a description, which provides a good compro-
mise between extreme reductionismand the ‘knowledge of everything’.
We are by far not alone sharing this view. Diseases have been perceived
as network perturbations (Huang et al., 2009; Del Sol et al., 2010). In
recent years network analysis became an increasingly acclaimedmeth-
od in drug design (Hopkins, 2008; Ma'ayan, 2008; Pawson & Linding,
2008; Berger & Iyengar, 2009; Schadt et al., 2009; Baggs et al., 2010;
Fliri et al., 2010; Lowe et al., 2010; Pujol et al., 2010). In agreement
with the expert-opinions, network-applications show a steady increase
of drug design-related publications (Fig. 3). We summarize the major
network types (detailed in Section 3), network analysis types (detailed
in Section 2), drug design areas helped by network studies (detailed in
Section 4) and the four key areas of drug design described in detail
as the examples in Section 5 in Fig. 4.

We will detail the definition and types of networks in Section 2.1.
The applicability of network analysis in drug design is determined by
the following major factors: 1.) proper definition of network nodes,
edges and edge weights; 2.) data quality and carefully defined, uni-
formly applied data inclusion criteria; 3.) data refinement by genetic
variability, aging, environmental effects and compounding pathologies
such as bacterial or viral infections (Arrell & Terzic, 2010; Kolodkin
et al., 2012). However, we will not cover details of data acquisition,
since this topic fits better into the broader area of systems biology,
which is not the subject of the current review.

Networks are often viewed via their mathematical representations,
i.e. graphs. However, this often proves to be an over-simplification in
drug design for two major reasons. 1.) Network nodes of cellular sys-
tems are not exact ‘points’, as in graph theory, butmacromolecules, hav-
ing a network structure themselves, as we will show in Section 3.2.2)
Network nodes have a lot of attributes in the rich biological context
of the cell. 3.) Network dynamics is crucial in order to understand
the complexity of diseases and the action of drugs (Pujol et al., 2010).
Therefore, it is often useful to include edge directions, signs (activation
or inhibition), conditionality (an edge is active only, if one of its nodes
has another edge) and a number of dynamically changing quantitative
measures in network descriptions. However, it is important to warn
here that we should not include too many details in network descrip-
tions, since we may shift our description from optimal towards the
‘knowledge of everything’. Includingmore andmore details in network
science may lead to the trap of ‘over-complication’, where the beauty
and elegance of the approach are lost. This may lead to the decline of
the use of network description and analysis (similarly to the over-use
of the explanatory power and decline of chaos theory, fractals, and
many other approaches before).

The optimal simplicity of networks is also important, since net-
works give us a visual image. We summarize a rather long list of
network visualization techniques in Table 1 showing the rich variety
of approaches to solve this important task. A detailed comparison of
some methods was described in several reviews (Suderman &
Hallett, 2007; Pavlopoulos et al., 2008; Gehlenborg et al., 2010;
Fung et al., 2012). A good visualization method provides a pragmatic
trade-off between highlighting the biological concept and compre-
hensibility. Trying several methods is often advisable, since sampling
scale and/or bias may lead to subjective interpretations of the net-
work images obtained.

Correct visualization of networks is not only important for making
a pleasing image. The right hemisphere of our brain works with
images, and has the unique strength of pattern recognition. This com-
plements the logical thinking of the left hemisphere. Regretfully, our

image of Fig.�3
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Fig. 4. Uses of network description and analysis in drug design. Numbers in parentheses refer to section numbers of this review.
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logical thinking can deal with 5 to 6 independent pieces of infor-
mation at the same time as an average. However, the complexity
of human disease requires an information-handling capacity,
which is by magnitudes higher than that of logical thinking. Pat-
tern recognition by the right hemisphere copes with this com-
plexity. This is why we also need to see networks, and may not
only measure them. Besides the ‘optimal simplicity’, visualization
is another advantage of networks over data-mining and other
very useful, but highly detailed approaches (Csermely, 2009). To
illustrate the network description and analysis in drug design,
we compare the classic view and the network view of drug action
in Fig. 5.

As we have described in the previous paragraphs, network de-
scription and analysis offer a wide range of possibilities to under-
stand the complexity of human disease and to develop novel
drugs. As an example of the richness of networks, the ‘semantic
web’ covers practically every conceptual entity appearing in the
world-wide-web (Chen et al., 2009a). In the current review we can-
not cover all. Therefore, with the exception of the network of human
diseases described in Section 1.3, we will restrict ourselves to mo-
lecular networks ranging from the networks of chemical com-
pounds and of protein structures to the various networks of the
macromolecules constituting the cells. We will not cover the fol-
lowing areas, where we list a few reviews and papers of special
interest:

• networked particles in drug delivery (Rosen & Elman, 2009; Luppi
et al., 2010; Bysell et al., 2011);

• network of plants as resources of herbal remedies and traditional
medicines (Saslis-Lagoudakis et al., 2012);

• cytoskeletal networks or membrane organelle networks (Michaelis
et al., 2005; Escribá et al., 2008; Gombos et al., 2011);

• inter-neuronal, inter-lymphocyte and other intercellular networks
including extracellular matrix, cytokine, endocrine or paracrine
networks (Jerne, 1974, 1984; Cohen, 1992; Werner, 2003, 2005;
Small, 2007; Jung et al., 2011; Acharyya et al., 2012; Margineanu,
2012);

• the ecological networks of the microorganisms living in human
gut, oral cavity, skin, etc. and their interconnected networks with
human cells (Ben-Jacob et al., 2012; Clemente et al., 2012; Mueller
et al., 2012);
• social networks and their potential effects on spreading of epi-
demics, as well as disease-related habits such as drug abuse,
smoking, over-eating, etc. (Christakis & Fowler, 2011);

• network-related modeling methods, such as: neural network
models, differential equation networks, network-related Markov
chainmethods, Boolean networks, fuzzy logic-based networkmodels,
Bayesian networks and network-based data mining models (Huang,
2001; Ideker & Lauffenburger, 2003; Winkler, 2004; Fayos & Fayos,
2007; Fernandez et al., 2011).

At the end of the Introduction we will illustrate network thinking
by showing the richness and usefulness of network representations of
human diseases.

1.3. The networks of human diseases

Several diseases, such as cancer, or complex physiological pro-
cesses, such as aging, were described as a network phenomenon
quite a while ago (Kirkwood & Kowald, 1997; Hornberg et al.,
2006; Sőti & Csermely, 2007). In this section we will not detail
disease-related molecular networks (such as interactomes, or sig-
naling networks changing in disease), since this will be the subject
of Section 3. We will describe the large variety of options to build
up the networks of human diseases, where diseases are nodes of the net-
work, and will show how network-assembled bio-data can be used to
predict novel disease biomarkers including novel disease-related genes.

1.3.1. Network representations of diseases and their therapies
In the network description, sets of interlined data need first to be

structured by defining ‘nodes’. This might already be rather difficult,
as we will show in detail in Section 2.1. However, the definition of
edges, i.e. connections between the nodes, may be an especially de-
manding task. Networks of human diseases provide a very good exam-
ple, since a large number of data categories are related to the concept of
disease enabling the construction of a large variety of networks (Goh
et al., 2007; Rzhetsky et al., 2007; Feldman et al., 2008; Spiró et al.,
2008; Hidalgo et al., 2009; Barabási et al., 2011; Zhang et al., 2011a;
Janjic & Przulj, 2012).

Some of the major disease-related categories are shown in Fig. 6.
Human disease can be conceptualized as a phenotype, i.e. an emer-
gent property of the human body as a complex system (Kolodkin et al.,



Table 1
Network visualization resources.

Name Website References

Arena3D http://arena3d.org Secrier et al., 2012
ArrayXPath http://www.snubi.org/software/ArrayXPath Chung et al., 2005
AVIS http://actin.pharm.mssm.edu/AVIS2 Berger et al., 2007
BioLayout Express 3D http://www.biolayout.org Freeman et al., 2007; Theocharidis et al., 2009
BiologicalNetworks http://biologicalnetworks.net Kozhenkov & Baitaluk, 2012
BioTapestry http://www.biotapestry.org Longabaugh, 2012
BisoGenet http://bio.cigb.edu.cu/bisogenet-cytoscape Martin et al., 2010
CellDesigner http://www.celldesigner.org Kitano et al., 2005
Cell Illustrator http://www.cellillustrator.com Nagasaki et al., 2011
CFinder http://www.cfinder.org Adamcsek et al., 2006
Cytoscape http://www.cytoscape.org Smoot et al., 2011
GenePro http://wodaklab.org/genepro Vlasblom et al., 2006
GeneWays http://anya.igsb.anl.gov/Geneways/GeneWays.html Rzhetsky et al., 2004
GEOMIi http://sydney.edu.au/engineering/it/~visual/valacon/geomi/ Ahmed et al., 2006
Gephi http://gephi.org Bastian et al., 2009
Graphviz http://www.graphviz.org Gansner & North, 2000
Gridlayout http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm Li & Kurata, 2005
Guess http://graphexploration.cond.org/index.html Adar, 2006
Hive Plots http://www.hiveplot.com Krzywinski et al., 2012
Hybridlayout http://www.cadlive.jp/hybridlayout/hybridlayout.html Inoue et al., 2012
Hyperdraw http://www.bioconductor.org/packages/release/bioc/html/hyperdraw.html Murrell, 2012
IM Browser http://proteome.wayne.edu/PIMdb.html Pacifico et al., 2006
IPath http://pathways.embl.de Yamada et al., 2011
JNets http://www.manchester.ac.uk/bioinformatics/jnets Macpherson et al., 2009
KGML-ED http://kgml-ed.ipk-gatersleben.de Klukas & Schreiber, 2007
LEDA http://www.algorithmic-solutions.com/leda/about/index.htm Mehlhorn & Näher, 1999
MAVisto http://mavisto.ipk-gatersleben.de Schwobbermeyer & Wunschiers, 2012
Medusa http://coot.embl.de/medusa Hooper & Bork, 2005
ModuLand www.linkgroup.hu/modules.php Szalay-Bekő et al., 2012
Multilevel Layout http://code.google.com/p/multilevellayout Tuikkala et al., 2012
NAViGaTOR http://ophid.utoronto.ca/navigator Brown et al., 2009
NetMiner http://www.netminer.com/index.php
Network Workbench http://nwb.cns.iu.edu NWB Team, 2006
Ondex http://www.ondex.org Kohler et al., 2006
Osprey http://biodata.mshri.on.ca/osprey/servlet/Index Breitkreutz et al., 2003
Pajek http://pajek.imfm.si/doku.php Batagelj & Mrvar, 1998
PathDraw http://rospath.ewha.ac.kr/toolbox/PathwayViewerFrm.jsp Paek et al., 2004
Pathway Tools http://bioinformatics.ai.sri.com/ptools Karp et al., 2010
PATIKA http://www.patika.org Dogrusoz et al., 2006
PaVESy http://pavesy.mpimp-golm.mpg.de/PaVESy.htm Ludemann et al., 2004
PhyloGrapher http://www.atgc.org/PhyloGrapher
PIMWalker http://pimr.hybrigenics.com Meil et al., 2005
PIVOT http://acgt.cs.tau.ac.il/pivot Orlev et al., 2004
PolarMapper http://kdbio.inesc-id.pt/software/polarmapper Goncalves et al., 2009
ProteinNetVis http://graphics.cs.brown.edu/research/sciviz/proteins/home.htm Jianu et al., 2010
ProteoLens http://bio.informatics.iupui.edu/proteolens Huan et al., 2008
RedeR http://bioconductor.org/packages/release/bioc/html/RedeR.html Castro et al., 2012
RING http://protein.bio.unipd.it/ring Martin et al., 2011
SoNIA http://www.stanford.edu/group/sonia Bender-deMoll & McFarland, 2006
Transcriptome-Browser http://tagc.univ-mrs.fr/tbrowser Lepoivre et al., 2012
UCSF structureViz http://www.cgl.ucsf.edu/cytoscape/structureViz Morris et al., 2007
VANTED http://vanted.ipk-gatersleben.de Rohn et al., 2012
VisANT http://visant.bu.edu Hu et al., 2009
VitaPad http://sourceforge.net/projects/vitapad Holford et al., 2005
WebInterViewer http://interviewer.inha.ac.kr Han et al., 2004b
yFiles http://www.yworks.com/en/index.html Becker & Rojas, 2001
yWays http://www.yworks.com/en/products_yfiles_extensionpackages_ep2.htm

Summaries of Suderman and Hallett (2007), Pavlopoulos et al. (2008), Gehlenborg et al. (2010) and Fung et al. (2012) compare some of the options above.
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2012). Some of the categories, such as symptoms, are related to this phe-
notype. Many other categories, such as

• disease-related genes (abbreviated as ‘disease genes’),
• functions of disease genes (marked as gene ontology);
• the transcriptome (i.e. expression levels of all mRNAs+the cistrome,
i.e. DNA-binding transcription factors+the epigenome, i.e. the ac-
tual chromatin status of the cell including DNA and histone modi-
fications, as well as their 3D structure)

• the interactome, the signaling network and the metabolome,

are all related to the underlying genotype, i.e. the constituents of the
human body related to the etiology of the disease. A third group
of categories, such as therapies, drugs and other factors marked as
“environment”, represents the effects of the environment (Fig. 6). Con-
nections (uniformly defined, data-encoded relationships) between any
two of these categories define a so-called bipartite network, where two
different types of nodes are related to each other. Moreover, more
than two categories may also form a network, which is called as a
multi-partite network (Goh et al., 2007; Yildirim et al., 2007; Nacher &
Schwartz, 2008; Spiró et al., 2008; Li et al., 2009a; Bell et al., 2011;
Wang et al., 2011a).

We have three options for the visualization of bipartite networks.
We will illustrate this in the example of the network of human dis-
eases and human genes shown to be associated with a particular dis-
ease in Fig. 7 (Goh et al., 2007). We may include both types of nodes
and all their connections to the visual image as shown in the center of

http://arena3d.org
http://www.snubi.org/software/ArrayXPath
http://actin.pharm.mssm.edu/AVIS2
http://www.biolayout.org
http://biologicalnetworks.net
http://www.biotapestry.org
http://bio.cigb.edu.cu/bisogenet-cytoscape
http://www.celldesigner.org
http://www.cellillustrator.com
http://www.cfinder.org
http://www.cytoscape.org
http://wodaklab.org/genepro
http://anya.igsb.anl.gov/Geneways/GeneWays.html
http://sydney.edu.au/engineering/it/~visual/valacon/geomi/
http://gephi.org
http://www.graphviz.org
http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm
http://graphexploration.cond.org/index.html
http://www.hiveplot.com
http://www.cadlive.jp/hybridlayout/hybridlayout.html
http://www.bioconductor.org/packages/release/bioc/html/hyperdraw.html
http://proteome.wayne.edu/PIMdb.html
http://pathways.embl.de
http://www.manchester.ac.uk/bioinformatics/jnets
http://kgml-ed.ipk-gatersleben.de
http://www.algorithmic-solutions.com/leda/about/index.htm
http://mavisto.ipk-gatersleben.de
http://coot.embl.de/medusa
http://www.linkgroup.hu/modules.php
http://code.google.com/p/multilevellayout
http://ophid.utoronto.ca/navigator
http://www.netminer.com/index.php
http://nwb.cns.iu.edu
http://www.ondex.org
http://biodata.mshri.on.ca/osprey/servlet/Index
http://pajek.imfm.si/doku.php
http://rospath.ewha.ac.kr/toolbox/PathwayViewerFrm.jsp
http://bioinformatics.ai.sri.com/ptools
http://www.patika.org
http://pavesy.mpimp-golm.mpg.de/PaVESy.htm
http://www.atgc.org/PhyloGrapher
http://pimr.hybrigenics.com
http://acgt.cs.tau.ac.il/pivot
http://kdbio.inesc-id.pt/software/polarmapper
http://graphics.cs.brown.edu/research/sciviz/proteins/home.htm
http://bio.informatics.iupui.edu/proteolens
http://bioconductor.org/packages/release/bioc/html/RedeR.html
http://protein.bio.unipd.it/ring
http://www.stanford.edu/group/sonia
http://tagc.univ-mrs.fr/tbrowser
http://www.cgl.ucsf.edu/cytoscape/structureViz
http://vanted.ipk-gatersleben.de
http://visant.bu.edu
http://sourceforge.net/projects/vitapad
http://interviewer.inha.ac.kr
http://www.yworks.com/en/index.html
http://www.yworks.com/en/products_yfiles_extensionpackages_ep2.htm
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Fig. 5. Classic and network views of drug action. Made after the basic idea of Berger and Iyengar (2009).
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Fig. 7. However, the selection of only a single node type results in a
simpler network representation, which is easier to understand. We
have two projections of the full, bipartite network as shown on the
two sides of Fig. 7. In the first type of projection we connect two
human diseases, if there is a human gene, which is participating in
the etiology of both diseases (left side of Fig. 7). Edge weight may
be derived here from the number of genes connecting the two dis-
eases. Alternatively, we may construct a network of human genes,
which are connected, if there is at least one human disease, where
they both belong (right side of Fig. 7; Goh et al., 2007). Similar
‘disease genes’
gene ontology drug tar

patients sympto

1

diseases therap

transcriptome
cistrome/epigenome

interactome

signaling
network

metabolome

2

publications

Fig. 6.Options for network representations of disease-related data. The figure summarizes some
ellipse represents a type of data. Arrows stand for possible network representations. 1: Human
data helping the identification of disease-related human genes (acting like possible drug targe
projections can be made with any category-pairs, or multiple
category-sets of Fig. 6.

1.3.2. The human disease network
The landmark study of Goh et al. (2007) provided the first net-

work map of the genetic relationship of 516 human diseases. This
approach used the “shared gene formalism” recognizing that diseases
sharing a gene or genes likely have a common genetic basis. Later, this
concept was extended with the “shared metabolic pathway formalism”

recognizing that enzymatic defects affecting the flux of “reaction A” in a
drugs

gets

ms

3

ies

environment

of the options to assess disease-related data using network description and analysis. Each
disease networks discussed in this section and in Table 2. 2: Additional network-related

ts) detailed in Table 3. 3: Drug target networks discussed in Section 4.1.3.



Fig. 7. Two projections of the human disease network. On the middle of the figure a segment of the bipartite network of human diseases and related human genes is shown. On
the projection on the left side two diseases are connected, if they have at least one common gene. On the projection on the right side two genes are connected, if they have at
least one common disease.
Reproduced with permission from Goh et al. (2007); Copyright, 2007, National Academy of Sciences, U.S.A.
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metabolic pathway will lead to disease-conditions that are known to be
associated with the metabolites situated downstream of “reaction A” in
the same metabolic pathway. The shared metabolic pathway formalism
proved to be better predictor of metabolic diseases than the shared
gene formalism. Another approach is based on the “disease comorbidity
formalism” connecting diseases, which have a co-occurrence in patients
exceeding a predefined threshold. Subsequently, many other studies
incorporated a number of other data including gene-expression levels,
protein–protein interactions, signaling components, such as microRNAs,
tissue-specificity, and a number of environmental effects including drug
treatment and other therapies to construct disease similarity networks
(Barabási et al., 2011; Goh & Choi, 2012; Janjic & Przulj, 2012). We sum-
marize the disease-network types using two, three or more different
datasets in Table 2. We will summarize drug target networks in
Section 4.1.3.

Various data-associations listed in Table 2 enrich each other, as
it has been shown in the example of the orphan diseases, Tay–Sachs
disease and Sandhoff syndrome, which did not share any known dis-
ease genes in 2011, but were connected in a literature co-occurrence
based network. The connection of the two diseases was in agreement
with the shared metabolic pathway of their mutated genes. Zhang
et al. (2011a) listed several other examples for such mutual enrich-
ment of various datasets. Comparing Table 2 with Fig. 6 reveals several
combinations of data, which have not been used to form human disease
networks yet. We expect further advance in this rapidly growing field.

As take homemessages from the studies listed in Table 2, we sum-
marize the following observations.

• The intuitive assumption that “hubs (defined here as nodes with
many more neighbors than average in the human interactome) play
a major role in adult diseases” often fails due to the embryonic le-
thality of these key genes. In agreement with this, orphan diseases
(which are often life-threatening or chronically debilitating, and
affect less than 6.5 patients per 10,000 inhabitants) tend to be hubs,
and are often associatedwith essential genes. Similarly, diseases having
somaticmutations, such as cancer, have a central position in the human
interactome. Germ-line mutations leading to more common diseases
tend to be located in the functional periphery (but not in the utmost
periphery) of the human interactome (Goh et al., 2007; Feldman et
al., 2008; Barabási et al., 2011; Zhang et al., 2011a).

• Disease-related genes tend to be tissue specific, with the notable ex-
ception of most cancer-related genes, which are not overexpressed
in the tissues fromwhich the tumors emanate (Goh et al., 2007; Jiang
et al., 2008; Lage et al., 2008; Barabási et al., 2011).

• Disease-related genes have a smaller than average clustering coefficient
avoiding densely connected local structures (Feldman et al., 2008). Low
clustering coefficient was successfully applied as a discriminatory fea-
ture in the prediction of disease-related genes (Sharma et al., 2010a).

• Disease-related genes tend to form overlapping disease modules
in protein–protein interaction networks showing even a 10-fold in-
crease of physical interactions relative to random expectation (Gandhi
et al., 2006; Goh et al., 2007; Oti & Brunner, 2007; Feldman et al., 2008;
Jiang et al., 2008; Stegmaier et al., 2010; Bauer-Mehren et al., 2011;
Loscalzo&Barabasi, 2011; Xia et al., 2011). Overlaps of diseasemodules
are also characteristic to comorbidity networks (Rzhetsky et al., 2007;
Hidalgo et al., 2009).

• Genes bridging disease modules in the human interactome may
provide important points of interventions (Nguyen & Jordan, 2010;
Nguyen et al., 2011). Genes involved in the aging process often occupy
such bridging positions (Wang et al., 2009).

• Diseases that share disease-associated cellular components (genes,
proteins, metabolites, microRNAs, etc.) show phenotypic similarity
and comorbidity (Lee et al., 2008a; Barabási et al., 2011).

• The above findings are recovered, if we go one level deeper in the
network hierarchy than the human interactome, to the level of pro-
tein domains and their interactions (Sharma et al., 2010a; Song &



Table 2
Human disease-related networks and network datasets.

Type of related data
(types of network nodes)a

Name and additional description, website Referencesb

• Disease
• Disease related genes

Human disease network (Cytoscape plug-in DisGeNET: http://ibi.imim.es/DisGeNET/
DisGeNETweb.html)

Goh et al., 2007; Feldman et al., 2008;
Bauer-Mehren et al., 2010; Stegmaier et al., 2010

• Disease
• Disease-related genes
• Interactome
• Publication

Gene-based, interactome-enriched and scientific publication based human
disease networks

Zhang et al., 2011a

• Disease
• Interactome module
• mRNA changes

Disease-responsive interactome module-based human disease network (disease
correlations based on disease-induced changes in mRNA expression of
interactome modules)

Suthram et al., 2010

• Disease
• mRNA changes at the
transcriptome level

• Drugs

A Bayesian network-based disease-responsive transcriptome analysis to construct
a human disease network

Huang et al., 2010a

• Disease
• Disease-related genes
• Interactome
• Protein/DNA interaction
• Tissue
• Drug

iCTNet: a Cytoscape plug-in to construct an integrative network of diseases,
associated genes, drugs and tissues (http://www.cs.queensu.ca/ictnet)

Wang et al., 2011b

• Disease
• Disease-related genes
• Interactome
• Gene Ontology terms

Biomine: an integrated bio-entity network with more than a million entities and 8
million edges (http://biomine.cs.helsinki.fi)

Eronen & Toivonen, 2012

• Disease
• Expression patterns
• MicroRNA targets
• Network modules of
interactome, transcriptome

PAGED: an integrated bio-entity network with more than a million entities from 20
organisms (http://bio.informatics.iupui.edu/PAGED)

Huang et al., 2012b

• Disease
• Disease-related genes
• Interactome
• Protein gene regulation
pathways

• Gene Ontology terms
• Small molecule (drug)
• Species

An integrated bio-entity network Bell et al., 2011

• Disease
• Adjacent members of
metabolic pathways

Metabolic pathway-corrected human disease network Lee et al., 2008a

• Disease
• MicroRNA

MicroRNA/disease association-based disease network obtained from publication data Lu et al., 2008

• Patient
• Disease

Disease comorbidity network Rzhetsky et al., 2007; Hidalgo et al., 2009

• Disease
• Environmental factor
• Disease-related genes

Etiome: a database+clustering analysis of environmental+genetic (= etiological)
factors of human diseases

Liu et al., 2009

a Here we included only those networks and datasets, which contained human diseases. Drug target networks and network datasets will be summarized in Section 4.1.3.
b References containing direct network analysis are marked with italic. All other references are referring to datasets, which are potential sources of future network representations.
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Lee, 2012). Diseases occurring more frequently are associated with
longer proteins (Lopez-Bigas & Ouzounis, 2004; Lopez-Bigas et al.,
2005). Disease-associated proteins tend to have ‘younger’ folds, de-
veloped later in evolution, and have a smaller ‘family’ of similar
folds. These protein folds are less designable (i.e. a smaller number
of possible representations by different amino acid sequences) weak-
ening the robustness against mutations, and the fitness of the hosting
organism during evolution (Wong & Frishman, 2006).

• Going one level higher in the network hierarchy than the human
interactome, to the level of comorbidity networks, patients tend to de-
velop diseases in the vicinity of diseases they already had (Rzhetsky
et al., 2007; Hidalgo et al., 2009; Barabási et al., 2011).

• Disease-hubs of comorbidity networks show a higher mortality than
less well connected diseases, and are often successors of more periph-
eral diseases. Theprogression of diseases is different for patients of dif-
ferent genders and ethnicities (Lee et al., 2008a; Hidalgo et al., 2009;
Barabási et al., 2011).

Human disease networks are expected to reveal more on the inter-
relationships of diseases using both additional data-associations and
novel network analysis tools, listed in Section 2. These advances will
not only enrich our integrated view on human diseases, but will also
lead to the following potential uses of human disease networks:

• better classification of diseases (e.g. for putatively useful drugs and
therapies) and predictions for understudied or unknown diseases;

• disease diagnosis and identification of disease biomarkers as described
in detail in Section 1.3.3;

• identification of drug target candidates (including multi-target drugs,
drug repositioning, etc.) as described in detail in Section 4.1;

• help in hit finding and expansion as described in detail in Section 4.2;
• enrich background data for lead optimization (including ADME,
side-effects and toxicity, etc.) as described in detail in Section 4.3.

An increasing number of publications describe various molecular
networks characterizing the cellular state in a certain type of disease.
We have not included their direct description in this section, since
here we only review the networks of the diseases as network nodes.
In Section 5 we will summarize the drug-design related applications
of these molecular networks in case of four disease families: infections,
cancer, diabetes and neurodenegerative diseases. In the next section

http://ibi.imim.es/DisGeNET/DisGeNETweb.html
http://ibi.imim.es/DisGeNET/DisGeNETweb.html
http://www.cs.queensu.ca/ictnet
http://biomine.cs.helsinki.fi
http://bio.informatics.iupui.edu/PAGED


Table 3
Network-based predictions of disease-related genes as biomarkers.

• Type of prediction methodsa

• Type of data used
Name and additional description, website References

• Similarity-based
• Protein structure descriptor-related QSAR

New disease-related proteins are predicted by their structural similarity to known
disease-related proteins

Vilar et al., 2009

• Interaction-based
• (Predicted) interactome

New disease-related genes are predicted by their interactome neighborhood Krauthammer et al., 2004; Chen et
al., 2006a; Oti et al., 2006; Xu & Li,
2006

• Iterative summary of interactome and disease
neighborhood

• Disease similarity network, interactome

Measures the neighborhood association in both the interactome and disease
similarity networks and iteratively calculates the similarity of the node to diseases

Guo et al., 2011

• Semantic similarity score
• Semantic similarity networks of diseases and
related genes

Calculates a semantic similarity score between gene ontology terms as well as
human genes associated with them

Jiang et al., 2011

• Summarized network neighborhood of several
candidate genes

• Disease, gene-descriptions, disease related genes,
interactome, mRNA co-expressions, pathways

Constructs an integrative network and predicts candidate genes by their network
closeness to known disease-related genes; Prioritizer:
http://129.125.135.180/prioritizer

Franke et al., 2006

• Shortest path length
• Disease, gene-descriptions, disease related genes,
interactome, mRNA co-expressions

Uses a maximum expectation gene cover algorithm finding small gene sets to
predict associated new disease-related genes

Karni et al., 2009

• User-defined path distance from known
disease-related genes

• Up to 10 integrated interactomes

New disease-related genes are predicted by their interactome closeness to known
disease-related proteins; Genes2Networks:
http://actin.pharm.mssm.edu/genes2networks

Berger et al., 2007

• Interaction-based
• Disease-related mutations, domain–domain
resolved interactome

New disease-related genes are predicted by their association to previously known
disease-related genes at protein–protein domains affected by the
disease-associated mutations of the known disease related gene

Sharma et al., 2010a; Song & Lee,
2012

• Interaction-based
• Disease-related mutations, 3D structurally
resolved interactome

New disease-related genes are predicted by their association to previously known
disease-related genes at 3D modeled protein–protein interfaces affected by the
disease-associated mutations of the known disease related gene

Wang et al., 2012b

• Clustering
• Disease-related genes, interactome

New disease-related genes are predicted by their common protein–protein
interaction network module with previous disease-related genes

Navlakha & Kingsford, 2010;

• Closeness
• Disease-related genes, disease network,
interactome

Closeness of unrelated proteins is calculated in the interactome from protein
products of disease-related genes, and compared with phenotype similarity
profile: large closeness marks a potential new disease-related gene; CIPHER:
http://rulai.cshl.edu/tools/cipher

Wu et al., 2008

• Random walk
• Disease-related genes, disease network,
interactome

Random walks in the interactome are started from protein products of
disease-related genes: frequent visits of a previously unrelated protein mark a
potential new disease-related gene; Cytoscape plug-in GPEC:
http://sourceforge.net/p/gpec

Kohler et al., 2008; Chen et al.,
2009b; Le & Kwon, 2012

• Iterative network propagation
• Disease-related genes, disease network,
interactome

Iterative steps of information flow from disease-related and between interacting
proteins: after convergence a large flow of a previously unrelated protein marks
potential new disease-related gene; Cytoscape plug-in PRINCIPLE/PRINCE:
http://www.cs.tau.ac.il/~bnet/software/PrincePlugin

Vanunu et al., 2010; Gottlieb et al.,
2011b

• Random walk with re-starts in both networks
• Disease-related genes, disease network,
interactome

Random walk in both the interactome and the disease networks: number of
frequent visits marks candidate genes

Li & Patra, 2010

• NetworkBlast algorithm to align interactome
and disease networks

• Disease-related genes, disease network,
interactome

After alignment of the interactome and disease networks finds high scoring
subnetworks (bi-modules); candidate genes have the highest scoring bi-modules

Wu et al., 2009a

• Information flow with statistical correction
• Disease-related genes, interactome

Statistically corrects random walk-based prediction with the degree distribution
of the network; DADA: http://compbio.case.edu/dada

Erten et al., 2011a

• Topological network similarity
• Disease-related genes

Calculates neighborhood similarity in the interactome and prioritizes candidate
genes; VAVIEN: http://diseasegenes.org

Erten et al., 2011b

• Neighborhood similarity
• Disease-related genes, interactome,
expression patterns

Calculates expression weighted neighborhood similarity (using Katz centrality or
other methods) in the interactome

Zhao et al., 2011b; Wu et al., 2012

• Semantic-based centrality
• Disease-related genes, interactome, pathways

Calculates data-type weighted centrality in the integrated network and uses it as a
rank of candidate genes

Gudivada et al., 2008

• Direct neighbor-based Bayesian predictor
• Disease-related genes, disease network,
interactome, pathways

Constructs candidate protein complexes in a virtual pull-down experiment, and
scores candidates by measuring the similarity between the phenotype in the
complex and disease phenotype

Lage et al., 2007

• Genetic linkage analysis of gene network clusters
• Disease-related genes, text mining-based associa-
tions (binding, phosphorylation, methylation, etc.)

Calculates genetic linkage analysis of connected clusters in a text mining-derived
direct interaction network

Iossifov et al., 2008

• Random forest learning
• Disease, disease related genes, disease networks,
single-nucleotide polymorphisms (SNPs)

Predict deleterious SNPs and disease genes using the random forest learning
method, uses interactomes and deleterious SNPs to predict disease-related genes
by random forest learning

Care et al., 2009

• Random walk, iterative network propagation
(PRINCE/PRINCIPLE)

• Disease, disease related genes, interactome,
protein/DNA interaction, tissue, drug

A Cytoscape plug-in to construct an integrative network of diseases, associated
genes, drugs and tissues; iCTNet: http://www.cs.queensu.ca/ictnet

Wang et al., 2011b

• Machine learning
• Disease, disease related genes, gene annotations,
interactome, expression levels, sequences

Integrative methods using similarities of neighbors or shortest paths in multiple
data sources including interactomes; Endeavour: http://esat.kuleuven.be/
endeavour; Phenopred: http://www.phenopred.org

Radivojac et al., 2008; Tranchevent
et al., 2008; Linghu et al., 2009;
Costa et al., 2010
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Table 3 (continued)

• Type of prediction methodsa

• Type of data used
Name and additional description, website References

• Rank coherence with target disease and unrelated
disease networks

• Disease, disease related genes, gene annotations,
interactome, expression levels, genome-wide
association studies

Calculates rank coherences between the integrated network characteristic to the
target disease and unrelated diseases; rcNet:
http://phegenex.cs.umn.edu/Nano

Hwang et al., 2011

a The table summarizes methods using networks as data representations. We excluded those methods, like neural network or Bayesian network-based methods, which decipher
associations between various, not network-assembled data. Several methods are included in the excellent reviews of Wang et al. (2011a) and Doncheva et al. (2012a).
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we will illustrate the help of network analysis in the diagnosis and
therapy of human diseases by the network-based identification of
disease biomarkers.
1.3.3. Network-based identification of disease biomarkers
Network-based identification of disease related geneswas suggested

by relatively early studies (Krauthammer et al., 2004; Chen et al., 2006a;
Franke et al., 2006; Gandhi et al., 2006; Oti et al., 2006; Xu & Li, 2006).
In the last few years several network-based methods have been de-
veloped helping the identification of genes related to a particular dis-
ease as reviewed by the excellent summaries of Wang et al. (2011a)
and Doncheva et al. (2012a). Table 3 summarizes methods for pre-
diction of disease-related genes using networks as data representa-
tions. We excluded those network-related methods, like those neural
network-based or Bayesian network-based methods, which decipher
associations between various, not network-assembled data. Network
prediction methods, which can also be used for prediction of disease-
associated genes will be discussed in Section 2.2.2.

Most of the methods listed in Table 3 identify novel disease-related
genes as disease biomarkers. Several network-basedmethods outperform
former, sequence-based methods in the identification of novel, disease-
related genes. Methods including non-local information of network to-
pology usually perform better than methods based on local network
properties. As a general trend the more information the method in-
cludes, the better prediction it may achieve. However, with the multi-
plication of datasets, biases and circularity may also be introduced,
which will lead to an overestimation of the performance. Moreover, it
is difficult to dissect the performance-contribution of the datasets and
the prediction method itself. Additionally, each type of dataset may
require a different method for optimal analysis. Therefore, the separate
analysis of each data sourcewas suggestedwith a subsequent combina-
tion of the ranking lists using rank aggregation algorithms. This procedure
also facilitates backtracking the origin of the most relevant information.
Functional GO-term annotations usually bring crucially important in-
formation to the analysis. The inclusion of interactome edge-based dis-
ease perturbations may improve the performance of these methods
even further in the future (Kohler et al., 2008; Navlakha & Kingsford,
2010; Sharma et al., 2010a; Vanunu et al., 2010; Jiang et al., 2011;
Wang et al., 2011a; Cho et al., 2012; Doncheva et al., 2012a). Impor-
tantly, several of the methods in Table 3 are not only able to diagnose
knowndiseases, butmay also identify important features of understudied
or unknown diseases (Huang et al., 2010a; Wang et al., 2011a).

‘Disease-related gene-hunting’ became a very powerful area of
medical studies. However, Erler and Linding (2010) warned that net-
work models, and not their individual nodes, should be used as bio-
markers, since thresholds and changes of individual nodes (such as
the protein phosphorylation at a certain site) may be related to entirely
different outcomes in different network contexts of different patients.
We will summarize the concepts treating networks (and their seg-
ments) as drug targets in Section 4.1.7.

Very similar methods to those listed in Table 3 may be applied to
network-based identification of disease-related signaling network, such
as phosphorylation or microRNA profiles, or metabolome profiles. As
part of these approaches, metabolic network analysis was applied to
identify metabolites, whichmay serve as biomarkers of a certain disease
(Fan et al., 2012). Shlomi et al. (2009) identified 233metabolites, whose
concentration was elevated or reduced as a result of 176 human inborn
dysfunctional enzymes affecting of metabolism. Their network-based
method can provide a 10-fold increase in biomarker detection perfor-
mance. Mass spectrometry phosphoproteome analysis combined with
signaling networks and bioinformatics sources like NetworKIN and
NetPhorest may provide biomarker profiles of several diseases such
as cancer or cardiovascular disease (Linding et al., 2007; Yu et al.,
2007a; Jin et al., 2008; Miller et al., 2008; Ummanni et al., 2011; Savino
et al., 2012).

2. An inventory of network analysis tools helping drug design

Even the best network analytical methods will fail, if applied to
a network constructed with a crude definition. Therefore, we start
this section listing the major points of network definition including
network-related questions of data collection, such as sampling, pre-
diction and reverse engineering. The latter two methods are impor-
tant network-related tools to find novel drug target candidates. We
will continue and conclude this section by listing an inventory of
the major concepts used in the analysis of network topology, compar-
ison and dynamics evaluating their potential use in drug design. The
section will give just the essence of the methods, and will provide
the interested Reader a number of original references for further
information.

2.1. Definition(s) and types of networks

To define a networkwe have to define its nodes and edges (Barabási
& Oltvai, 2004; Boccaletti et al., 2006; Zhu et al., 2007; Csermely, 2009;
Lovász, 2012). Network nodes are the entities building up the complex
system represented by the network. Nodes are often called as vertices,
or network elements. Classical, graph-type network descriptions do
not consider the original character of nodes. (A node of such a graph
will be “ID-234”, which is characterized by its contact structure only.)
Thus node definition requires a clear sense of those node properties,
which discriminate network nodes from other entities, and make
them ‘equal’. Recently, node-weights were successfully applied to char-
acterize the node structure of a network in a simple form (Wiedermann
et al., 2013). In the case of molecular networks, where nodes are
amino acids, proteins or other macromolecules such discrimination
is rather easy. However, subtle problemsmay still remain. For example,
should we include extracellular proteins as well? If not, what happens,
if an extracellular protein is just about to be secreted? What if it is
engulfed by the cell and internalized? Node definition may become es-
pecially difficult in the case of complex data structures, like those we
mentioned in Section 1.3. Accurate node definitions are time consum-
ing, but lead to benefits at subsequent stages.

Network edges are often called interactions, connections, or links.
In the molecular networks discussed in this review edges represent
physical or functional interactions of two network nodes (Zlatic et

http://phegenex.cs.umn.edu/Nano
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al., 2009). However, in hypergraph representations meta-edges often
connect more than two nodes. Edge definition often inherently con-
tains a threshold determined by the detection limit and by the
time-window of the observation. Two nodes may become connected,
if the sensitivity and/or duration of detection are increased. A number
of recent publications explored the effect of time-window changes on
the structure of social networks (Krings et al., 2012; Perra et al.,
2012). Several concepts of network dynamics detailed in Section 2.5
are inherently related to time-window of detection. As an example,
the distinction of the popular date hubs (Han et al., 2004a), i.e. hubs
changing their partners over time, clearly depends on the time-
window of observation.

Weights of network edges may give an answer to the “where-to-
set-the-detection-threshold” dilemma offering a continuous scale of
interactions. Edge weights represent the intensity (strength, proba-
bility, affinity) of the interaction. Edges may also be directed, where a
sequence of action and/or a difference in node influence are included
in the edge definition. Lovász (2012) gives an excellent summary of
the basic dilemmas of network definition problems.

However, we havemanymore options than defining network nodes,
edges, weights and directions. Recent network descriptions started to
explore the options to include edge reciprocity (Squartini et al., 2012),
or to preserve multiple node attributes (Kim & Leskovec, 2011). More-
over, in reality networks are seldom directed in an unequivocal way.
(When CEOs and VPs are talking to each other, it is not always the
case that CEOs influence VPs, and VPs do not influence CEOs.) However,
to date, a continuous scale of edge direction has not been introduced
to molecular networks. Edges may also be colored, where different
types of interactions are discriminated. A special subset of colored net-
works is signed networks, where edges are either positive (standing
for activation) or negative (representing inhibition). Edges may also
be conditional, i.e. being only active, if one of their nodes accommodated
another edge previously. There are a number of potential uses of these
network representations e.g. in signaling, or in genetic interaction
networks.

As a closing remark, the definition of edges often hides one of two
fundamentally different concepts. Network connections may either
restrict the connected nodes (this is the case, where connections rep-
resent physical contacts), or may enrich connected nodes (this is the
case, where connections represent channels of transport or informa-
tion transmission). These constraint-type or transmission-type net-
work properties may appear in the same network, where they may
be simplified to activation or inhibition like those in signal transduc-
tion networks. Though there were initial explorations of the differences
of constraint-type and transmission-type network properties (Guimera
et al., 2007a), an extended application of this concept is missing.
2.2. Network data, sampling, prediction and reverse engineering

Lovász (2012) gives an excellent summary of the network sam-
pling problem. In most biological systems data coverage has technical
limitations, and experimental errors are rather prevalent. As part of
these uncertainties and errors, not all of the possible interactions are
detected, and a large number of false-positives may also appear (Zhu
et al., 2007; De Las Rivas & Fontanillo, 2010; Sardiu & Washburn,
2011). However, it is often a question of judgment, whether the in-
vestigator believes that only ‘high-fidelity’ interactions are valid,
and discards all other data as potential artifacts, or uses thewhole spec-
trum of data considering low-confidence interactions as low affinity
and/or low probability interactions (Csermely, 2004, 2009). The highest
quality interactions are reliable, but may not be representative of the
whole network (Hakes et al., 2008). The unavailability of complete
datasets can be circumvented by a number of methods which 1.) help
the correct sampling of networks; 2.) enable the prediction of nodes/
edges and 3.) infer network structure from the behavior of the complex
system by reverse engineering. We will discuss these methods in this
section.

2.2.1. Problems of network incompleteness, network sampling
Since complex networks are not homogenous, their segments may

display different properties than the whole network (Han et al., 2005;
Stumpf et al., 2005; Tanaka et al., 2005; Stumpf & Wiuf, 2010; Annibale
& Coolen, 2011; Son et al., 2012). Therefore, the use of a representative
sample of the network is a key issue. In the last few years several
methods became available to assess whether the available part of an
unknown complete network is a representative sample. These methods
also allow the extrapolation of the partially available network data
to the total dataset (Wiuf et al., 2006; Stumpf et al., 2008). Radicchi
et al. (2011) introduced a GloSS filtering technique preserving both
the weight distribution and network topology. Recently a comparison
of several (re)-sampling methods was given (Mirshahvalad et al.,
2013; Wang, 2012). Guimera and Sales-Pardo (2009) provided a meth-
od to detect missing interactions (false negatives) and spurious interac-
tions (false positives). Riera-Fernandez et al. (2012) gave numerical
quality scores to network edges based on theMarkov–Shannon entropy
model. However, data purging methods should be applied with cau-
tion, since unexpected edges of ‘creative nodes’ may also be identified
as ‘spurious’ edges, and may be removed (Csermely, 2008; Lü & Zhou,
2011). Network sampling methods were recently reviewed by Ahmed
et al. (2012).

2.2.2. Prediction of missing edges and nodes, network predictability
Prediction of missing edges and nodes is not only important to as-

sess network reliability, but can also be used for predictions of e.g. here-
tofore undetected interactions of disease-related proteins, or extension
of drug target networks helping drug design (Spiró et al., 2008). In
Section 1.3.3 and Tables 2 and 3 we already listed several methods for
the efficient prediction of new edges and nodes from complex human
disease-related datasets. Prediction is not only a discovery tool, but it
also helps to avoid the unpredictable, which is considered as dangerous.
However, as we will see at the end of this section, in complex systems
the least predictable constituents are the most exciting ones.

Lü and Zhou (2011) provided an excellent review of edge predic-
tion. Referring to this paper for details here we will summarize only
the major points of this field.

• Edges can be predicted by the properties of their nodes, e.g. protein
sequences, or domain structures (Smith & Sternberg, 2002; Li & Lai,
2007; Shen et al., 2007; Hue et al., 2010).

• The similarity of the edge neighborhood in the network is widely
used in edge prediction. Edge neighborhood may be restricted to the
common neighbors of the connected nodes, may include all first
neighbors, all first and second neighbors, cliques, the nodes' network
modules, or the whole network. Consequently, similarity indices may
be local (like the Adamic–Adar index, common neighbors index, hub
promoted index, hub suppressed index, Jaccard index, Leicht–Holme–
Newman index, preferential attachment index, resource allocation
index, Salton index, or the Sørensen index) mesoscopic (like the
local path index or the local random walk index), or global (like the
average commute time index, cosine-based index, Katz index,
Leicht–Holme–Newman index, matrix forest index, random walk
with restart index, or the SimRank index). Edge neighborhood may
be compared by using the network degree, preferential attachment
methods, fitness values, community structure, network hierarchy, a
stochastic bloc model, a probabilistic model, or by using hypergraphs
(Albert & Albert, 2004; Liben-Nowell & Kleinberg, 2007; Yan et al.,
2007a; Guimera & Sales-Pardo, 2009; Lu et al., 2009; Zhou et al.,
2009; Chen et al., 2012a; Eronen & Toivonen, 2012; Hu et al., 2012;
Musmeci et al., in press; Yan&Gregory, 2012; Liu et al., 2013). It is im-
portant to note that methods may perform differently, if the missing
edge is in a dense network core or in a sparsely connected network
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periphery (Zhu et al., 2012a). The optimal method also depends on
the average length of shortest paths in the network. Edge prediction
methods often require a large increase in computational time to
achieve a higher accuracy (Lü & Zhou, 2011).

• Edge prediction can be performed by comparing the network to an ap-
propriately selectedmodel network, to a similar real world network, or
to an ensemble of networks (Liben-Nowell & Kleinberg, 2007; Clauset
et al., 2008; Nepusz et al., 2008; Xu et al., 2011a; Gutfraind et al., 2012).

• Edges can also be predicted by the analysis of sequential snapshots of
network topology (also called as network dynamics, or network evolu-
tion, see Section 2.5; Hidalgo & Rodriguez-Sickert, 2008; Lü & Zhou,
2011). In network time-series older events might have less influence
on the formation of a new edge than newer ones. Additionally, all net-
work evolution models can be used as edge-predictors. However, one
has to keep in mind that network evolution models always include
guesses about the factors influencing the generation of a novel edge
(Lü & Zhou, 2011).

Edge prediction of drug–target networks allows the discovery of
new drug target candidates and the repositioning of existing drugs
(van Laarhoven et al., 2011). Prediction methods may combine sev-
eral data-sources, like mRNA expression patterns, genotypic data,
DNA–protein and protein–protein interactions (Zhu et al., 2008;
Pandey et al., 2010). Dataset combination may help the precision of
edge prediction. However, prediction of directed, weighted, signed,
or colored edges of these combined datasets is still a largely unsolved
task (Lü & Zhou, 2011).

Node prediction is evenmore difficult, than edge prediction (Getoor
& Diehl, 2005; Liben-Nowell & Kleinberg, 2007). Predicted nodes may
occupy structural holes, i.e. bridging positions between multiple
network modules (Burt, 1995; Csermely, 2008), or may be identified
by methods, like chance-discovery. Chance-discovery uses an itera-
tive annealing process, and extends the dense clusters observed at
lower annealing ‘temperatures’ (Maeno & Ohsawa, 2008). In fact, the
well developed methodology of the identification of disease-related
genes that we detailed in Section 1.3 can be regarded as a node predic-
tion problem, and may give exciting clues for node prediction in net-
works other than those of disease-related data.

The predictability of network edges is not only a function of data
coverage and network structure, but also depends on network dynam-
ics. The mistaken identification of unexpected edges as spurious edges
(Lü & Zhou, 2011), and the better predictability of edges in dense
cores than those in network periphery (Zhu et al., 2012a) are both relat-
ed to the inherent unpredictability caused by network dynamics. As an
example, the edge-structure of date hubs, where hubs change their
neighbors (Han et al., 2004a), is certainly less predictable than that
of party hubs, i.e. hubs preserving a rather constant neighborhood.
Date hubs mostly reside in inter-modular positions (Han et al., 2004a;
Komurov &White, 2007; Kovács et al., 2010). Predictability is also relat-
ed to network rigidity and flexibility (Gáspár & Csermely, 2012): an
edge or node in a more flexible network position is less predictable
than others situated in a rigid network environment.

Bridging positions are often more flexible and less predictable than
intra-modular edges. If a node is connecting multiple, distant modules
with approximately the same, low intensity, and continuously changing
its position, like the recently described ‘creative nodes’ do (Csermely,
2008), its predictability will be exceptionally low. A shift towards lower
predictability (higher network flexibility) is often accompanied by an in-
creased adaptation capability at the system level. Moreover, a complex
system lacking flexibility is unable to change, to adapt and to learn
(Gyurkó et al., in press). Thus it is not surprising that highly unpredictable,
‘creative’ nodes characterize all complex systems. Importantly, these
highly unpredictable nodes help in delaying critical transitions of the sys-
tems, i.e. postponingmarket crash, ecological disaster or death (Csermely,
2008; Scheffer et al., 2009; Farkas et al., 2011; Sornette&Osorio, 2011;Dai
et al., 2012). In fact, the most unpredictable nodes are the most exciting
nodes of the system having a hidden influence on the fate of the whole
system at critical situations. The prediction of their unpredictable behav-
ior remains a major challenge of network science.

2.2.3. Prediction of the whole
network, reverse engineering, network-inference

There are situations, when the network is so incomplete that we
do not know anything on the network structure. However, we often
have a detailed knowledge of the behavior of the complex system
encoded by the network. The elucidation of the underlying network
from the emergent system behavior is called reverse engineering or
network-inference.

In a typical example of reverse engineering we know the genome-
wide mRNA expression pattern and its changes after various pertur-
bations (including drug action, malignant transformation, develop-
ment of other diseases, etc.), but we have no idea of the gene–gene
interaction network, which is causing the changes in mRNA expression
pattern. As a rough estimate, a network of 10,000 genes can be pre-
dicted with reasonable precision using less than a hundred genome-
wide mRNA datasets. Network prediction can be greatly helped using
previous knowledge, e.g. on the modules of the predicted network.
The correct identification of the relatedness of mRNA expression sets
(position in time series, tissue-specificity, etc.)may often be amore im-
portant determinant of the final precision of network prediction than
the precise measurement of the mRNA expression levels. Models of
network dynamics, probabilistic graph models and machine learning
techniques are often incorporated in reverse engineering methods.
Some of these approaches, like Bayesian methods, require a rather in-
tensive computational time. Therefore, computationally less expensive
methods such as the copula method, or the simultaneous expression
model with Lasso regression were also introduced. The topology of
the predicted network often determines the type of the best method.
This is one reason, why combination of various methods (or the use
of iterative approaches) may outperform individual methodologies
(Liang et al., 1998a; Akutsu et al., 1999; Ideker et al., 2000;
Kholodenko et al., 2002; Yeung et al., 2002; Segal et al., 2003; Tegnér
et al., 2003; Friedman, 2004; Tegnér & Bjorkegren, 2007; Cosgrove
et al., 2008; Kim et al., 2008; Ahmed & Xing, 2009; Stokic et al., 2009;
Marbach et al., 2010, 2012; Yip et al., 2010; Pham et al., 2011;
Schaffter et al., 2011; Altay, 2012; Crombach et al., 2012; Kotera et al.,
2012). Jurman et al. (2012a) designed a network sampling stability-
based tool to assess network reconstruction performance.

Reverse engineering techniques were successfully applied to re-
construct drug-affected pathways (Gardner et al., 2003; di Bernardo
et al., 2005; Chua & Roth, 2011; Gosline et al., 2012). Besides the iden-
tification of gene regulatory networks from the transcriptome, reverse
engineering methods may also be used to identify signaling networks
from the phosphorome or signaling network (Kholodenko et al., 2002;
Sachs et al., 2005; Zamir & Bastiaens, 2008; Eduati et al., 2010; Prill
et al., 2011), metabolic networks from the metabolome (Nemenman
et al., 2007), or drug action mechanisms and drug target candidates
from various datasets (Gardner et al., 2003; di Bernardo et al., 2005;
Lehár et al., 2007; Lo et al., 2012; Madhamshettiwar et al., 2012).

Though the number of reverse-engineering methods has been dou-
bled every two years, 1.) the inclusion of non-linear system dynamics,
of multiple data sources and of multiple methods; 2.) distinguishing
between direct and indirect regulations; 3.) a better discrimination
between causal relationships and coincidence; as well as 4.) network
prediction in case of multiple regulatory inputs per node remain major
challenges of the field (Tegnér & Bjorkegren, 2007; Marbach et al.,
2010).

2.3. Key segments of network structure

In this section we will give a brief summary of the major concepts
and analytical methods of network structure starting from local
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network topology and proceeding towards more and more global
network structures. Selection of key network positions as drug target
options has a major dilemma. On the one hand, the network position
has to be important enough to influence the diseased body; on the
other hand, the selected network position must not be so important
that its attack would lead to toxicity. The successful solution of this
dilemma requires a detailed knowledge on the structure and dynam-
ics of complex networks.

2.3.1. Local topology: hubs, motifs and graphlets
A minority of nodes in a large variety of real world networks is a

hub, i.e. a node having a much higher number of neighbors than aver-
age. Real world networks often have a scale-free degree distribution
providing a non-negligible probability for the occurrence of hubs, as
it was first generalized to real world networks by the seminal paper
of Barabási and Albert (1999). If hubs are selectively attacked, the in-
formation transfer deteriorates rapidly in most real world networks.
This property made hubs attractive drug targets (Albert et al.,
2000). However, some of the hubs are essential proteins, and their at-
tack may result in increased toxicity. This narrowed the use of major
hubs as drug targets mostly to antibiotics, to other anti-infectious
drugs and to anticancer therapies. In agreement with these, on aver-
age, targets of FDA-approved drugs tend to have more connections
than peripheral nodes, but fewer connections than hubs (Yildirim
et al., 2007). Cancer-related proteins have many more interaction part-
ners than non-cancer proteins making the targeting of cancer-specific
hubs a reasonable strategy in anti-cancer therapies (Jonsson & Bates,
2006). Besides the direct count of interactome neighbors algorithms
have been developed to identify hubs using Gene Ontology terms
(Hsing et al., 2008). Going one level deeper in the network hierarchy,
amino acids serving as hubs of protein structure networks play a key
role in intra-protein information transmission (Pandini et al., 2012),
and may provide excellent target points of drug interactions.

The emerging picture of using hubs as drug targets can be summa-
rized by two opposite effects. On the one hand, hubs are so well
connected that their attack may lead to cascading effects compromis-
ing the function of a major segment of the network; on the other,
nodes with limited number of connections are at the ‘ends’ of the net-
work, and their modulation may have only limited effects (Penrod
et al., 2011). There are several important remarks refining this
conclusion.

• Not all hubs are equal. Weighted and directed networks are ex-
tremely important in discriminating between hubs. A hub having
20 neighbors connected with an equal edge-weight is different
from a hub having the same number of 20 neighbors having a high-
ly uneven edge-structure of a single, dominant edge and 19 low in-
tensity edges. A sink-hub with 20 incoming edges is not at all the
same than a source-hub with the same number 20 outgoing edges.
Soluble proteins possess more contacts on average than membrane
proteins (Yu et al., 2004a) warning that the hub-defining threshold
of neighbors cannot be set uniformly.

• Hub-connectors, i.e. edges or nodes connecting major hubs also offer
very interesting drug targeting options (Korcsmáros et al., 2007;
Farkas et al., 2011).

• Not all peripheral nodes are unimportant. There are peripheral nodes
called ‘choke points’, which uniquely produce or consume an impor-
tant metabolite. The inhibition of ‘choke points’ often leads to a lethal
effect (Yeh et al., 2004; Singh et al., 2007).

• Importantly, interdependent networks, i.e. at least two interconnected
networks, were shown to be much more vulnerable to attacks than
single network structures (Buldyrev et al., 2010). We have several
interdependent networks in our cells, such as the networks of signal-
ing proteins and transcription factors, or the interactome of mem-
brane proteins and the network of the interacting nuclear, plasma,
mitochondrial and endoplasmic reticulummembranes. The excessive
vulnerability of interdependent networks should make us even more
cautious in the selection of drug target nodes. The options of edgetic
drugs, multi-target drugs and allo-network drugs, we will describe
in Section 4.1.6 (Nussinov et al., 2011), may circumvent the worries
and problems related to the single and direct targeting of network
nodes with drugs.

Networkmotifs are circuits of 3 to 6 nodes in directed networks that
are highly overrepresented as compared to randomized networks
(Milo et al., 2002; Kashtan et al., 2004). Graphlets are similar to motifs
but are defined as undirected networks (Przulj et al., 2006). Motifs
proved to be efficient in predicting protein function, protein–protein in-
teractions and development of drug screening techniques (Bu et al.,
2003; Albert & Albert, 2004; Luni et al., 2010; Cloutier & Wang, 2011).
Rito et al. (2010) made an extensive search for graphlets in protein–
protein interaction networks and concluded that interactomes may be
at the threshold of the appearance of larger motifs requiring 4 or 5
nodes. Such a topology would make interactomes both efficient hav-
ing not too many edges and robust harboring alternative pathways.

2.3.2. Broader network topology: modules,
bridges, bottlenecks, hierarchy, core, periphery, choke points

Network modules (or in other words: network communities) are
the primary examples of mesoscopic network structures, which are
neither local, nor global. Modules represent groups of networking
nodes, and are related to the central concept of object grouping and
classification. Modules of molecular networks often encode cellular
functions. Moreover, the exploration of modular structure was pro-
posed as a key factor to understand the complexity of biological systems.
Therefore, module determination gained much attention in recent
years. Modules of molecular networks are formed from nodes, which
are more densely connected with each other than with their neighbor-
hood (Girvan & Newman, 2002; Fortunato, 2010; Kovács et al., 2010;
Koch, 2012; Szalay-Bekő et al., 2012). In Section 1.3 we introduced dis-
ease modules, i.e. modules of disease-related genes in protein–protein
interaction networks (Goh et al., 2007; Oti & Brunner, 2007; Jiang
et al., 2008; Suthram et al., 2010; Bauer-Mehren et al., 2011; Loscalzo
& Barabasi, 2011; Nacher & Schwartz, 2012). These node-related prop-
erties influence themodular functions, making them attractive network
drug-targets (Cho et al., 2012). However, the determination of network
modules proved to be a notoriously difficult problem resulting in more
than two hundred independent modularization methods (Fortunato,
2010; Kovács et al., 2010).

Modules of molecular networks have an extensive (often called
pervasive) overlap, which was recently shown to be denser than the
center of the modules in some social networks (Palla et al., 2005;
Ahn et al., 2010; Kovács et al., 2010; Yang & Leskovec, 2012). This re-
flects the economy of our cells using a protein in more than one func-
tion. Modules with sparse edge structure also characterize protein–
protein interaction networks (Srihari & Leong, 2012). Modules of real
world networks were shown to form a ‘very small world’ having an
average distance of 3 from each other (Li & Li, 2013). Inter-modular
nodes are attractive drug targets.

Bridges connect two neighboring network modules (Fig. 8). Bridges
may also be identified by k-shell analysis (Reppas & Lawyer, 2012).
Bridges usually have fewer neighbors than hubs, and are indepen-
dently regulated from the nodes belonging to both modules, which
they connect. This makes them attractive as drug targets, since they
may display lower toxicity, while the disruption of information flow
between functional network modules could prove to be therapeutically
effective (Hwang et al., 2008). Proteins involved in the aging process
are often bridges (Wang et al., 2009). Proteins bridging diseasemodules
may provide important points of interventions (Nguyen& Jordan, 2010;
Nguyen et al., 2011).

Inter-modular hubs form a special class of inter-modular nodes
(Fig. 8). Date hubs, i.e. hubs having only a single or few binding sites
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Fig. 8. Bridge, inter-modular hub and bottleneck. The network on the left side of the figure has two modules (modules A and B marked by the yellow dotted lines), which are
connected by a bridge and by an inter-modular hub. By the removal of the red edge from the network on the left side, the former bridge obtains a unique and monopolistic role
connecting modules A and B, and is therefore called as a bottleneck.
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and frequently changing their protein partners, were shown to occupy
an inter-modular position as opposed to party hubs residing mostly
in modular cores (Han et al., 2004a; Kim et al., 2006; Komurov &
White, 2007; Kovács et al., 2010). Party hubs tend to have higher affinity
binding surfaces than date hubs (Kar et al., 2009). Inter-modular hubs
usually have a regulatory role (Fox et al., 2011), and are mutated fre-
quently in cancer (Taylor et al., 2009).

Nodes occupying a unique and monopolistic inter-modular posi-
tion have been termed ‘bottlenecks’ (Fig. 8), because almost all infor-
mation flowing through the network must pass through these nodes.
This makes bottlenecks more effective drug targets than bridges (Yu
et al., 2007b). In agreement with this concept, hub-bottlenecks were
shown to be preferential targets of microRNAs (Wang et al., 2011c)
and play an important role in cellular re-programming (Buganim et
al., 2012). However, inhibition of bottlenecks often compromises net-
work integrity, restricting their use as drug targets to anti-infectious
and (in the case of cancer-specific bottlenecks) anti-cancer therapies
(Yu et al., 2007b). In agreement with this proposition, cancer proteins
tend to be inter-modular hubs of cancer-specific networks offering an
important target option (Jonsson & Bates, 2006).

Nodes connecting more than two modules are in modular overlaps.
Overlapping nodes occupy a network position, which can providemore
subtle regulation than bridges or bottlenecks. Modular overlaps are pri-
mary transmitters of network perturbations, and are key determinants
of network cooperation (Farkas et al., 2011). Overlapping nodes play a
crucial role in cellular adaptation to stress. In fact, changes in the overlap
of networkmodules were suggested to provide a general mechanism of
adaptation of complex systems (Mihalik & Csermely, 2011; Csermely
et al., 2012). Modular overlaps (called cross-talks between signaling
pathways) aremost prevalent in humans, if compared to Caenorhabditis
elegans or Drosophila (Korcsmáros et al., 2010). All these makemodular
overlaps especially attractive drug targets (Farkas et al., 2011). As we
described earlier, ‘creative nodes’ are in the overlap ofmultiplemodules
belonging roughly equally to each module. These nodes play a promi-
nent role in regulating the adaptivity of complex networks, and are
lucrative network targets (Csermely, 2008; Farkas et al., 2011).

Despite the important role of hierarchy in network structures
(Ravasz et al., 2002; Liu et al., 2012; Mones et al., 2012), the exploration
of network hierarchy is largely missing from network pharmacology.
Ispolatov and Maslov (2008) published a useful program to remove
feedback loops from regulatory or signaling networks, and reveal their
remaining hierarchy (http://www.cmth.bnl.gov/~maslov/programs.
htm). Hartsperger et al. (2010) developed HiNO using an improved, re-
cursive approach to reveal network hierarchy (http://mips.helmholtz-
muenchen.de/hino). The hierarchical map approach of Rosvall and
Bergstrom (2011) used the shortestmulti-level description of a random
walk (http://www.tp.umu.se/~rosvall/code.html). A special class of
hierarchy-representation and visualization uses the hierarchical struc-
ture of modules, i.e. the concept that modules can be regarded as
meta-nodes and re-modularized, until the whole network coalesces
into a single meta-node. Methods like Pyramabs (http://140.113.166.
165/pyramabs.php; Cheng & Hu, 2010) or the Cytoscape (Smoot et al.,
2011) plug-in, ModuLand (http://linkgroup.hu/modules.php; Szalay-
Bekő et al., 2012) are good examples of this powerful approach.

Network hierarchy has recently been involved as a key factor of
network controllability (Liu et al., 2012; Mones et al., 2012), which
will be discussed in Section 2.3.4 in detail. However, not all hierarchical
networks are ‘autocratic’, where top nodes have an unparalleled influ-
ence. Horizontal contacts of middle-level regulators play a key role
in gene regulatory networks. Moreover, such a ‘democratic network
character’ increases markedly in human gene regulation (Bhardwaj
et al., 2010).

Similarly, the discrimination between network core and periphery
has been published quite a while ago (Guimera & Amaral, 2005) and
was extended recently to network modules (Li & Li, 2013), but its
applications are largely missing from the field of drug design. As an
example of the possible benefits, choke points were identified as
those peripheral nodes that either uniquely produce or consume a
certain metabolite (including here signal transmitters and membrane
lipids too). Efficient inhibition of choke points may cause either a le-
thal deficiency, or toxic accumulation of the metabolite (Yeh et al.,
2004; Singh et al., 2007).

2.3.3. Network centrality, network
skeleton, rich-club and onion-networks

Network centrality measures span the entire network topology
from local to global. Centrality is related to the concept of importance.
Central nodes may receive more information, andmay have a larger in-
fluence on the networking community. Thus it is not surprising that
dozens of network centrality measures have been defined. Several cen-
trality measures are local, like the number of neighbors (the network
degree), or related to themodular structure, like bridging centrality, com-
munity centrality, or subgraph centrality. Centrality measures, like be-
tweenness centrality (the number of shortest paths traversing through
the node), randomwalk related centralities (like the PageRank algorithm
of Google), or network salience are based on more global network prop-
erties. Recently a number of centralitymeasures have beendefined based
on network dynamics (Freeman, 1978; Estrada & Rodríguez-Velázquez,
2005; Estrada, 2006; Hwang et al., 2008; Kovács et al., 2010; Du et al.,
2012; Ghosh & Lerman, 2012; Grady et al., 2012; Grassler et al., 2012;

http://www.cmth.bnl.gov/~maslov/programs.htm
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Joseph&Chen, 2012;Mantzaris et al., in press). Global network centrality
calculations may be faster, assessing only network segments and using
network compression (Sariyüce et al., 2012). Network module-based
centralities are related to the determination of bridges and overlaps
(Hwang et al., 2008; Kovács et al., 2010), while betweenness centrality
is used for the definition of bottlenecks (Yu et al., 2007b). Both are impor-
tant drug target candidates as we discussed in the previous section. As
an additional example, high betweenness centrality hubs were shown
to dominate the drug–target network of myocardial infarction (Azuaje
et al., 2011).

The network skeleton is an interconnected subnetwork of high
centrality nodes. Network skeletons may contain hubs (we call this
a ‘rich-club’; Colizza et al., 2006; Fig. 9), may consist of high be-
tweenness centrality nodes (Guimera et al., 2003), or may comprise
inter-connected centers of network modules (Kovács et al., 2010;
Szalay-Bekő et al., 2012). Network skeletons may be densely
interconnected forming an inner core of the network, or may be
truly skeleton-like traversing the network like a highway. In both
network skeleton representations nodes participating in the network
skeleton form the ‘elite’ of the network, like the respective persons in
social networks (Avin et al., 2011). Network skeleton nodes are attrac-
tive drug target candidates. As an example of this, Milenkovic et al.
(2011) defined a dominating set of nodes as a connected network sub-
graph having all residual nodes as its neighbor. They showed that the
dominating set (especially if combined with a network-module type
centrality measure called as graphlet degree centrality measuring the
summative degree of neighborhoods extending to 4 layers of neigh-
bors) captures disease-related and drug target genes in a statistically
significantmanner. Itwill be interesting to see,whether the recently de-
fined intra-modular dominating sets (Li & Li, 2013) also possess similar
features. Nicosia et al. (2012) defined a subset of nodes (called control-
ling sets), which can assign any prescribed set of centrality values to all
other nodes by cooperatively tuning the weights of their out-going
edges. Nacher and Schwartz (2008) identified a rich-club of drugs serv-
ing as a core of the drug–therapy network composed of drugs and
established classes of medical therapies.

Network assortativity characterizes the preferential attachment of
nodes having similar degrees to each other. Network cores (such as
rich-clubs, Fig. 9) may or may not be a part of an assortative network.
In a disassortative network low degree, peripheral network nodes
are connected to the network core and not to each other. These
core–periphery networks have a nested structure (Fig. 9). If periph-
eral nodes are connected to each other and form consecutive rings
around the core, we call the network ‘onion-type’ (Fig. 9). Nested net-
works were shown to characterize ecosystems and trade networks,
while onion-networks are especially resistant against targeted attacks
(Saavedra et al., 2011; Schneider et al., 2011; Wu & Holme, 2011). De-
spite the exciting features of nested and onion networks, these network
rich club
neste

netwo

Fig. 9. Rich club, nested network and onion network. The figure illustrates the differences bet
and developing an onion-type topology (right side). Note that the connected hubs of the r
Connection of the peripheral nodes by an additional 10 red edges on the right panel turns
the rich club network already has a nested structure, and both the nested network and the o
characteristics have not been assessed yet in disease-related, or drug
design related-studies.

2.3.4. Global network topology: small worlds, network
percolation, integrity, reliability, essentiality and controllability

The global topology of most real world networks is characterized
by the small world property first generalized in the landmark paper
of Watts and Strogatz (1998). Nodes of small worlds are connected
well—as it was popularized by the proverbial “six degrees of separa-
tion”meaning that members of the social network of Earth can reach
each other using 6 consecutive contacts (edges) as an average. In fact,
modern web-based social networks, like Facebook, are an even smaller
world having an average shortest path of 4.74 edges (Blackstrom et al.,
2011).

Percolation is a broader term of global network topology than
small worldness, since it refers to the connectedness of network
nodes, i.e. the presence of a connected, giant network component. Se-
quential attacks on network nodes can induce a progressive and dra-
matic decrease of network percolation. Despite being a sensitive
measure, to date the concept of percolation has not been extended
to characterize network modules and other non-global structures of
molecular networks (Antal et al., 2009). Percolation is related to net-
work integrity and network reliability; that is, related to howmuch of
the network remains connected if a network node or edge fails. In the
case of directed networks the connection of sources or sinks can be
calculated separately (Gertsbakh & Shprungin, 2010). The network
efficiency measure of Latora and Marchiori (2001) is a widely used
criterion to judge the integrity of a network. As noted before, inten-
tional attack of hubs can be deleterious to most real world networks
(Albert et al., 2000). The effect of a single attack of the largest hub
in gene transcription networks can be substituted by a surprisingly
low number of partial attacks, which is making the multi-target ap-
proaches listed in Section 4.1.5 a viable option from the network
point of view (Agoston et al., 2005; Csermely et al., 2005).

In the case of anti-infectious or anti-cancer agents we would like
to destroy the network of the parasite or of the malignant cell. In
other words we need to predict essential proteins as targets of
these therapeutic approaches. This makes network integrity a key
measure to judge the efficiency of drug target candidates in these
fields. Prediction of essential proteins is also important to forecast
the toxicity of other drugs. The number of neighbors in protein–pro-
tein interaction networks is an important network measure of essen-
tiality (Jeong et al., 2001). Later more global network measures were
also shown to contribute to the prediction of node essentiality (Chin
& Samanta, 2003; Estrada, 2006; Yu et al., 2007b; Missiuro et al.,
2009; Li et al., 2011a; Song & Singh, 2013). Edge weights and direc-
tions may also significantly alter the determination of attack efficien-
cy (Dall'Astra et al., 2006; Yu et al., 2007b). Finally, the constraints of
d
rk

onion
network

ween a network having a rich club (left side), having a highly nested structure (middle)
ich club became even more connected by adding the 3 red edges on the middle panel.
the nested network to an onion network having a core and an outer layer. Note that
nion network have a rich club. Larger onion networks have multiple peripheral layers.
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metabolic networks define different contexts of essentiality exempli-
fied by choke points, i.e. proteins uniquely producing or consuming a
certain metabolite (Yeh et al., 2004; Singh et al., 2007). We will de-
scribe metabolic network essentiality in Section 3.6.2 in detail.

The most recent aspect of global network topology is similar to es-
sentiality in the sense that it is also related to the influence of nodes
on network behavior. However, here node influence is not judged
on a ‘yes/no scale’, i.e. by whether the organism survives the malfunc-
tion of the node, but based on the more subtle scale of changing cell
behavior. In this way node influence studies are closely related to net-
work dynamics as we will detail in Section 2.5. Network centrality
measures, or the dominating set of network nodes we mentioned be-
fore, are also related to the influence of selected nodes on others. Re-
cent publications added network controllability, i.e. the ability to shift
network behavior from an initial state to a desired state, to the reper-
toire of network-related measures of node influence. From these ini-
tial studies central nodes emerged as key players of network control
(Cornelius et al., 2011; Liu et al., 2011, 2012; Banerjee & Roy, 2012;
Cowan et al., 2012; Mones et al., 2012; Nepusz & Vicsek, 2012;
Wang et al., 2012a; Pósfai et al., 2013). It is important to note that
control here is a weak form of control, since we do not want to control
how the system reaches the desired state (San Miguel et al., 2012).
Despite of the clear applicability of network controllability to drug
design (i.e. finding the nodes, which can shift molecular networks of
the cell from a malignant state to a healthy state) there were only a
few studies testing various aspects of this rich methodology in drug
design (Xiong & Choe, 2008; Luni et al., 2010). Development of drug-
related applications of network influence and control models is an im-
portant task of future studies.

2.4. Network comparison and similarity

As we summarized in Section 2.2, uncovering network similarities
is useful to predict nodes and edges. Alignment of networks from
various species identifies interologs corresponding to conserved inter-
actions between a pair of proteins having interacting homologs in an-
other organism, or the analogous regulogs in regulatory networks,
signalogs in signal transduction networks and phenologs as disease
associated-genes. Thus, network comparison may uncover novel pro-
tein functions and disease-specific changes. All these greatly help drug
design (Yu et al., 2004b; Sharan et al., 2005; Leicht et al., 2006; Sharan
& Ideker, 2006; Zhang et al., 2008; McGary et al., 2010; Korcsmáros et
al., 2011). However, the great potential to uncover network similarities
comes with a price: network comparison is computationally expensive,
and remains one of the greatest challenges of the field.

Lovász (2009, 2012) gives an excellent summary of the network
similarity problem including a number of network similarity measures
such as edit distance (the number of edge changes required to get one
network from another), sampling distance (measuring the similarity
by an ensemble of random networks), cut distance and similarity dis-
tance. A later study also used an interesting combined distance metrics
of the edit and spectral distances (Jurman et al., 2012b). Similarity mea-
sures based on the comparison of the top-k nodes were recently de-
scribed (Amin et al., 2012; Lee et al., 2012a). Similarity indices may
be local (comparing the closest neighborhood of selected nodes),
mesoscopic (which are usually based on localwalks), or global (often in-
volving extensive, network-wide walks). Edge neighborhood may be
compared by using themodular structure, hypergraphs, network hierar-
chy, a stochastic bloc model, or a probabilistic model. Comparison may
also use an ensemble of random, scale-free or other model networks,
and the distribution of the best fitting ensemble. Reviews of Sharan
and Ideker (2006), Zhang et al. (2008) and Lü and Zhou (2011) give fur-
ther details of the methodology used in the comparison of molecular
networks.

A specific example of network comparison is the comparison of net-
work descriptions of chemical structures, which we will summarize in
Section 3.1. Table 4 summarizes a few major methods and related
web-sites to compare molecular networks. Quite a few methods com-
pare small subnetworks to larger ones. Sometimes the “small
subnetwork” is small, containing only 3 to 5 nodes. This reduces
the problem of finding a motif in a larger network (also called as net-
work querying). Recent methods 1.) include an expansion process,
which explores the network structure beyond the direct neighborhood;
2.) compress the network to meta-nodes, then align this representative
network and finally refine the alignment; 3.) use k-hop network color-
ing to speed up the comparison of the traditional coloring techniques of
neighboring nodes, or 4.) extend the comparison using multiple types
of networks and functional information (Table 4; Ay et al., 2011; Ay et
al., 2012; Berlingerio et al., 2012; Gulsoy et al., 2012). Despite the exten-
sive progress in the field, additional work is needed to develop efficient
comparison methods for large molecular networks and multiple net-
work datasets. A widely used area of network comparison is the assess-
ment of two time points, or a time series of a changing network, which
will be discussed in the next section.

2.5. Network dynamics

In this section, which concludes the inventory of network analyt-
ical concepts and methods, we will summarize the approaches de-
scribing network dynamics. First we will list the methods describing
the temporal changes of networks, then we describe the usefulness
of network perturbation analysis in drug design, and finally we will
draw attention to the potential use of spatial games to assess the
influence of nodes on network cooperation. Description of network
dynamics is a fast developing field of network science holding great
promise to renew systems-based thinking in drug design.

2.5.1. Network time series, network evolution
As we mentioned in Section 2.1 summarizing the key points of

network definition, the time-window of observation is crucial for
the detection of contacts between network nodes. The duration of
observation becomes even more important, when describing the tem-
poral changes of networks, which is also often called network evolution.
(It is important to note that the concept of network evolution usually
has no connection to the Darwinian concept of natural selection.) The
order of network edge development has key consequences in directed
networks which differ from network topology measures, like shortest
path, or small world. As an interesting example of these changes, in
the A ➔ B ➔ C connection pattern, A cannot influence C, if the B ➔ C
contact preceded the A ➔ B contact. Such effects may slow down the
propagation of signals by an order of magnitude (Tang et al., 2010;
Pfitzner et al., 2012).

The description of temporal changes of network structures is related
to the difficult concept and methodology of network comparison and
similarity described in the preceding section. Following the early
summary of Dorogovtsev and Mendes (2002) on network evolution,
Holme and Saramäki (2011) had an excellent review on network
time-series re-defining a number of static network parameters, such
as connectivity, diameter, centrality, motifs and modules, to accom-
modate temporal changes. The prediction algorithms described in
Section 2.2 can be used to predict edges that may appear at later time
points in evolving networks (Lü & Zhou, 2011). Prediction may work
backwards, to infer past structures of a current network identifying
core-nodes around which the network was organized (Navlakha &
Kingsford, 2011). Recently, a method to test the reversibility of changes
in network time-series was published (Donges et al., 2012). However,
most network time description studies have concentrated on neuronal
or social networks offering many, albeit yet untested, possibilities for
drug design.

Recently a number of centrality measures were introduced de-
scribing central nodes of dynamically changing networks (Joseph &
Chen, 2012; Mantzaris et al., in press). The development of network



Table 4
Comparison methods of molecular networks.

Namea Network type(s)b Description and website References

AlignNemo Protein–protein interaction
networks

Uncovers subnetworks of proteins and uses an expansion process, which gradually explores
the network beyond the direct neighborhood. http://sourceforge.net/p/alignnemo

Ciriello et al., 2012a

Differential
dependency
network analysis

Transcriptional networks A set of conditional probabilities is proposed as a local dependency model, and a learning
algorithm is developed to show the statistical significance of the local structures.
http://www.cbil.ece.vt.edu/software.htm

Zhang et al., 2009

Graphcrunch2,
C-GRAAL,
MI-GRAAL

Multiple networks Compares networks with random networks. Additionally, clusters nodes based on their
topological similarities in the compared networks. http://bio-nets.doc.ic.ac.uk/graphcrunch2;
http://bio-nets.doc.ic.ac.uk/MI-GRAAL

Kuchaiev and Przulj,
2011; Kuchaiev et al.,
2011;
Memisevic & Przulj, 2012

IsoRankN
(IsoRank Nibble)

Metabolic networks Uses spectral clustering on the induced graph of pair-wise alignment scores.
http://isorank.csail.mit.edu

Liao et al., 2009

MetaPathway-Hunter Metabolic networks Finds tree-like pathways in metabolic networks.
http://www.cs.technion.ac.il/~olegro/metapathwayhunter

Pinter et al., 2005

MNAligner Molecular networks Combines molecular and topological similarity using integer quadratic programming,
enabling the comparison of weighted and directed networks and finding cycles beyond
tree-like structures. http://doc.aporc.org/wiki/MNAligner

Li et al., 2007

Module Preservation Measures module
preservation in different
datasets

Uses several module comparison statistics based on the adjacency matrix, or on the basis of
pair-wise correlations between numeric variables.
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation

Langfelder et al., 2011

NeMo Gene co-expression
networks

Detects frequent co-expression modules among gene co-expression networks across various
conditions. http://zhoulab.usc.edu/NeMo

Yan et al., 2007b

NetAlign Protein–protein interaction
networks

Aligns conserved network substructures. http://netalign.ustc.edu.cn/NetAlign Liang et al., 2006

NetAligner Protein–protein interaction
networks+pathways

Compares whole interactomes, pathways and protein complexes of 7 organisms.
http://netaligner.irbbarcelona.org

Pache et al., 2012

NetMatch Cytoscape plug-in for
molecular networks

Finds subgraphs of the original network connected in the same way as the querying network.
Can also handle multiple edges, multiple attributes per node and missing nodes.
http://baderlab.org/Software/NetMatch

Ferro et al., 2007

PathBLAST Search of smaller linear
pathways

Finds smaller linear pathways in protein–protein interaction networks.
http://www.pathblast.org

Kelley et al., 2004

PINALOG Protein–protein interaction
network

Combines information from protein sequence, function and network topology.
http://www.sbg.bio.ic.ac.uk/~pinalog

Phan & Sternberg, 2012

Rahnuma metabolic networks Represents metabolic networks as hypergraphs and computes all possible pathways between
two or more metabolites. http://portal.stats.ox.ac.uk:8080/rahnuma

Mithani et al., 2009

a The summaries of Sharan and Ideker (2006) and Zhang et al. (2008) describe and compare some of the methods above.
b The network type is indicating the primary network, where the method has been tested. However, most methods are applicable to other types of molecular networks.
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modules gained considerable attention in network evolution studies,
since this representation concentrates on the functionally most rele-
vant changes in the network structure. Network modules may grow,
contract, merge, split, be born or die. Some of the modules display a
much larger stability than others. The intra-modular nodes of these
modules bind to each other with high affinity and to nodes outside
the module with low affinity. Interestingly, small modules (of say less
than10 nodes) seem topersist better, if they have a dense contact struc-
ture, while largermodules survive better, if they have a dynamic,fluctu-
ating membership (Palla et al., 2007; Fortunato, 2010). Mucha et al.
(2010) developed the technique of multislice networks, whichmonitor
the module development of nodes with multiple types of edges. Taylor
et al. (2009) showed that altered modularity of hubs had a prognostic
value in breast cancer and suggested cancer-specific inter-modular
hubs as drug targets in cancer therapies.

Detailed analyses identified change points, i.e. short periods where
large changes of modular structure can be observed (Falkowski et al.,
2006; Sun et al., 2007; Rosvall & Bergstrom, 2010). The alluvial diagram
(applying the visualization technique of Sankey diagrams) introduced
by Rosvall and Bergstom (2010; Fig. 10) illustrates the temporal
changes of network modules particularly well. Recently the addition
of routes between nodes of the network, called the accessibility graph,
was also used successfully to describe network time series (Lentz et al.,
2012).

Dramatic changes of network structure called “topological phase
transitions” occur when the resources needed to the maintain net-
work contacts diminish, or environmental stress becomes much larger.
Networks may develop a hierarchy, a core or a central hub as the
relative costs of edge-maintenance increase. Under extreme circum-
stances, the network may disintegrate to small subgraphs, which corre-
sponds to the death of the complex organism encoded by the formerly
connected network (Derényi et al., 2004; Csermely, 2009; Brede, 2010).
Change points and topological phase transitions have not been assessed
in disease, or in other therapeutically interesting situations showing
an abrupt change, such as apoptosis, and thus provide an exciting
field of future drug-related studies.

Going beyond the changes of system structure, network descrip-
tions may also be applied to describe changes of systems-level emer-
gent properties. In these descriptions nodes represent phenotypes of
the complex system in the state-space, and edges are the transitions
or similarities of these phenotypes. This approach is used in the net-
work representations of energy landscapes (or fitness landscapes)
resulting in transition networks, and in the recurrence-based time se-
ries analysis resulting in correlation networks, cycle networks, recur-
rence networks or visibility graphs (Doye, 2002; Rao & Caflisch, 2004;
Donner et al., 2011). Recently a method to compare two visibility
graphs, i.e. two network time series was published (Mehraban et al.,
2013).

2.5.2. Network robustness and perturbations
In the network-related scientific literature perturbations oftenmean

the complete deletion of a network node. However, in drug action
the complete inhibition of a molecule is seldom achieved. Therefore,
when summarizing network perturbations, we will concentrate on the
transient changes of network-encoded complex systems. Transient per-
turbations play a major role in signaling and in the development of dis-
eases. The action of drugs can be perceived as a network perturbation
nudging pathophysiological networks back into their normal state
(Gardner et al., 2003; di Bernardo et al., 2005; Ohlson, 2008; Antal
et al., 2009; Huang et al., 2009; Lum et al., 2009; Baggs et al., 2010; del
Sol et al., 2010; Chua & Roth, 2011). Therefore, studies addressing
perturbation dynamics have a key importance in drug design.

http://sourceforge.net/p/alignnemo
http://www.cbil.ece.vt.edu/software.htm
http://bio-nets.doc.ic.ac.uk/MI-GRAAL
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http://www.cs.technion.ac.il/~olegro/metapathwayhunter
http://doc.aporc.org/wiki/MNAligner
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation
http://zhoulab.usc.edu/NeMo
http://netalign.ustc.edu.cn/NetAlign
http://netaligner.irbbarcelona.org
http://baderlab.org/Software/NetMatch
http://www.pathblast.org
http://www.sbg.bio.ic.ac.uk/~pinalog
http://portal.stats.ox.ac.uk:8080/rahnuma


Fig. 10. Alluvial diagram illustrating the temporal changes of network communities.
Each block represents a network module with a height corresponding to the module
size. Modules are ordered by size (in case of a hierarchical structure within their super-
modules). Darker colors indicate module cores. Modules having a non-significant differ-
ence are closer to each other. The height of the changing fields in the middle of the repre-
sentation corresponds to the number of nodes participating in the change. To reduce the
number of crossovers, changes are ordered by the order of connecting modules. To make
thevisualizationmore concise transients are passing through themidpoints of the entering
and exiting modules and have a slim waist. Note the split of the blue module, and the
merge of the orange and red modules.
Reproduced with permission from Rosvall and Bergstrom (2010).
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Fig. 11. Mechanisms of drug action changing cellular robustness. Panel A shows a
2-dimensional contour plot of the stability landscape of healthy and diseased pheno-
types. Healthy states are represented by the central and the adjacent two minima
marked with the large orange arrows, while all additional local minima are diseased
states. Darker green colors refer to states with larger stability. Thin blue and red arrows
mark shifts to healthy and diseased states, respectively. Dashed arrows refer to less
probable changes. Panel B illustrates mechanisms of drug action on cellular robustness.
The valleys and hills are a vertical representation of the stability-landscape shown on
Panel A along the horizontal dashed black line. Blue symbols represent drug interac-
tions with disease-prone or disease-affected cells, while red symbols refer to drug
effects on cancer cells or parasites. (a) Counteracting regulatory feedback; (b) positive
feedback pushing the diseased cell or parasite to another trajectory; (c) a transientdecrease
of a specific activation energy enabling a shift back to healthy state; (d) ‘error-catastrophe’:
drug action diminishingmany activation energies at the same time, causing cellular insta-
bility, which leads to cell death; (e) general increase in activation energies leading to the
stabilization of healthy cells to prevent their shift to diseased phenotype.
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Robustness is an intrinsic property of cellular networks that en-
ables them to maintain their functions in spite of various perturba-
tions. Enhanced robustness is a property of only a very small number
of all possible network topologies. Cellular networks both in health
and in disease belong to this extreme minority. Drug action often fails
due to the robustness of disease-affected cells or parasites. In contrast,
side-effects often indicate that the drug hits an unexpected point of
fragility of the affected networks (Kitano, 2004a, 2004b, 2007; Ciliberti
et al., 2007). Robustness analysis was used to reveal primary drug targets
and to characterize drug action (Hallén et al., 2006; Moriya et al., 2006;
Luni et al., 2010).

Cellular robustness can be caused by a number of mechanisms.

• Network edges with large weights often form negative or positive
feedbacks helping the cell to return to the original state (attractor)
or jump to another, respectively.

• Network edges with small weights provide alternative pathways,
give flexible inter-modular connections disjoining network mod-
ules to block perturbations and buffer the changes by additional,
yet unknown mechanisms. These ‘weak links’ grossly outnumber
the ‘strong links’ participating in feedback mechanisms. Therefore,
the two mechanisms have comparable effects at the systems level.

• Finally, robustness ofmolecular networks also depends on the robust-
ness of their nodes, e.g. the stability of protein structures (Csermely,
2004, 2009; Kitano, 2004a, 2004b, 2007).

We summarize the possible mechanisms through which drugs can
overcome cellular robustness in Fig. 11 (letters in the list correspond
to symbols of the figure).

a. Drugs may activate a regulatory feedback helping disease-affected
cells to return to the original equilibrium.

b. Drugs may activate a positive feedback and push disease-affected
cells to a new state.

image of Fig.�11
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c. Drugs may transiently lower a specific activation energy helping
disease-affected cells to return to the healthy state.

d. Drugs may decrease activation energies and thus destabilize ma-
lignant or infectious cells causing an ‘error catastrophe’ and acti-
vating cell death.

e. Drugs may increase activation energies and thus stabilize healthy
cells preventing their shift to the diseased phenotype (Csermely,
2004, 2009; Kitano, 2004a, 2004b, 2007).

If cellular robustness is conquered, critical transitions, i.e. large
unexpected changes, may also occur. Critical transitions are often
responsible for unexplained cases of excessive drug side-effects and
toxicity. Lack of stabilizing negative feedbacks, excessive positive
feedbacks, accumulating cascades may all lead to extreme events char-
acterizing critical transitions (San Miguel et al., 2012).

Recently increasing attention focused on finding, predicting and
influencing extreme events, i.e. outliers of common (e.g. scale-free) statis-
tics, also called ‘dragon kings’ (Tajer & Poor, 2012; de S. Cavalcante et al.,
2013). The detection of early warning signals of these critical transitions
(such as a slower recovery after perturbations, increased self-similarity
of the behavior, or increased occurrence of extreme behavior) was
shown to characterize different complex systems, such as ecosystems,
the market, climate change, or population of yeast cells (Scheffer
et al., 2009; Farkas et al., 2011; Sornette & Osorio, 2011; Dai et al.,
2012). Boettiger and Hastings (2012) emphasized the importance of
using correct statistics in order not to ‘over-examine’ systems which
are known to undergo critical transitions. Prediction and control of crit-
ical changes (delay/prevention in the case of normal cells and induc-
tion/acceleration in the case of malignant or infecting cells) may be an
especially important area of future drug-related network studies.

The number of possible regulatory combinations for a given gene
increases dramatically with an increase in input-complexity and
network size. For example, with 100 genes and 3 inputs per gene
there are a million input combinations for each gene in the network
resulting in 10,600 different network wiring diagrams (Tegnér &
Bjorkegren, 2007). The complexity of precise network perturbation
models increases even more with system size. Therefore, it is not
surprising that most studies of network dynamics described small
networks with at most a few dozens of nodes. As an example of this,
the Tide software analyzes the combined effects and optimal positions
of drug-like inhibitors or activators using differential equations of reac-
tion pathways up to 8 components (Schulz et al., 2009). Karlebach
and Shamir (2010) presented an algorithm determining the smallest
perturbations required for manipulating a network of 14 genes. Pertur-
bations of Boolean networks, where nodes may only have an “on” or
“off”mode, describe the dynamics of 20 to 50nodes. Thesemodels often
incorporate activating, inhibiting, or conditional edges, too (Huang,
2001; Shmulevich et al., 2002; Gong & Zhang, 2007; Abdi et al., 2008;
Azuaje et al., 2010; Saadatpour et al., 2011; Wang & Albert, 2011;
Garg et al., 2012). To help these studies a versatile, publicly available
software library, BooleanNet (http://booleannet.googlecode.com) was
developed by Albert et al. (2008). PATHLOGIC-S (http://sourceforge.
net/projects/pathlogic/files/PATHLOGIC-S) offers a scalable Boolean
framework for modeling cellular signaling (Fearnley & Nielsen, 2012).

Systems-level molecular networks have a size in the range of
thousand to ten-thousand nodes. At this level of system complexity
the optimal selection of the perturbation model becomes a key issue.
At this system size the highly anisotropic perturbation propagation
inside protein structures is usually neglected (we will detail the possi-
bilities to construct atomic resolution interactomes in Section 4.1.6
on allo-network drugs; Nussinov et al., 2011). In current network
perturbation models of larger systems delays, differences in individual
dissipation patterns, effects of water or molecular crowding are also
neglected (Antal et al., 2009).

We summarized an early promising approach of systems-level
perturbation studies in Section 2.2.3 on reverse engineering. Here
perturbations were assessed by systems-level mRNA expression pro-
files and the perturbed network was reconstructed from the output
data (Liang et al., 1998a; Akutsu et al., 1999; Ideker et al., 2000;
Kholodenko et al., 2002; Yeung et al., 2002; Segal et al., 2003;
Tegnér et al., 2003; Friedman, 2004; Tegnér & Bjorkegren, 2007;
Ahmed & Xing, 2009; Stokic et al., 2009; Marbach et al., 2010; Yip
et al., 2010; Schaffter et al., 2011; Altay, 2012; Crombach et al.,
2012; Kotera et al., 2012). Reverse engineering techniques were suc-
cessfully applied to reconstruct drug-induced system perturbations
(Gardner et al., 2003; di Bernardo et al., 2005; Chua & Roth, 2011).

Maslov and Ispolatov (2007) used the mass action law to calculate
the effect of a two-fold increase in the expression of single protein on
the free concentration of other proteins in the yeast interactome. De-
spite an exponential decay of changes, there were a few highly selec-
tive pathways, where concentration changes propagated to a larger
distance (Maslov & Ispolatov, 2007). This and other models of net-
work dynamics have been used in various publicly available algo-
rithms including:

• the system dynamics modeling tool BIOCHAM using Boolean, differ-
ential, stochastic models and providing among others bifurcation
diagrams (http://contraintes.inria.fr/biocham; Calzone et al., 2006);

• the random walk-based ITM-Probe, also available as a Cytoscape
plug-in (http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/mn/itm_
probe/doc/cytoitmprobe.html; Stojmirović & Yu, 2009; Smoot
et al., 2011);

• the mass action-based Cytoscape plug-in, PerturbationAnalyzer
(http://chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?
name=PerturbationAnalyzer; Li et al., 2010a; Smoot et al., 2011);

• a user-friendly, Matlab-compatible, versatile network dynamics
tool, Turbine supplying a communication vessels propagation
model, but handling any user-defined dynamics, and enabling
the user to simulate real world networks that include 1 million
nodes and 10 million edges per GByte of free system memory,
exporting and converting numerical data to a visual image using
an inbuilt viewer function (www.linkgroup.hu/Turbine.php; Farkas
et al., 2011);

• Conedy, a Python-interfaced C++program capable to handle various
dynamics including differential equations and oscillators (http://
www.conedy.org; Rothkegel & Lehnertz, 2012).

Studying perturbations of larger networks Adilson Motter and
colleagues developed an exciting model of compensatory perturbations
showing that surprisingly, a debilitating effect canoften be compensated
by another inhibitory effect in a complex, cellular system (Motter et al.,
2008; Motter, 2010; Cornelius et al., 2011). Perturbation dynamics of
signaling networkswas extensively analyzed including close to 10 thou-
sand phosphorylation events in an experimental study of yeast cells
(Bodenmiller et al., 2010). As we described in Section 2.2.3 on reverse
engineering, perturbation studies are often used to reconstruct net-
works. As examples of this, the signaling network of T lymphocytes
was reconstructed using single cell perturbations (Sachs et al., 2005),
and the perturbations of 21 drug pairs were predicted from the
reconstituted network of phospho-proteins and cell cycle markers of a
human breast cancer cell line (Nelander et al., 2008). As another exam-
ple, a perturbation amplitude scoring method was developed to test the
biological impact of drug treatments, and was assessed using the
transcriptome of colon cancer cells treatedwith the CDK cell cycle inhib-
itor, R547 (Martin et al., 2012).

Despite their complexity and robustness, cellular networks have
their ‘Achilles-heel’. Hitting it, a perturbation may cause dramatic
changes in cell behavior. Stem cell reprogramming is a well-studied
example of these network-reconfigurations (Huang et al., 2012a),
where special bottleneck proteins may play a pivotal role (Buganim
et al., 2012). As another example of ‘streamlined’ cellular responses,
effects of multiple drug-combinations on protein levels can be quite
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accurately described by the linear superposition of drug-pair effects
(Geva-Zatorsky et al., 2010).

Recent perturbation studies identified key nodes governing network
dynamics. Central nodes, such as hubs, or inter-modular overlaps and
bridges were shown to serve as highly efficient mediators of perturba-
tions (Cornelius et al., 2011; Farkas et al., 2011). Network oscillations
can be governed by a few central nodes forming a small network skele-
ton (Liao et al., 2011). Targets of viral proteins were shown to be major
perturbators of human networks (de Chassey et al., 2008; Navratil et al.,
2011). Perturbation mediators are often at cross-roads of cellular path-
ways. These key nodes bind multiple partners at shared binding sites.
These shared binding sites can be identified as hot spot residues in pro-
tein structures (Ozbabacan et al., 2010). The fast-developing field of
viral marketing identified influential spreaders of information at net-
work cores and at other central network positions (Kitsak et al., 2010;
Valente, 2012). Spreader proteins may be excellent targets of anti-
infectious or anti-cancer therapies. Conversely, drugs against other dis-
eases need to avoid these central proteins affecting a number of cellular
functions. The identification of influential spreaders may provide im-
portant analogies of future drug target studies.

2.5.3. Network cooperation, spatial games
Spatial games, i.e. social dilemma games (such as the well known

Prisoners' Dilemma, hawk–dove or ultimatum games) played between
neighboring network nodes, provide a useful model of cooperation
(Nowak, 2006). In a recent review Foster (2011) described the ‘sociobi-
ology of molecular systems’ and provided convincing evidence how
molecular networks determine social cooperation. We argue that
cooperation of proteins and other macromolecules may offer an im-
portant description of cellular complexity. This view is based on the
delicate dynamics of protein–protein interactions, which proceed via
mutual selection of the binding-compatible conformations of the two
protein partners. As the two proteins approach each other, they signal
their status to the other via the hydrogen-bonded network of water
molecules. Binding is achieved by a complex set of consecutive confor-
mational adjustments. These concerted, conditional steps were called a
‘protein dance’, and can be perceived as rounds of a repeated game
(Kovács et al., 2005; Csermely et al., 2010).

The stepwise encounter of protein molecules can be modeled as a
series of rounds in common social dilemma games. In hawk–dove
games the more rigid binding partner (corresponding to the drug)
can be modeled as a hawk, while the more flexible binding partner
(corresponding to the drug target) will be the dove. The hawk/dove
encounter corresponds to an induced-fit-like scenario, where the
conformational change of the dove is much larger than that of the
hawk. The game is won by drug (hawk), since its enthalpy gain is not
accompanied by an entropy cost. On the contrary, the flexible drug tar-
get loses several degrees of freedomduring binding (Kovács et al., 2005;
Chettaoui et al., 2007; Schuster et al., 2008; Antal et al., 2009; Csermely
et al., 2010). In agreement with our previous description (Csermely
et al., 2010) we note that induced-fit is conceived here as an extremity
of an extended conformational selection model, where one of the part-
ners (in this case the drug) is much more rigid than the other.

If we model drug binding with the ultimatum game, the drug and
its target want to share the free energy decrease as a common re-
source. The drug proposes how to divide the sum between the two
partners, and the target can either accept or reject this proposal, i.e.
bind the drug or not (Kovács et al., 2005; Chettaoui et al., 2007;
Schuster et al., 2008; Antal et al., 2009; Csermely et al., 2010).

Extending the above drug-binding scenario to the network level
of the whole cell spatial game models are not only important to pro-
vide an estimate of systems-level cooperation, but are able to predict,
which protein can most efficiently destroy the existing cooperation of
the cell. This is a very helpful model of drug action in anti-infectious
or anti-cancer therapies. Game models also identify those proteins,
which are the most efficient to maintain cellular cooperation. This
provides a useful model of drug efficiency in maintaining normal func-
tions of diseased cells. Recently a versatile program, calledNetworGame
(www.linkgroup.hu/NetworGame.php) was made publicly available
for simulating spatial games using any user-defined molecular net-
works and identifying the most influential nodes to establish, maintain
or break cellular cooperation. Nodes having an exceptional influence in
these cellular games may be promising targets of future drug develop-
ment efforts (Farkas et al., 2011).

2.6. Limitations of network-related description and analysis methods

After completing a large inventory of network-related description
and analysis methods here we list some of the major limitations of
this approach.

• The first and foremost limitation of all network-related methods is
data quality. Network description is a tool, which depends on the
accuracy and coverage of input data. The entire dataset must have
the same, well defined quality control. Currently we often lack
these high-quality datasets especially on system dynamics (Henney
& Superti-Furga, 2008; Prinz et al., 2011; Begley & Ellis, 2012; Landis
et al., 2012).

• The definition of network nodes and edges often restricts network
descriptions to well-defined connections. Hypergraph descriptions,
which may overcome this problem are not wide-spread, and well
documented yet. Despite the flexibility offered by hypergraphs, net-
work descriptions often reduce the dimensions of the available infor-
mation. When this is performed without a deep knowledge of the
problem and the system, it may result in significant information loss.
We described these difficulties of network construction in Sections 1.2
and 2.1.

• Visualization of networks improved over the years (see Table 1), but
there is still room for development of 3D, large-capacity, zoom-
in-type network visualization tools.

• Since the information spread is not only local in the cell, network
analysis concentrating only local topological signatures, such as hubs
or motifs may not use the full potency of network description. Defini-
tion of network modules or central nodes resulted in a large number
of methods, but has reached a consensus neither in the applicability
nor in overcoming the limitations of these methods. Additional stud-
ies on the identification of influential network nodes and edges are
needed.

• Network-based prediction methods also need considerable improve-
ment.

• Comparison of dynamically changing networks needs additional
methods. Generally, the dynamics of complex systems is not ade-
quately described by networks yet.

Applications of network description and analysis to molecular
problems started less than 15 years ago. Therefore, several limitations
arise from the current state-of-the-art of network related studies.
Others may indeed pose limits for the use of network analysis. We
need a number of well-based comparative studies in the future to un-
derstand the areas, where the use of network description and analysis
gives the most efficient help in drug design. The following sections of
our review try to help this clarification process.

3. The use of molecular networks in drug design

In this section we will describe molecular networks starting from
networks of chemical substances, followed by protein structure net-
works (i.e. networks of amino acids forming 3D protein structures),
protein–protein interaction networks, signaling networks, genetic
interaction and chromatin networks (i.e. networks of chromatin seg-
ments forming the 3D structure of chromatin). We will conclude the
section with the description of metabolic networks, i.e. networks of
metabolites connected by enzyme reactions. The section will not

http://www.linkgroup.hu/NetworGame.php
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give a detailed description of all studies on these networks, but will con-
centrate only on themost important aspects related to drugdevelopment.

Nodes of the networks above are connected either physically or
conceptually. Chemical compound networks are often constructed by
connecting two chemical compounds, if there is a chemical reaction to
transform one of them to the other. This logic is very similar to that
used in the construction of metabolic networks. In another form of
chemical compound networks two drugs are considered similar, if
they have a common binding protein. This is actually the inverse of
drug target networks (where two drug targets are connected, if the
samedrug binds to them). Substrates and products also have a common
binding protein, the enzyme, serving as the edge ofmetabolic networks.
However, drug-related studies on metabolic networks often incorpo-
rate knowledge of protein–protein interaction and signaling networks.
Therefore, we will summarize metabolic networks separately, at the
end of the current section. Similarly, drug target networks often use
the rich conceptual context of the drugdevelopment process. Therefore,
we will re-assess the major features of drug target networks in
Section 4.1.3. However, due to the unavoidable overlaps we encourage
the Reader to compare the sections on chemical compound, metabolic
and drug target networks.

3.1. Chemical compound networks

In this section we will summarize all networks which are related
to chemical compounds: structural networks, reaction networks,
and the large variety of chemical similarity networks. Of all these net-
works, especially the latter, chemical similarity networks can be used
very well in lead optimization and selection of drug candidates. There
is a very large variability in the names of these networks in the liter-
ature. Therefore, we selected themost discriminative name as the titles of
sub-sections, and refer to some other network denotations in the text.

3.1.1. Chemical structure networks
The structure of chemical compounds can be perceived as a net-

work, where labeled (colored) nodes are the atoms constructing the
molecule, and labeled (colored) edges are the covalent bonds binding
the atoms together (Fig. 12). Chemical structure networks (also called
Fig. 12. Example of a chemical structure network. From the network point of view chem-
ical structures are networks with differently labeled (colored) nodes representing differ-
ent kinds of atoms and differently labeled (colored) edges related to different types of
bonds. The chemical structure network representation of aspirin is shown. Black circles,
red triangles and blue rectangles represent carbon, oxygen and hydrogen atoms, respec-
tively. Dotted black edges stand for single bonds, while red solid edges represent double
bonds.
chemical graphs) may use multiple edges representing multiple bonds.
The core electron structure of the various atoms is often represented
as a complete graph. Descriptors of this network structure, such as
discrete invariants representing the chemical structure, connectivity
indices, topological charge indices, electro-topological indices, shape
indices and others are useful for quantitative structure/property
and structure/activity (QSPR and QSAR) models (Bonchev & Buck,
2007; García-Domenech et al., 2008; Gonzalez-Diaz et al., 2010a).
Molgen (http://molgen.de; Baricic & Mackov, 1995) and Modeslab
(http://modeslab.com; Estrada & Uriarte, 2001) are widely used pro-
grams to draw and analyze chemical structure networks. SIMCOMP
(http://www.genome.jp/tools/simcomp) and SUBCOMP (http://www.
genome.jp/tools/subcomp) compare chemical structure networks and
show the position of results in molecular pathways (Hattori et al., 2010).

3.1.2. Chemical reaction networks
The mind-boggling set of 1060 chemical compounds that can be

created by chemical reactions, defines the so-called chemical space
(Kirkpatrick & Ellis, 2004). The size of drug-like chemical space is es-
timated to be larger than a million compounds (Drew et al., 2012).
The increasing costs of experiments and the need for compounds
with specific properties increased the efforts to apply new tools for
chemical space discovery (Lipinski & Hopkins, 2004). Chemical reac-
tions make the chemical space continuous. Therefore, their network
representation serves as a promising tool. Nodes of chemical reaction
networks are the chemical compounds and their edges are the reactions
transforming them to one another (Christiansen, 1953; Temkin &
Bonchev, 1992).

The chemical reaction network, comprising the whole synthetic
knowledge of organic chemistry containing 7 million compounds in
2012, was first assembled by Fialkowski et al. (2005). Chemical reac-
tion networks may only contain the participating compounds, or may
be bipartite networks, where besides the participating compounds a
different type of nodes represents the reactions (Fig. 13). The chemi-
cal reaction network is a small-world containing hubs, i.e. com-
pounds, which can be formed and transformed to and from many
other compounds. The chemical reaction network contains hubs. Im-
portantly, hub compounds have a lower market price than chemicals
involved in a low number of reactions. Moreover, hub molecules are
more likely to be prepared via new methodologies, and may also be
involved in the synthesis of many new compounds (Grzybowski
et al., 2009). The chemical reaction network can be separated into a
core, containing over 70% of the top 200 industrial chemicals, and a
periphery, which has a tree-like structure, and can be easily synthe-
sized from the core (Bishop et al., 2006). Chemical reaction networks
offer help in the design of ‘one-pot’ reactions without the need for
isolation, purification and characterization of intermediate structures,
and without the production of much chemical waste. Gothard et al.
(2012) used 8 filters of 86,000 chemical criteria to identify more
than 1 million ‘one-pot’ reaction series. The number of possible syn-
thetic pathways can be astronomical having 1019 routes of just 5 syn-
thetic steps. Network analysis of Kowalik et al. (2012) identified
optimal synthetic pathways of single and multiple-target syntheses
using a simulated annealing-based network optimization. These opti-
mizations help in the synthesis of drug candidate variants for lead
selection.

3.1.3. Similarity networks of chemical
compounds: QSAR, chemoinformatics, chemical genomics

Molecular similarity can be viewed as the distance between mole-
cules in a continuous high-dimensional space of numerical descriptors
(Johnson & Maggiora, 1990; Bender & Glen, 2004; Eckert & Bajorath,
2007). This high dimensional similarity space is called the chemistry
space, which constitutes an important part of chemoinformatics
(Faulon & Bender, 2010; Krein & Sukumar, 2011; Varnek & Baskin,
2011). Nodes in similarity networks aremost often chemical compounds,
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but may also be molecular fragments, or molecular scaffolds (Hu &
Bajorath, 2010; Hu & Bajorath, 2011). Edge definition is a difficult task
in similarity networks. Un-weighted networks can be constructed using
a pre-determined similarity threshold, while the extent of similarity
may also be used as edge-weight. From the large number of numerical
descriptions of similarity listed in Table 5,wewillfirst consider those net-
works, which are based on simple chemical similarity of the compounds
Table 5
Chemical compound similarity networks.

Basis of chemical compound similarity R

Chemical compound similarity networks
Chemical similarity based on e.g. the Tanimoto-coefficient T
QSAR-related similarity networks (a freely available program to mine structure–activity
and structure–selectivity relationship information in compound datasets, SARANEA:
http://www.limes.uni-bonn.de/forschung/abteilungen/Bajorath/labwebsite/
downloads/saranea/view)

E
e
a
P
a
2

BioAssay network: bioassay data of chemical compounds from PubChem Z
Similarity of protein binding sites P

2
Network of drug–receptor pairs with multitarget QSAR V
CARLSBAD: a Cytoscape plug-in for connecting common chemical patterns to
biological targets via small molecules http://carlsbad.health.unm.edu

Drug–target network combined with the chemical structure network of the drug and the
protein structure network of its target giving quality-scores of drug–target networks

R

Similarity of mRNA expression profiles extended with disease mRNA expression
profiles: Connectivity Map http://www.broadinstitute.org/cmap

L

Side-effect similarity of drugs C
Protein–protein interaction network topology of the target neighborhood (a database of
more than 700,000 chemicals, 30,000 proteins and their over 2 million interactions
integrated to a human protein–protein interaction network having over 400,000
interactions, ChemProt: http://www.cbs.dtu.dk/services/ChemProt)

H

Integrated bio-entity relationship datasets and networks
• Structural similarity, QSAR, gene–disease interactions, biological processes, drug absorp-
tion, distribution, metabolism and excretion (ADME) data and toxicity mechanisms

B

• Integrated semantic network of chemogenomic repositories, Chem2Bio2RDF http://
cheminfov.informatics.indiana.edu:8080

C

• Drug therapeutic and chemical similarity with protein–protein interaction network
data: drugCIPHER

Z

• Protein–protein interactions, protein/gene regulations, protein–small molecule
interactions, protein–Gene Ontology relationships, protein–pathway relationships and
pathway–disease relationships: bio-entity network (IBN)

B

• Phenotype/single-nucleotide polymorphism (SNP) associations, protein–protein
interactions, disease–tissue, tissue–gene and drug–gene relationships: integrated
Complex Traits Networks, iCTNet Cytoscape plug-in, http://flux.cs.queensu.ca/ictnet

W

• Protein–protein interactions, protein–small molecule interactions, associations of
interactions with pathways, species, diseases and Gene Ontology terms with the
user-selected integration of manually curated and/or automatically extracted data:
integrated molecular interaction database, IMID, http://integrativebiology.org

B

involved using e.g. the Tanimoto-coefficient for the definition of edges
(Rogers & Tanimoto, 1960; Tanaka et al., 2009; Bickerton et al., 2012).
We will call these networks chemical similarity networks.

Chemical similarity networks are also small-worlds possessing
hubs with a modular structure. Similarity hubs may be used as priority
starting points in fragment-based drug design. If hubs become non-hits,
many fragment-combinations can be excluded as candidates, under the
eferences
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assumption that molecules similar to non-hits are also non-hits. This
strategy was shown to explore the chemistry space in much less trials
than random selection or the selection of cluster centers (Tanaka
et al., 2009). Well connected fragments can also be used in library de-
sign and in fragment-based database searches. The top 10% of most fre-
quently occurring molecular segments accounts for the majority of
overall fragment occurrences, thus, storing a relatively small number
of fragments can cover a large portion of the searching space (Benz
et al., 2008). Chemical similarity networkswere shown to be a very use-
ful description of the diversity and drug-likeness of bioactive com-
pounds against various drug targets (Bickerton et al., 2012).

Molecular similarity is particularly important in medicinal chemis-
try. This is due to the ‘similar property principle’which states that sim-
ilar molecules have similar biological activity (Johnson & Maggiora,
1990). This principle also serves as a basis of most quantitative struc-
ture–activity relationship (QSAR) modeling methods (note that we
will use the term, QSAR to describe structure activity relationships in
general). However, the relationship between chemical similarity
and biological activity is not always straightforward (Martin et al.,
2002), which necessitates the use of sophisticated approaches in
drug design, such as the multi-component similarity networks listed
in Table 5.

In QSAR-related similarity networks (also called network-like
similarity graphs) nodes are often color-coded according to their bio-
logical action potency value (pIC50 or pKi), and scaled in size based on
their contribution to the QSAR landscape features such as ‘activity
cliffs’ or smooth regions. Near activity cliffs, small changes in molecu-
lar structure induce large changes in biological activity, while in
smooth regions of the QSAR landscape changes in chemical structure
only result in small or gradual changes in activity. QSAR-related sim-
ilarity networks contain more information than chemical similarity
networks. In contrast, chemical similarity networks were found to
be topologically robust to the methods for representing and compar-
ing chemical information. The choice of molecular representation
(molecular descriptors) may change the interpretation of QSAR land-
scapes, where the appropriate selection of similarity (distance)
cut-offs was proven to be crucial. If the cut-off value was too low,
there were many isolated nodes; if the cut-off was too high, QSAR-
related similarity networks became overcrowded and less useful for
predictions. QSAR-related similarity networks are small worlds and
contain hubs. Subsets of compounds related by different local QSARs
are often organized in small communities (also called as clusters).
High centrality nodes form ‘chemical bridges’ between various
compound communities providing important QSAR information.
These nodes can be used for ‘hopping’ between sub-networks having
different chemical characteristics. Searching for nodes with high
centrality and a closer look at their properties may contribute to the
discovery of new drug candidates and uncover new directions for
mechanistic-, scaffold- or target-hopping approaches (Gonzalez-
Diaz & Prado-Prado, 2008; Hert et al., 2008; Prado-Prado et al.,
2008, 2009, 2010; Wawer et al., 2008, 2010; Bajorath et al.,
2009; Gonzalez-Diaz et al., 2010a; Peltason et al., 2010; Iyer et al.,
2011a, 2011b, 2011c; Krein & Sukumar, 2011; Wawer & Bajorath,
2011a, 2011b). SARANEA (http://www.limes.uni-bonn.de/forschung/
abteilungen/Bajorath/labwebsite/downloads/saranea/view) is a freely
available program to mine structure–activity and structure–selectivity
relationship information in compound datasets (Lounkine et al.,
2010). Recently, group-based QSAR models were introduced, provid-
ing promising approaches in multi-target drug design (Ajmani &
Kulkarni, 2012). Methods for the systematic comparison of molecular
descriptors, such as that introduced by Bender et al. (2009), are very
useful to guide future work—including network-related applications.

Dehmer et al. (2009) showed the usefulness of network complex-
ity analysis in the determination of topological descriptor uniqueness.
We demonstrate the usefulness of QSAR-related similarity network
descriptors on chirality, since the different enantiomers of drug
candidates can exhibit large differences in activity. Using complex
networks, Garcia et al. (2009) investigated the drug–drug similarity
relationship of more than 1600 experimentally unexplored, chiral
3-hydroxy-3-methyl-glutaryl coenzyme A inhibitor derivatives with
a potential to lower serum cholesterol preventing cardiovascular dis-
ease. Inclusion of chirality in network description may guide synthe-
sis efforts towards new chiral derivatives of potentially high activity.
QSAR-related similarity networks including chiral information of G
protein-coupled receptor ligands identified that opposing chiralities
induced alterations in molecular mechanism (Iyer et al., 2011b).

Another important application of QSAR-related similarity net-
works is the molecular fragment network of human serum albumin
binding defined by Estrada et al. (2006). The identification of polar
‘emphatic’ fragments anchoring chemicals to serum albumin and hy-
drophobic fragments determining albumin binding was an important
step in network-related prediction of bioavailability.

Interestingly, a similar growth mechanism was found in the
evolution of chemical reaction networks (Fialkowski et al., 2005;
Grzybowski et al., 2009) and QSAR-related similarity networks
(Iyer et al., 2011a). Growth was predominantly observed around a
few hubs that emerged early in the growth process, and did not
reach whole segments of the network until a very late phase of
development. Analyzing evolving datasets can be very important to
identify over-sampled regions containing redundant compound
structure information, or yet unexplored regions in the chemical
reaction network or QSAR-related similarity network.

The ‘similar property principle’ stating that similar molecules have
similar biological activity (Johnson & Maggiora, 1990) can be re-
versed, and used for the construction of similarity networks, which
means that compounds having a similar biological action are similar.
Compounds or compound scaffolds can be connected using the simi-
larity of their protein binding sites, as well as of the protein domains
or the entire proteins harboring these sites. The emerging network
defined the ‘pharmacological space’. Hub ligands of this network
were bridges between different ligand clusters. The network repre-
sentation proved to be useful for identifying drug chemotypes, and
for the probabilistic modeling of yet undiscovered biological effects
of chemical compounds (Paolini et al., 2006; Keiser et al., 2007,
2009; Yildirim et al., 2007; Hert et al., 2008; Park & Kim, 2008;
Yamanishi et al., 2008, 2011; Adams et al., 2009; Bleakley &
Yamanishi, 2009; Hu et al., 2011; Tabei et al., 2012). Using the
above datasets He et al. (2010) encoded chemical compounds with
functional groups and proteins with biological features of 4 major
drug target classes, and worked out a prediction of drug–target inter-
actions using the maximum relevance minimum redundancymethod.
Riera-Fernandez et al. (2012) gave quality-scores of drug–target net-
work edges using the combined information of the chemical structure
network of the drug and the protein structure network of its target.

An important approach to compare the similarity of chemical
compounds is to construct the network of drug–therapy interactions,
where drugs are connected, if they are used in the same therapy class
of the five hierarchical Anatomical Therapeutic Chemical (ATC) classi-
fication levels. Average paths in this drug–therapy network are
shorter than 3 steps. Distant therapies are separated by a surprisingly
low number of chemical compounds. Inter-modular, bridging and
otherwise central drugs in the drug–therapy network may have
more indications than currently known, thus drug–therapy network
data may be useful for drug-repositioning (Nacher & Schwartz,
2008). Text mining may be an important method to enrich drug–
therapy networks in the future (Ruan et al., 2004).

mRNA expression patterns were the first system-wide descriptors
of drug effects enabling target clustering, target identification, and
prediction of the mechanism of action of new compounds (Marton
et al., 1998; Hughes et al., 2000; Lamb et al., 2006; Iorio et al., 2009;
Chua & Roth, 2011). Huang et al. (2010a) connected mRNA expres-
sion profiles with a disease diagnosis database. Using a Bayesian

http://www.limes.uni-bonn.de/forschung/abteilungen/Bajorath/labwebsite/downloads/saranea/view
http://www.limes.uni-bonn.de/forschung/abteilungen/Bajorath/labwebsite/downloads/saranea/view
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learning algorithm they could query drug-treatment related mRNA
expression profile and decipher drug similarity not only to each
other, but also to specific disease and disease classes.

As we will discuss in detail in Sections 4.1.5 and 4.3.5, drugs sel-
dom have a single effect. Based on this, the chemical similarity of
drugs may be derived from their side-effects, describing a broader
repertoire of drug action than the effect related to the original target.
Campillos et al. (2008) connected drugs sharing a certain degree of
side-effect similarity. This network uncovered shared targets of
unrelated drugs and forms an important network method for drug
repositioning.

Going one level further in systems-level abstraction, similarity of
compounds can be measured by comparing the topological similarity
of their target neighborhoods in protein–protein interaction net-
works (Hansen et al., 2009; Edberg et al., 2012). Li et al. (2009a)
concluded from the investigation of an Alzheimer's Disease-related
dataset, that the combination of curated drug–target databases and
literature mining data outperformed both datasets when used alone.
Systems-level inquiries are helped by ChemProt (http://www.cbs.dtu.
dk/services/ChemProt), a database of more than 700,000 chemicals,
30,000 proteins and their over 2 million interactions integrated to a
human protein–protein interaction network having over 400,000 inter-
actions (Taboureau et al., 2011).

Baggs et al. (2010) encouraged the inclusion of network readouts
(like transcriptome, proteome, phosphoproteome, metabolome and
epigenetic system-wide datasets) in QSAR methods leading to QNSAR
(quantitative network structure–activity relationships). In agreement
with this suggestion, in recent years an increasing number of complex
databases were published, where network reconstitution was used
to predict biologically meaningful clusters of datasets, novel drug-
candidate molecules, new drug applications, unexpected drug–drug
interactions, drug side-effects and toxicity. We list these datasets in
Table 5. As noted by Vina et al. (2009), increased reliance on indirect
data similaritiesmay compromise accuracy, butmay also enable the ex-
ploration of those segments of the data association landscape, where no
direct alignments were available. The aggregative assessment of multi-
ple (and system-wide) datasets helps to pick up those similarities,
which are the most relevant despite the many uncertainties of the indi-
vidual data or their associations.

Utilizing the rich repertoire of the assessment of network topology
and dynamics, listed in Section 2,will be helpful for predicting future di-
rections in compound optimization, or redirecting research efforts to
unexplored or more fruitful regions of chemical space. Moreover, de-
tailed analysis of complex similarity networks is useful for predicting
new targets of existing drugs, i.e. multi-target drug identification and
drug repositioning. Finally, assessment of similarity networks can be
used as an efficient predictor of drug specificity, efficacy, ADME, resis-
tance, side-effects, drug–drug interactions and toxicity.

3.2. Protein structure networks

Proteins are the major targets of drug action, and therefore the
description of their structure and dynamics has a crucial importance
in the determination of drug binding sites, as well as in prediction of
drug effects at the sub-molecular level. In this section we will show
how protein structure networks help the characterization of disease-
related proteins, the understanding of drug action mechanisms and
drug targeting.

3.2.1. Definition and key residues of protein structure networks
In most protein structure network representations (also called

amino acid networks, residue interaction networks, or protein meta-
structures) nodes are the amino acid side chains. Though occasionally
protein structure networknodes are defined as the atomsof the protein,
the side-chain representation is justified by the concertedmovement of
side-chain atoms. Edges of protein structure networks are defined using
the physical distance between amino acid side-chains. Distances are
usuallymeasuredbetween Cα or Cβ atoms, but in some representations
the centers of mass of the side chains are calculated, and distances are
measured between them. Edges of unweighted protein structure net-
works connect amino acids having a distance below a cut-off distance,
which is usually between 4 and 8.5 Å (Artymiuk et al., 1990; Kannan
& Vishveshwara, 1999; Greene & Higman, 2003; Bagler & Sinha, 2005;
Böde et al., 2007; Krishnan et al., 2008; Vishveshwara et al., 2009;
Doncheva et al., 2011, 2012b; Csermely et al., 2012; Di Paola et al., in
press). A detailed study compared the effect of various Cα–Cα contact
assessments, such as the atom distance criteria, the isotropic sphere
chain and the anisotropic ellipsoid side-chain models, as well as of the
selection of various cut-off distances. The study showed that the atom
distance criteria model was the most accurate description having a
moderate computational cost. The best amino acid pair specific cut-off
distances varied between 3.9 and 6.5 Å (Sun & He, 2011). In protein
structure networks with weighted edges, edge weight is usually in-
versely proportional to the distance between the two amino acid
side-chains (Artymiuk et al., 1990; Kannan & Vishveshwara, 1999;
Greene & Higman, 2003; Bagler & Sinha, 2005; Böde et al., 2007;
Krishnan et al., 2008; Vishveshwara et al., 2009; Doncheva et al., 2011,
2012b; Csermely et al., 2012; Di Paola et al., in press).

Web-servers have been established to convert Protein Data Bank 3D
protein structure files into protein structure networks, and to provide
their network analysis. The RING server (http://protein.bio.unipd.it/
ring) gives a set of physico-chemically validated amino acid contacts
(Martin et al., 2011), and imports it to the widely used Cytoscape plat-
form (Smoot et al., 2011) enabling their network analysis using the
tool-inventory described in Section 2. Recently a specific, Cytoscape-
linked (Smoot et al., 2011) tool-kit for protein structure network assess-
ment, RINalyzer (http://www.rinalyzer.de) was published. The pro-
gram is complemented by a protein structure determination module,
called RINerator (http://rinalizer.de/rindata.php), which determines
the protein structure networks and stores pre-determined protein
structure networks of Protein Data Bank 3D protein structure files.
The RINalyzer program was also linked to the NetworkAnalyzer soft-
ware (http://med.bioinf.mpi-inf.mpg.de/netanalyzer; Assenov et al.,
2008) allowing the comparison of protein structure networks and the
extension of their analysis to protein–protein interaction networks
(Doncheva et al., 2011, 2012b).

Protein structure networks are “small worlds”. This is very impor-
tant for the fast transmission of drug-induced conformational changes,
since in the small-world of protein structure networks all amino acids
can communicate with each other by taking only a few steps.
Path-length analysis of individual amino acid side-chains was shown
to be effective in predicting whether the protein, or its segment, is
disordered. In protein structure networks we may find considerably
less large hubs than in other networks. However, the existing smaller
hubs still play an important role in protein structures, since these
‘micro-hubs’ were shown to increase the thermodynamic stability of
proteins (Kannan & Vishveshwara, 1999; Greene & Higman, 2003;
Atilgan et al., 2004; Bagler & Sinha, 2005; Brinda & Vishveshwara,
2005; Del Sol et al., 2006, 2007; Alves & Martinez, 2007; Krishnan
et al., 2008; Konrat, 2009; Morita & Takano, 2009; Estrada, 2010;
Csermely et al., 2012). Protein structure networks possess a rich club
structure with the exception of membrane proteins, where hubs form
disconnected, multiple clusters (Pabuwal & Li, 2009).

Protein structure networks have modules, which often encode
protein domains (Xu et al., 2000; Guo et al., 2003; Delvenne et al.,
2010; Delmotte et al., 2011; Szalay-Bekő et al., 2012). High-
centrality segments of protein structure networks (i.e. hubs, or
nodes with high closeness or betweenness centralities) having a
low clustering coefficient participate in hem-binding (Liu & Hu,
2011). High-centrality, inter-modular bridges play a key role in the
transmission of allosteric changes as we will describe in the next
section.

http://www.cbs.dtu.dk/services/ChemProt
http://www.cbs.dtu.dk/services/ChemProt
http://protein.bio.unipd.it/ring
http://protein.bio.unipd.it/ring
http://www.rinalyzer.de
http://rinalizer.de/rindata.php
http://med.bioinf.mpi-inf.mpg.de/netanalyzer
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Evolutionary conservation patterns of amino acids in related
protein structures identified protein sectors (Halabi et al., 2009;
McLaughlin et al., 2012). A similar concept has been published by
Jeon et al. (2011), who determined that co-evolving amino acid
pairs are often clustered in flexible protein regions. Protein sectors
are sparse networks of amino acids spanning a large segment of the
protein. Protein sectors are collective systems operating rather inde-
pendently from each other. Segments of protein sectors are correlated
with protein movements related to enzyme catalysis, and sector-
connected surface sites are often places of allosteric regulation
(Reynolds et al., 2011).
3.2.2. Key network residues determining protein dynamics
Understanding protein dynamics is a key step in the prediction of

drug-induced changes and the identification of novel types of drug
binding sites. Several questions related to protein dynamics, such as
the mechanism of allosteric changes gained much attention in the
last century (Fischer, 1894; Koshland, 1958; Straub & Szabolcsi,
1964; Závodszky et al., 1966; Tsai et al., 1999; Goodey & Benkovic,
2008; Csermely et al., 2010; Szilágyi et al., in press), but have not
been completely elucidated yet.

Our current understanding indicates that an allosteric change ex-
tends across a spectrum: at one end there is a switch-type conforma-
tional change, where signaling appears focused on a small number of
amino acids (Fig. 14A). At the other end, allosteric signaling may in-
volve a large number of amino acids. In both cases allosteric signals
propagate through multiple trajectories, with different distributions
and weights. Pathways often converge at inter-domain boundaries
(Fig. 14B). While protein segments involved in switch-type allosteric
changes may be more rigid, protein segments harboring multiple tra-
jectories may be more flexible. Convergence points in these latter
proteins may mark the more flexible inter-domain regions. Switch-
A

B

C

2 rigid protein domains

2 flexible protein domains

Fig. 14. Saltatoric signal transduction along a propagating rigidity-front: a possible mechanis
structure networks (corresponding to protein segments or domains). Such modules have lit
with the violet arrows). Panel B shows two flexible modules. These modules have a larger o
converge at key, bridging amino acids situated in modular boundaries. Panel C combines r
allosteric conformational change. In the 3 snapshots of this illustration of protein dynamics
Consecutive ‘rigidization’ of protein segments both induces similar changes in the neighbo
segment. Rigidity front propagation may use sequential energy transfers (illustrated by the
of an instantaneous process (Piazza & Sanejouand, 2009; Csermely et al., 2010, 2012).
type mechanism is typical of multidomain proteins, and is often
expressed in all-or-none observable consequences.

Disordered protein regions serve the need for large flexibility,
and therefore are often used, especially in the human proteome
(Csermely et al., 2012; Tompa, 2012). Protein structure network
description may be a useful method to describe the complexity of
protein structures, which are neither very rigid, nor very flexible.
However, protein structure networks may not adequately describe
the dynamics of very rigid and extremely flexible (e.g. disordered)
protein structures (Szilágyi et al., in press).

Hinges connecting relatively rigid protein segments often play a
decisive role in switch-type changes. Hinges may be co-localized with
independent dynamic segments, which are situated in the stiffest
parts of the protein, and harbor spatially localized vibrations of non-
linear origin, like those of discrete breathers. Independent dynamic seg-
ments exchange their energy largely via a direct energy transfer, which
is in agreementwith a switch-type behavior (Daily et al., 2008; Piazza &
Sanejouand, 2008, 2009; Csermely et al., 2010, 2012).

In contrast, in allosteric systems, where signaling involves a large
number of amino acids, signals propagate using multiple trajectories
(Fig. 14B). These multiple trajectories often converge at inter-
modular residues of protein structure networks (Pan et al., 2000;
Chennubhotla & Bahar, 2006; Ghosh & Vishveshwara, 2007, 2008;
Tang et al., 2007; Daily et al., 2008; Sethi et al., 2009; Tehver et al.,
2009; Vishveshwara et al., 2009; Csermely et al., 2012; Gasper et al.,
2012).

A given protein may have a spectrum of the above mechanisms for
the propagation of conformational changes. In agreement with this
behavior, discrete breathers were shown to be present at the inter-
face between monoatomic and diatomic granular chain models
(Hoogeboom et al., 2010). If certain protein segments become more
rigid, the mechanism may shift towards the first, switch-type signal
transductionmechanism. This can be conceptualized as the propagation
propagating rigidity front
in 3 protein domains

m of allosteric action in protein structures. Panel A shows two rigid modules of protein
tle overlap, behave like billiard balls, and transmit signals ‘instantaneously’ (illustrated
verlap, and transmit signals via a slower mechanism using multiple trajectories, which
igid and flexible modules in a hypothetical model of rigidity front propagation of the
(organized from left to right) the 3 protein segments become rigid from top to bottom.
ring segment, and accelerates the propagation of the allosteric change within the rigid
violet arrows), and may increase the speed of the allosteric change approaching that
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of a ‘rigidity-front’, which we recently proposed as a mechanism of al-
losteric signaling (Csermely et al., 2012). Panel C of Fig. 14 shows an
illustrative mechanism of rigidity front propagation. Consecutive
‘rigidization’ of protein segments both induces similar changes in
the neighboring segment, and accelerates the propagation of the al-
losteric change within the rigid segment. Rigidity front propagation
may use sequential energy transfers (illustrated by the violet ar-
rows; Piazza & Sanejouand, 2009; Csermely et al., 2010), and thus
may increase the speed of the allosteric change (Csermely et al.,
2012). The rigidity front propagation model combines elements of ‘ri-
gidity propagation’ (Jacobs et al., 2001, 2003; Rader & Brown, 2011)
with the ‘frustration front’ concept of Zhuravlev and Papoian (2010),
with the dynamic pre-stress of proteins as large as a few 100 pN
(Edwards et al., 2012), and is in agreement with the recent proposal
of Dixit and Verkhivker (2012) suggesting an interactive network of
minimally frustrated (rigid) anchor sites (hot spots) and locally frus-
trated (flexible) proximal recognition sites to play a key role in allosteric
signaling. We will describe the use of allosteric signal propagation
mechanisms to design allo-network drugs (Nussinov et al., 2011) in
Section 4.1.6.

Protein structure networks may be efficiently used to identify key
amino acids involved in intra-protein signal transmission. In these
studies topological network analysis was often combined with the
assessment of evolutionary conservation, elastic network models
and/or normal mode analysis. Inter-modular nodes, hinges, loops
and hubs were particularly important in information transmis-
sion (Chennubhotla & Bahar, 2006, 2007; Zheng et al., 2007;
Chennubhotla et al., 2008; Tehver et al., 2009; Liu & Bahar, 2010;
Liu et al., 2010a; Park & Kim, 2011; Su et al., 2011; Dixit &
Verkhivker, 2012; Ma et al., 2012a; Pandini et al., 2012). The exami-
nation of a hierarchical representation of protein structure networks
showed a key function of top level, ‘superhubs’ in allosteric signaling
(Ma et al., 2012a). xPyder provides an interface between the widely
employed molecular graphics system, PyMOL and the analysis of
dynamical cross-correlation matrices (http://linux.btbs.unimib.it/
xpyder; Pasi et al., 2012).

The incorporation of novel network centrality measures (described
in Section 2.3.3) and network dynamics (described in Section 2.5) will
enrich our knowledge of the mechanism of conformational changes
(including allosterism).

3.2.3. Disease-associated nodes of protein structure networks
Proteins related to more frequently occurring diseases tend to be

longer than average (Lopez-Bigas et al., 2005). Disease-related proteins
have a smaller ‘designability’; that is, their folds can be built up from
fewer variants than the average. In other words: disease-related pro-
teins have a constrained structure, which may explain, why they have
debilitating mutations (Wong & Frishman, 2006). Disease-associated
mutations (single-nucleotide polymorphisms) often occur at sites hav-
ing a high local or global centrality in the protein structure network, and
are enriched by 3-fold at the interaction interfaces of proteins associat-
ed with the disorder (Akula et al., 2011; Li et al., 2011b; Wang et al.,
2012b). Recently, a machine learning method has been developed to
predict the disease-association of a single-nucleotide polymorphism
using the network neighborhood of the mutation site (Li et al., 2011b).

3.2.4. Prediction of hot spots and drug
binding sites using protein structure networks

Key functional residues are very useful in the identification of drug
binding sites as we will discuss in Section 4.2. Usual drug binding sites
are cavity-type, and overlap with substrate or allosteric ligand bind-
ing. High centrality residues of protein structure networks were
shown to participate in ligand binding (Liu & Hu, 2011). Protein struc-
ture network position-based scores improved the rigid-body docking
algorithm of pyDock (Pons et al., 2011). Protein structure comparison
can also be used for the identification of chemical scaffolds of poten-
tial drug candidates (Konrat, 2009).

Binding sites of edgetic drugs modifying protein–protein interac-
tions (see Section 4.1.2) are large and flat, and have been considered
as non-druggable for a long time. Hot spots are those residues of
these alternative drug binding sites, which provide a key contribution
(>2 kcal/mol) to the decrease in binding free energy. Hot spots tend
to cluster in tightly packed, relatively rigid hydrophobic regions of the
protein–protein interface also called hot regions. Hot spots and hot
regions are very helpful; they aid drug design, since 1.) they consti-
tute small focal points of drug binding, which can be predicted within
the large and flat binding-interface; 2.) these focal points are relative-
ly rigid, helping rigid docking and molecular dynamics simulations
(Clackson & Wells, 1995; Bogan & Thorn, 1998; Keskin et al., 2005,
2007; Ozbabacan et al., 2010). Hot spots can be predicted as central
nodes of protein structure networks (del Sol & O'Meara, 2005; Liu &
Hu, 2011; Grosdidier & Fernández-Recio, 2012).

The elastic network model-guided molecular dynamics simulation
of Isin et al. (2012) showed that different ligands of the β2-adrenergic
receptor prefer different predicted conformers of the receptor. This
model predicted a novel allosteric binding site for larger drugs, such
as salmeterol. Since different conformations participate in different
metabolic and signaling pathways, such conformational modeling
will be a powerful tool in the determination of novel drug binding
sites and in the analysis of refined drug action mechanisms.

Despite these advances, the use of the predictive power of protein
structure networks is surprisingly low in the determination of drug
binding sites. We believe that the arsenal of network analytical and
network dynamics methods we listed in Sections 2.3 and 2.5 and
their application to protein structure networks will provide a much
greater help in the identification of drug binding sites in the future.

3.3. Protein–protein interaction networks (network proteomics)

Protein–protein interaction networks are one of the most promis-
ing network types to predict drug action or identify new drug target
candidates. In this section we will summarize the major properties
of protein–protein interaction networks and will assess their use in
the characterization and prediction of disease-related proteins and
drug targets.

3.3.1. Definition and general
properties of protein–protein interaction networks

Protein–protein interaction networks (PPI-networks) are often
called interactomes—especially if they cover genome-wide data.
Nodes of protein–protein interaction networks are proteins, and net-
work edges are their direct, physical interactions. Protein–protein in-
teraction networks are probability-type networks; that is, the edge
weights reflect the probability of the actual interaction. Interactome
edge weights are often calculated as confidence scores. Interaction
probability includes protein abundance, interaction affinity, and also
co-expression levels, co-localization in subcellular compartments,
etc. (De Las Rivas & Fontanillo, 2010; Jessulat et al., 2011; Sardiu &
Washburn, 2011; Seebacher & Gavin, 2011). Table 6 summarizes a
number of major protein–protein interaction datasets concentrating
on publicly available, human interactome data. There are several
types of protein–protein interaction networks, which we list below.

• Even though protein–protein interaction datasets usually cover
multiple species, the derived networks, that is, the interactomes
are usually species-specific. Interactome subnetworks may be re-
stricted to cell type, to cellular sub-compartment, or to certain tem-
poral segments of cellular life, such as a part of the cell cycle, cell
differentiation, malignant transformation, etc. These specializations
may be direct, where the interactions of proteins are experimental-
ly measured in the given species, cell type, cellular compartment, or

http://linux.btbs.unimib.it/xpyder
http://linux.btbs.unimib.it/xpyder


Table 6
Protein–protein interaction network resources.

Name Content Website References

3did Domain–domain interaction with 3D data http://3did.irbbarcelona.org Stein et al., 2011
APID Interactome exploration http://bioinfow.dep.usal.es/apid/index.htm Prieto & De Las Rivas, 2006
atBioNet Integration of 7 interactomes, protein complex identification http://www.fda.gov/ScienceResearch/

BioinformaticsTools/ucm285284.htm
Ding et al., 2012

BioGRID Integrated protein–protein interaction data http://thebiogrid.org Stark et al., 2011
BioProfiling Inference of network data from expression patterns http://www.bioprofiling.de Antonov et al., 2009
DIP Experimental protein–protein interaction data http://dip.doe-mbi.ucla.edu Salwinski et al., 2004
DomainGraph Cytoscape plug-in for domain–domain interaction analysis http://domaingraph.bioinf.mpi-inf.mpg.de Emig et al., 2008
DOMINE Domain–domain interaction data http://domine.utdallas.edu Yellaboina et al., 2011
Estrella Detection of mutually exclusive protein–protein interactions http://bl210.caspur.it/ESTRELLA/help.php Sanchez Claros & Tramontano, 2012
HAPPI Human protein–protein interaction data http://discern.uits.iu.edu:8340/HAPPI Chen et al., 2009c
HINT High quality human protein–protein interaction data http://hint.yulab.org Das & Yu, 2012
HPRD Human protein–protein interaction data http://www.hprd.org Goel et al., 2012
Hubba Identification of hubs (potentially essential proteins) http://hub.iis.sinica.edu.tw/Hubba Lin et al., 2008
IntAct Curated protein–protein interaction data http://www.ebi.ac.uk/intact/main.xhtml Kerrien et al., 2012
IntNetDB Human protein–protein interaction data http://hanlab.genetics.ac.cn/sys Xia et al., 2006
IRView Protein interacting regions http://ir.hgc.jp Fujimori et al., 2012
MiMI Protein interaction information http://mimi.ncibi.org Gao et al., 2009
MINT Protein–protein interactions in refereed journals http://mint.bio.uniroma2.it/mint Licata et al., 2012
NeAT (Network
Analysis Tools)

Interactome analysis http://rsat.ulb.ac.be/neat/ Brohee et al., 2008

NetAligner Interactome comparison http://netaligner.irbbarcelona.org Pache et al., 2012
PanGIA A Cytoscape plug-in for integration of physical and genetic

interactions into hierarchical module maps
http://prosecco.ucsd.edu/PanGIA Srivas et al., 2011

Pathwaylinker Combines protein–protein interaction and signaling data http://PathwayLinker.org Farkas et al., 2012
PINA Interactome analysis http://cbg.garvan.unsw.edu.au/pina Wu et al., 2009b; Cowley et al., 2012
PIPs Human protein–protein interaction prediction http://www.compbio.dundee.ac.uk/www-pips McDowall et al., 2009
PPISearch Search of homologous protein–protein interactions across

many species
http://gemdock.life.nctu.edu.tw/ppisearch Chen et al., 2009d

STRING Integrated protein–protein interaction data http://string.embl.de Szklarczyk et al., 2011
UniHI Human protein–protein interaction and drug target data http://www.unihi.org Chaurasia & Futschik, 2012

The table is focused on recently available public databases or web-servers applicable to human protein–protein interaction data and/or to drug design. Network visualization tools
were listed in Table 1. A collection of protein–protein interaction network analysis web-tools can be found in recent reviews (Ma'ayan, 2008; Moschopoulos et al., 2011; Ma & Gao,
2012; Sanz-Pamplona et al., 2012). The Reader may find a more extensive list of web-sites in recent collections (http://ppi.fli-leibniz.de; Seebacher & Gavin, 2011).
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condition. In many cases the specializations are indirect, where the
presence of the actual proteins and/or the intensity of the protein–
protein interactions are estimated from mRNA expression levels.
Disease-specific or drug treatment-related interactomes hold promise
for future drug development efforts (De Las Rivas & Fontanillo, 2010;
Jessulat et al., 2011; Sardiu & Washburn, 2011; Seebacher & Gavin,
2011).

• Protein–protein interaction networks may be refined to networks
of interacting protein domains, called domain networks or DDI-
networks. Domain networks can be a better representation of drug
action, deciphering domain-specific inhibition or activation (Fig. 15).
Current lists of possible domain–domain interactions predict millions
of novel, potential protein–protein interactions. However, not all
domain–domain interactions may occur in the cellular context
due to hindrances, binding competition or subcellular localization.
Domain–domain interactions and their networks were used both to
score protein–protein interactions (bottom–up approach) and to
predict domain composition and interactions from interactome data
(top–down approach) (Deng et al., 2002; Ng et al., 2003; Moon
et al., 2005; Santonico et al., 2005; Emig et al., 2008; Prieto & De Las
Rivas, 2010; Stein et al., 2011; Yellaboina et al., 2011).

• Atomic resolution interactomes expand protein–protein interaction
networks with the protein structure networks of each interacting
node aiming to construct the 3D structure of the whole interactome,
and discriminating between parallel and sequential interactions (Kim
et al., 2006; Prieto & De Las Rivas, 2010; Bhardwaj et al., 2011; Clarke
et al., 2012; Pache & Aloy, 2012; Sanchez Claros & Tramontano,
2012). It is important to note that atomic level interactomes will
never reach the real 3D complexity of the cell, since protein–protein
interactions are probabilistic, reflecting an average of the possible
interactions.
Protein–protein interaction data can be obtained using various
high-throughput methods (such as protein fragment complementation
assays, or affinity purification combined with mass spectrometry), text
mining or prediction techniques. For details on the increasing number
ofmethodologies the Reader is referred to recent reviews on the subject
(Chautard et al., 2009; De Las Rivas & Fontanillo, 2010, 2012; Jessulat
et al., 2011; Sardiu & Washburn, 2011; Seebacher & Gavin, 2011;
Gonzalez & Kahn, 2012). Prediction methods were also summarized
in Sections 1.3.3 and 2.2.2, as well as in Tables 2 and 3. Data-quality is
a major problem of interactomes. Sampling bias, missing interactions
and false positives are all important factors influencing the robustness
of interactome results. Evolutionary conservation rates of interactions
are often low (Lewis et al., 2012). High-quality data are more reliable,
but are not necessarily representative of whole interactomes. Some of
these problemsmay be circumvented by using confidence scores calcu-
lated by various methods, such as the summative, network topology-
based or Bayesian network-based models. Since different methods
have different biases, composite scores taking multiple data-types
into account perform better (Hakes et al., 2008; Sanchez Claros &
Tramontano, 2012). The size of the human interactome has been esti-
mated to have 650,000 interactions (Stumpf et al., 2008). Though a
recent report (Havugimana et al., 2012) added 14 thousand high-
confidence interactions to the growing list of human interactome
edges, currently we are still far from deciphering the full complexity
of this richness.

Table 6 lists a number of web-resources used for interactome analy-
sis. A collection of protein–protein interaction network analysis web-
tools can be found in recent reviews (Ma'ayan, 2008; Moschopoulos
et al., 2011; Ma & Gao, 2012; Sanz-Pamplona et al., 2012). Protein–
protein interaction networks are small worlds, have hubs and a well
developed, hierarchical modular structure. These interactomes do not

http://3did.irbbarcelona.org
http://bioinfow.dep.usal.es/apid/index.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm
http://thebiogrid.org
http://www.bioprofiling.de
http://dip.doe-mbi.ucla.edu
http://domaingraph.bioinf.mpi-inf.mpg.de
http://domine.utdallas.edu
http://bl210.caspur.it/ESTRELLA/help.php
http://discern.uits.iu.edu:8340/HAPPI
http://hint.yulab.org
http://www.hprd.org
http://hub.iis.sinica.edu.tw/Hubba
http://www.ebi.ac.uk/intact/main.xhtml
http://hanlab.genetics.ac.cn/sys
http://ir.hgc.jp
http://mimi.ncibi.org
http://mint.bio.uniroma2.it/mint
http://rsat.ulb.ac.be/neat/
http://netaligner.irbbarcelona.org
http://prosecco.ucsd.edu/PanGIA
http://PathwayLinker.org
http://cbg.garvan.unsw.edu.au/pina
http://www.compbio.dundee.ac.uk/www-pips
http://gemdock.life.nctu.edu.tw/ppisearch
http://string.embl.de
http://www.unihi.org
http://ppi.fli-leibniz.de
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Fig. 15. The effect of more detailed representation of protein–protein interaction networks in representation of drug mechanism action. The left side of the figure shows a hypo-
thetical protein–protein interaction network (yellow nodes). The middle panels show two representations of the very same network as a domain–domain interaction network
(green nodes). Note that on the middle top panel the edge marked with red connects domains A1 and B2 while on the middle bottom panel the same edge connects domains
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can discriminate even more subtle changes as we will discuss in Section 4.1.6 on allo-network drugs (Nussinov et al., 2011).
The figure is re-drawn from Figure 2 of Santonico et al. (2005) with permission.
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possess such an extensive rich-club as the social elite, i.e. hubs do not
form dense clusters with each other (Maslov & Sneppen, 2002; Colizza
et al., 2006; De Las Rivas & Fontanillo, 2010; Sardiu & Washburn, 2011).
Soluble proteins tend to possess more connections than membrane pro-
teins (Yu et al., 2004a). Steric hindrances severely limit the maximum
number of simultaneous interactions. Tsai et al. (2009) warned that
large interactome hubs may often be a result of aggregated data
not taking into account protein conformations, posttranslational
modifications, isoforms, expression differences and localizations.
Another possibility to increase binding partners is sequential bind-
ing, which results in the formation of date hubs (as opposed of
party hubs binding their partners simultaneously). Date hubs are
often singlish-interface hubs as opposed to party-hubs, which are
multi-interface hubs. Multi-interface hubs display a greater degree of
conformational change than singlish-interface hubs (Han et al., 2004a;
Kim et al., 2006; Bhardwaj et al., 2011). Interestingly, natural product
drugs were shown to target proteins having a higher number of neigh-
bors than targets of synthetic drugs (Dancik et al., 2010).

Interactome modules overlap with each other, since most proteins
are members of multiple protein complexes. Modules often correspond
to major cellular functions (Palla et al., 2005). Refined modularization
methods define modular cores containing only a few proteins, which
occupy a central position of the interactome module. Major function
of core proteins often reflects a consensus function of thewholemodule
(Kovács et al., 2010; Szalay-Bekő et al., 2012; Srihari & Leong, 2013). Im-
portantly, protein complexes may also form sparsely interconnected
network modules, which often escape traditional detection methods
(Srihari & Leong, 2012). Date hubs occupy inter-modular positions
as opposed to party-hubs, which are in modular centers. Multi-
component hubs (which, similarly to date-hubs, bridge multiple
dense local network components)were enriched in regulatory proteins.
Bridges and other inter-modular nodes play a key role in drug action
(Han et al., 2004a; Komurov & White, 2007; Kovács et al., 2010; Fox
et al., 2011; Szalay-Bekő et al., 2012).
Aswediscussed in Section 2.3.4, interactomehubswere shown to be
an important predictor of essentiality (Jeong et al., 2001). Hub Objects
Analyzer (Hubba) is a web-based service for exploring potentially es-
sential nodes of interactomes assessing the maximum neighborhood
component (Lin et al., 2008). Single-component hubs (i.e. hubs in the
middle of a stable network neighborhood) were shown to be more es-
sential than multi-component hubs, i.e. hubs connecting multiple
dense network regions (Fox et al., 2011). Essential proteins associate
with each othermore closely than the average, and tend to bemore pro-
miscuous in their function. Many of these essential genes are house-
keeping genes with high and less fluctuating expression levels (Jeong
et al., 2001; Yu et al., 2004c). Later more global network measures,
such as bottlenecks or more globally central proteins were also
shown to contribute to the determination of essential nodes (Chin &
Samanta, 2003; Estrada, 2006; Yu et al., 2007b; Missiuro et al., 2009;
Li et al., 2011a).

The recent work of Hamp and Rost (2012) uncovered that vari-
ability of protein–protein interactions is much more frequent than
previously thought. Besides single-nucleotide polymorphisms, alter-
native splicing, addition of N- or C-terminal tags, partial proteolysis
and other post-translational modifications (such as phosphorylation),
changes in protein expression patterns may dramatically re-configure
protein complexes. Dynamic changes of protein–protein interactions,
such as co-expression based clustering are key determinants of
the disease state as we discuss in the next section. Importantly,
interactome analysis has not been adequately extended to the assess-
ment of interactome dynamics, and currently the application of the
tools listed in Section 2.5 is largely missing. The human proteome is
enriched in disordered proteins causing dynamically fluctuating,
‘fuzzy’ interaction patterns (Tompa, 2012). As an initial example
of these studies the yeast interactome was shown to develop more
condensed and more separated modules after heat shock and other
types of stresses than under optimal growth conditions. Importantly,
yeast cells preserved a few inter-modular bridges during stress and



Fig. 16. The dumpling soup representation of growth factor initiated signaling.
Reproduced with permission from Lewitzky et al. (2012).
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developed novel, stress-specific bridges containing key proteins in
cell survival (Mihalik & Csermely, 2011).

3.3.2. Protein–protein interaction networks and disease
Most human diseases are oligogenic or polygenic affecting a whole

set of proteins and their interactions. In the last decade several
genome-wide datasets became available to characterize disease-
related patho-mechanisms. mRNA expression patterns, genome-wide
association studies (GWAS) of disease-associated single-nucleotide
polymorphisms (SNPs) and disease-related changes in posttranslation-
al modifications (such as the phospho-proteome) are just three of the
most widely used datasets, which may also include system-wide
changes of subcellular localization. All this information can be in-
corporated in protein–protein interaction networks as changes in
edge configuration andweights (Zanzoni et al., 2009; Coulombe, 2011).

As we described in Section 1.3, disease-associated proteins do not
generally act as interactome hubs, with the important exception of so-
matic mutations, such as those occurring in cancer, where disease-
associated multi-interface hubs form an inter-connected rich club
(Jonsson & Bates, 2006; Goh et al., 2007; Feldman et al., 2008; Kar
et al., 2009; Barabási et al., 2011; Zhang et al., 2011a). Disease-related
proteins have a smaller clustering coefficient than average, which was
used for the prediction of novel disease-related genes (Feldman et al.,
2008; Sharma et al., 2010a).

Disease-related proteins form overlapping disease modules.
Suthram et al. (2010) identified 59 core modules out of the 4620
modules of the human interactome, which were affected by mRNA
changes in more than half of the 54 diseases examined. These core
modules were often targeted by drugs, and drugs affecting the core
modules were more often multi-target drugs than those acting on
‘peripheral’ modules, which changed their mRNA levels only in a
few specific diseases. Bridges and additional types of overlaps be-
tween disease-related interactome modules may provide important
points of interventions (Nguyen & Jordan, 2010; Nguyen et al., 2011).

3.3.3. The use of protein–protein interaction networks in drug design
Uncovering the estimated ~650,000 interactions of the human

interactome (Stumpf et al., 2008) is an ongoing, key step in network-
related drug design efforts (see Rual et al., 2005; Stelzl et al., 2005;
Chautard et al., 2009; Burkard et al., 2011; De Las Rivas & Prieto,
2012; Havugimana et al., 2012 and databases of Table 6). Databases
like ChemProt: http://www.cbs.dtu.dk/services/ChemProt including
700,000 chemicals and 2millions of interactions of their target proteins
in various species (Taboureau et al., 2011) provide a great help in
this process. However, interactome complexity goes much beyond
the inventory of contacts and binding partners, and includes expres-
sion level-induced, posttranslational modification-induced (such as
phosphorylation-dependent), cellular environment-induced (such
as calcium-dependent) and protein domain-dependent variations
(Santonico et al., 2005). We illustrate the latter in Fig. 15.

Drug targets have a generally larger number of neighbors than av-
erage. In agreement with assumptions related to disease-associated
protein contacts described in the previous section, the larger number
of neighbors comes mostly from the contribution of middle-degree
nodes; but not hubs. Drug targets in cancer are exceptions having a
more defined hub-structure. Drug target proteins have a lower clus-
tering coefficient than other proteins. Drug targets often occupy a
central position in the human interactome bridging two or more
modules. Nodes having an intermediate number of neighbors have
an extensive contact structure. Targeting these non-hub nodes
(with the exception of infectious diseases and cancer) is crucial to
avoid unwanted side-effects. As opposed to targets of withdrawn
drugs having a too large network influence, drug target proteins per-
turb the interactome in a controlled manner (Hase et al., 2009; Zhu et
al., 2009; Bultinck et al., 2012; Yu & Huang, 2012).
Properties of the interactome topology were used to predict and
score novel drug target candidates usingmainlymachine learning tech-
niques (Zhu et al., 2009; Zhang & Huan, 2010; Yu & Huang, 2012). Net-
work neighborhood similarity to the drug targets test-set proved to be a
good predictor of additional targets (Zhang & Huan, 2010). This feature
may actually show the limits of machine learning-based approaches:
since current drug targets are often similar to each other (Cokol et al.,
2005; Yildirim et al., 2007; Iyer et al., 2011a), machine learning tech-
niques may not be useful to extend the current drug target inventory
to surprisingly novel hits.

Modulation of specific protein–protein interactions provides a
much higher specificity to restore disease pathology to the normal
state than targeting a whole protein. We will describe methods for
the design of such ‘edgetic drugs’ in Section 4.1.2. Conceptually, it is
much easier to develop inhibitors of protein–protein interactions
than agents for increasing binding affinity or stability. The latter op-
tion together with the inclusion of interactome dynamics using the
tools listed in Section 2.5 is a very promising future trend of the
field. As a recent advance to explore drug-induced interactome dy-
namics, Schlecht et al. (2012) investigated the changes in the yeast
interactome upon the addition of 80 diverse small molecules. Their
method could identify novel protein–protein contacts specifically
disrupted by the addition of drugs such as the immunosuppressant,
FK506.

3.4. Signaling, microRNA and transcriptional networks

“Representations of signaling networks in many textbooks and
even in some of the most recent review articles have in their simplic-
ity a striking similarity to children's drawings” (Lewitzky et al., 2012;
Fig. 16). The complex representation of a signaling network is
constructed by upstream and downstream subnetworks. The up-
stream subnetwork contains the intertwined network of signaling
pathways, while the downstream, regulatory part contains DNA tran-
scription factor binding sites and microRNAs (Fig. 17). As we will
show in the following subsections, both subnetworks are highly
structured, are linked to each other, and are very important in drug
discovery. The systems-level exploration and understanding of
signaling networks significantly facilitate drug target identification,

http://www.cbs.dtu.dk/services/ChemProt
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target selection in pathological networks and the avoidance of
unwanted side-effects. At the end of the section we will also point
out important network features that make signaling-related drug
discovery a challenging task.

3.4.1. Organization and analysis signaling networks
Signaling pathways, the functional building blocks of intracellular

signaling, transmit extracellular information from ligands through re-
ceptors and mediators to transcription factors, which induce specific
gene expression changes. Signaling pathways constitute the up-
stream part of signaling networks (Fig. 17). Over the past decade, it
has been realized that signaling pathways are highly structured, and
are rich in cross-talks, where cross-talk was defined as a directed
physical interaction between pathways (Papin et al., 2005; Fraser &
Germain, 2009). As the number of input signals (ligands/receptors)
and output components (transcription factors) is limited, cross-talks
between pathways can create novel input/output combinations con-
tributing to the functional diversity and plasticity of the signaling net-
work (Kitano, 2004a). However, cross-talks have to be precisely
regulated to maintain output specificity (meaning that inputs prefer-
entially activate their own output) and input fidelity (meaning that
outputs preferentially respond to their own input). Regulation of
cross-talks to prevent ‘leaking’ or ‘spillover’ can be achieved using dif-
ferent mediation mechanisms, such as scaffolding proteins, cross-
pathway inhibitions, kinetic insulation, and the spatial and temporal
expression patterns of proteins (Freeman, 2000; Bhattacharyya
et al., 2006; Kholodenko, 2006; Behar et al., 2007; Haney et al.,
2010; Lewitzky et al., 2012).

The regulatory subnetwork (gene regulatory network) constitutes
the downstream part of the signaling pathway-network (Lin et al.,
2012). The gene regulatory network can be separated into the
transcriptional and the post-transcriptional levels. At the transcrip-
tional level, transcription factors bind specific regions of DNA se-
quences (called transcription factor binding sites, or response
elements) regulating their mRNA expression. Horizontal contacts of
middle-level regulators play a key role in gene regulatory networks,
especially in human cells. The human transcription factor regulatory
network has a basic architecture, which is independent from the
cell type and is complemented by cell type specific segments
(Bhardwaj et al., 2010; Gerstein et al., 2012; Neph et al., 2012).

MicroRNAs (miRNAs or miRs) are key players of gene regulatory
networks, and regulate gene expression by binding to complementary
sequences (i.e. microRNA binding-sites) on target mRNAs. MicroRNA
binding may suspend or permanently repress the translation of given
transcripts (Doench & Sharp, 2004; Guo et al., 2010). In the last decade,
it became evident that nearly all human genes can be controlled by at
least one microRNA (Lewis et al., 2003), and that mutations in
microRNA coding genes often have pathological consequences (Calin
& Croce, 2006). Interactome hubs, bottleneck proteins and downstream
signaling components, such as transcription factors are regulated by
more microRNAs than other nodes (Cui et al., 2006; Liang & Li, 2007;
Hsu et al., 2008).

Besides biochemical and molecular biological approaches, reverse
engineering of genome-wide transcriptional changes proved to be
very efficient for determining signaling networks as we detailed in
Section 2.2.3. Signaling networks are small-worlds and possess signal-
ing hubs. Networks (partially due to their pathway structures) have
modules, and cross-talking proteinsmay often be considered as bridges
between these modules. In the last decade several resources have been
developed to provide signaling pathways, transcription factor and tran-
scription factor binding site information, aswell asmicroRNAnetworks.
We summarize some of these signaling network resources in Table 7. A

image of Fig.�17


Table 7
Signaling network resources.

Name Content Website References

IPAVS Signaling pathway resources http://ipavs.cidms.org Sreenivasaiah et al., 2012
Reactome http://reactome.org Croft et al., 2011
NCI Nature–Pathway
Interaction Database

http://pid.nci.nih.gov Schaefer et al., 2009

NetPath http://netpath.org Kandasamy et al., 2010
JASPAR Transcription factor–transcription factor

binding information
http://jaspar.genereg.net Portales-Casamar et al., 2010

HTRIdb http://www.lbbc.ibb.unesp.br/htri Bovolenta et al., 2012
MPromDB http://mpromdb.wistar.upenn.edu Gupta et al., 2011
PAZAR http://pazar.info Portales-Casamar et al., 2007
OregAnno http://oreganno.org Griffith et al., 2008
Expander Transcription factor and microRNA target

prediction form gene expression data
http://acgt.cs.tau.ac.il/expander Ulitsky et al., 2010

TarBase mRNA–microRNA target information http://diana.cslab.ece.ntua.gr/tarbase Vergoulis et al., 2012
TargetScan http://www.targetscan.org Lewis et al., 2005
PicTar http://pictar.mdc-berlin.de Krek et al., 2005
miRecords Integrated resource of microRNA target

information
http://mirecords.biolead.org Xiao et al., 2009

miRGen http://diana.cslab.ece.ntua.gr/mirgen Alexiou et al., 2010
TransMir Regulatory information of microRNAs http://202.38.126.151/hmdd/mirna/tf Wang et al., 2010a
PutMir http://www.isical.ac.in/~bioinfo_miu/TF-miRNA.php Bandyopadhyay & Bhattacharyya, 2010
MiRandola Extracellular microRNA database http://atlas.dmi.unict.it/mirandola Russo et al., 2012
IntegromeDB Integrated signaling network resources http://integromedb.org Baitaluk et al., 2012
SignaLink 2.0 http://signalink.org Korcsmáros et al., 2010; Fazekas et al., 2013
TranscriptomeBrowser 3.0 http://tagc.univ-mrs.fr/tbrowser Lepoivre et al., 2012
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list of several other pathway databases can be found at PathGuide
(http://pathguide.org; Bader et al., 2006). A compendium of human
transcription factors have been collected and analyzed by Vaquerizas
et al. (2009). Experimentally validated microRNA–mRNA interactions
are available from TarBase (Vergoulis et al., 2012), while predicted
interactions can be accessed at TargetScan and PicTar (Krek et al.,
2005; Lewis et al., 2005). To examine the signaling network in a unified
fashion, recently a few integrated resources, like IntegromeDB,
TranscriptomeBrowser 3.0 and SignaLink 2.0, have been developed
allowing the examination of all layers from signaling pathways
to microRNAs through transcription factors (Korcsmáros et al.,
2010; Baitaluk et al., 2012; Lepoivre et al., 2012; Fazekas et al.,
2013).

There was considerable progress in defining algorithms to identify
the downstream components of a signaling network affected by the
inhibition of a specific protein or protein set. Such methods identify
targets, which inhibit certain outputs of the signaling network,
while leaving others intact, redirecting the signal flow in the network
(Dasika et al., 2006; Ruths et al., 2006; Pawson & Linding, 2008). This
recuperates the output specificity and input fidelity in a drug–target
context, where output specificity corresponds to the minimization
of side-effects, while input fidelity represents drug efficiency at the
signaling network level.

The dynamics of signaling networks is regulated by changes in the
abundance of their components, by complex formation, by macromo-
lecular crowding, and subcellular localization (Lewitzky et al., 2012).
The assessment of signaling network kinetics is helped by perturba-
tion analysis, differential equation models, constrained fuzzy logic
models and Boolean methods. In the latter, the activity of signaling
components is represented by 0:1 states connected by directed and
conditional edges as we summarized in Section 2.5.2 on network
perturbations (Kauffman et al., 2003; Shmulevich & Kauffman,
2004; Berg et al., 2005; Antal et al., 2009; Farkas et al., 2011).
There are several excellent methods for the analysis of Boolean
networks.

• BooleanNet (http://booleannet.googlecode.com) is a versatile, public-
ly available software library to describe signaling network dynamics
using the Boolean description (Albert et al., 2008).

• PATHLOGIC-S (http://sourceforge.net/projects/pathlogic/files/
PATHLOGIC-S) offers a scalable Boolean framework for modeling
cellular signaling (Fearnley & Nielsen, 2012).
• PathwayOracle (http://old-bioinfo.cs.rice.edu/pathwayoracle) is
a fast simulation program of large signaling networks taking into
account their topology (Ruths et al., 2008a, 2008b).

• Changes in memory effects (i.e. specific decay times of gene prod-
ucts) greatly affected Boolean network behavior (Graudenzi et al.,
2011a, 2011b).

• Boolean models can be trained by high-throughput data such as by
phosphoproteomics (Videla et al., 2012).

• Recently the CellNOpt algorithm (http://www.ebi.ac.uk/saezrodriguez/
cno) was introduced, which uses either Boolean logic or constrained
fuzzy logic to generate and analyze cell-specific signaling networks
(Terfve et al., 2012; Morris et al., 2013).

• Themethod of Chen et al. (2011) is able to identify sub-pathways and
principal components of sub-pathways affected by a drug or disease.

The elucidation of signaling network dynamics can be greatly
helped by quantitative phosphoproteomics (White, 2008). Reaction
network analysis pointed out receptor-related events and not
kinase-related events as rate-limiting factors in IL-12 signaling
(Klinke & Finley, 2012). In an interesting study on signaling dynamics,
Cheong et al. (2011) assessed the amount of information transduced
by the TNF-related signaling network in the presence of cellular
noise. They found that signaling bottlenecks may have a crucial influ-
ence on signaling capacity in the presence of noise. Negative feedback
can reduce noise, increasing signal capacity in the short term (30 min
after stimulation). However, negative feedback behaves as a double-
edged sword, and also reduces the dynamic range of the signal
input reducing the capacity in the longer run (4 h after stimulation).
Perturbation modeling suggested that cancer-related proteins may
have a larger than usual signaling capacity (Serra-Musach et al., 2012).
Signal transmission capacity analysis has many unsolved questions. Cur-
rently, we do not understand the decision making limits of the vast
majority of signaling systems. Information-loss, and information-
integration all affect the information handling capacity, which is pre-
sumed to be minimally sufficient (Brennan et al., 2012). Future,
network-related analysis of signaling dynamics faces the important
task of finding an optimal ratio of large-scale signaling network topolo-
gy and refined kinetic details to find answers to these questions.

3.4.2. Drug targets in signaling networks
Understanding the structure and dynamics of signaling networks

is used more and more often in drug discovery (Pawson & Linding,
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2008). Drugs having a similar pharmacological profile reach similarly
discrete positions in signaling networks (Fliri et al., 2009). In signal-
ing networks of healthy cells a distinctive role was suggested for pro-
teins in the junctions of signaling pathways. These proteins were
termed ‘critical nodes’ by Taniguchi et al. (2006) as exemplified by
the PI3 kinase, AKT and IRS isoforms in insulin signaling. Proteins
forming a bridge between signaling modules (e.g., SHC, SRC and
JAK2) have a track record as targets of drug action (Hwang et al.,
2008; Gardino & Yaffe, 2011).

Studies on pathologically altered signaling networks can uncover
possible drug targets, whose malfunction is involved in the etiology
of the disease. For example, driver mutations of tumorigenesis affect
a limited number of central pathways (Tomlinson et al., 1996; Ali &
Sjoblom, 2009). Targeting of these specific pathways may prevent
tumor growth. However, the development of aggressive tumor cells
causes a systems-level change of the signaling network causing the
appearance of angiogenetic and metastatic capabilities, as well as
the deregulation of cellular metabolism and avoidance of the immune
system (Hanahan & Weinberg, 2000, 2011; Hornberg et al., 2006;
Papatsoris et al., 2007). Changes of cross-talking (i.e. multi-pathway)
proteins are key steps in disease-induced rewiring of the signaling net-
work, e.g. transforming a ‘death’ signal into a ‘survival’ signal (Hanahan
&Weinberg, 2000; Hornberg et al., 2006; Kim et al., 2007; Torkamani &
Schork, 2009; Mimeault & Batra, 2010; Farkas et al., 2011). Multi-
pathway proteins show a significant change in their expression level
in hepatocellular carcinoma (Korcsmáros et al., 2010).

We have more than 500 types of post-translational modifications
offering a rich repertoire for signaling (Lewitzky et al., 2012). Tradi-
tionally, among these, protein kinases are the most targeted proteins
of the cellular signaling network (Pawson & Linding, 2008). However,
the similarity of ATP-binding pockets poses a significant challenge in
kinase targeting. Kinase domains and their target motifs (i.e., specific
amino acid sequences in the substrate proteins) can be accessed in re-
sources such as Phosphosite (Hornbeck et al., 2012), NetworKIN and
NetPhorest (Linding et al., 2008; Miller et al., 2008). Kinase regulatory
domain associations, kinase-associated scaffold proteins and multi-
site docking proteins often direct subcellular localizations, and play
a key role determining signaling kinetics and substrate specificity
(Remenyi et al., 2006; Pálfy et al., 2012). Scaffolding proteins are flex-
ible; and they, and multi-site docking proteins may increase network
flexibility (by allowing integrative cross-talks; Lewitzky et al., 2012).
However, our systems-level knowledge on these undirected protein–
protein interactions is rather limited. Disruption of kinase-centered
sub-interactomes and/or remodeling of kinase-centered protein
complexes are focus areas of drug design (Brehme et al., 2009;
Bandyopadhyay et al., 2010; Li et al., 2012a).

Protein phosphatases play a dominant role in determining
the spatio-temporal behavior of protein phosphorylation systems
(Herzog et al., 2012; Sacco et al., 2012; Nguyen et al., 2013). Despite
their promising effect, only a few protein tyrosine phosphatases are
currently used as therapeutic targets (Alonso et al., 2004). The
development of phosphatase-related drugs is more complicated than
that of kinase targeting drugs, since i.) the high-level of homology be-
tween phosphatase domains limits the development of selective com-
pounds; ii.) contrary to kinases, phosphatase substrate specificity is
achieved through docking of the phosphatase complex at a site distant
from the dephosphorylated amino acid (Roy & Cyert, 2009; Shi,
2009); (iii) the targeted sequences are highly charged, and many of
the interacting compounds are not hydrophobic enough to cross
the membrane (Barr, 2010). Despite these difficulties, phosphatase-
targeting holds great promise in signaling-related drug design.

In the last decade, microRNAs have been recognized as highly
promising intervention points of the signaling network. Though the
use of antisense nucleotides comes with great challenges in pharma-
cological availability, microRNA targeting affects mRNA clusters hav-
ing a rather specific effect at the transcriptome level (Gambari et al.,
2011). Down- or up-regulation of microRNAs is implicated in more
than 270 diseases according to the Human MicroRNA Disease Data-
base (http://202.38.126.151/hmdd/mirna/md; Lu et al., 2008) includ-
ing cardiovascular, neurodegenerative diseases, viral infections and
various types of cancer (McDermott et al., 2011). Identification of
new microRNA targets may be helped by the microRNA clusters asso-
ciated with the same disease (Lu et al., 2008), or with expression
modules (Bonnet et al., 2010).

MicroRNA targeting is typically a systems-level endeavor. Most
microRNAs have a number of targets, and are in an intensive cross-
talk with transcription factors (Lin et al., 2012) forming a highly
cross-reacting, and cross-regulated network. The microRNA network
has hierarchical layers, and hundreds of ‘target hubs’, each potentially
subject to massive regulation by dozens of microRNAs (Shalgi et al.,
2007). Cancer cells, as opposed to normal cells, have disjoint microRNA
networks, where major hubs of normal cells are down-regulated, and
cancer-specific novel microRNA hubs emerge (Volinia et al., 2010).
MicroRNA-regulated drug targets were shown to preferentially interact
with each-other, and tend to form hub-bottlenecks of the human
interactome (Wang et al., 2011c). Unwanted, network-level side-
effects of microRNA targeting may be predicted using databases,
such as SIDER (http://sideeffects.embl.de; Kuhn et al., 2010), web-
services, such as PathwayLinker (http://PathwayLinker.org; Farkas
et al., 2012) or the other integrated resources listed in Table 7.
Miravirsen, a locked nucleic acid-modified antisense oligonucleotide,
targets the liver-expressed microRNA-122 and is in phase-II clini-
cal trial for treatment of hepatitis C virus infection (Lindow &
Kauppinen, 2012).

3.4.3. Challenges of signaling network targeting
Signal transduction is highly context-specific: it depends on the

gene expression patterns, mRNA stability, protein synthesis, and
degradation conditions. Certain signaling modules (such as regula-
tion of apoptosis) seem to share evolutionary traits with others,
while other signaling proteins developed more independently.
These variabilities necessitate a precise knowledge of the actual sta-
tus of the signaling network in the disease condition and in the af-
fected patient population (Cui et al., 2009; Davis et al., 2012; Hamp
& Rost, 2012; Kirouac et al., 2012).

As we have shown in the preceding section, cross-talking
(i.e., multi-pathway, bridge) proteins are in a critical position of the sig-
naling network providing a very efficient set of potential drug targets
(Korcsmáros et al., 2007, 2010; Hwang et al., 2008; Kumar et al.,
2008; Spiró et al., 2008). However, numerous drug developmental fail-
ures were caused by undiscovered or underestimated cross-talk effects
(Rajasethupathy et al., 2005; Jia et al., 2009). Cross-talking proteinsmay
have opposite roles in healthy and diseased (such as inmalignant) cells.
Moreover, targeting of cross-talking proteins may significantly affect
the systems-level stability (robustness) of healthy or diseased cells
(Kitano, 2004b, 2007). Targeting proteins in negative feedback loops
may suppress the inhibitory effect of the feedback loop, and thereby ac-
tivate the targeted pathway (Sergina et al., 2007). Feedback loops are
not always direct, and can exist at multiple levels of a pathway. In con-
clusion, targeting multi-pathway and feedback loop proteins requires a
particularly detailed knowledge of signaling network responses (Berger
& Iyengar, 2009; Barabási et al., 2011).

Systems-level properties are also needed to assess the develop-
ment of drug resistance and drug toxicity.

• Development of drug resistance is often a result of a systems-level
response of signaling networks involving mutation of key signaling
proteins (such as multi-pathway proteins), or of the activation of
alternative pathways due to system-robustness (Kitano, 2004a;
Logue & Morrison, 2012). As a specific form of drug resistance,
many anticancer drugs induce stress response/survival pathways
directly, or indirectly, by producing a stressful environment (Tomida
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& Tsuruo, 1999; Chen et al., 2006b; Tiligada, 2006). Thus, systems-
level approaches that combine anti-tumor drugs and stress response
targeting may increase therapeutic efficiency (Rocha et al., 2011;
Tentner et al., 2012).

• Hepatotoxicity is a major cause of drug development failures in the
pre-clinical, clinical and post-approval stages (Kaplowitz, 2001).
Hepatic cytotoxicity responses are regulated by a multi-pathway
signaling network balance of intertwined pro-survival (AKT) and
pro-death (MAPK) pathways. Importantly, therapeutic modulation
of cross-talks between these pathways as well as specific pathway
inhibitors could antagonize drug-induced hepatotoxicity (Cosgrove
et al., 2010).

We will address network-based assessment of drug toxicity and
drug resistance in Sections 4.3.3 and 4.3.6 in more detail.

3.5. Genetic interaction and chromatin networks

In this section we will describe the drug-related aspects of genetic
interaction networks. Genetic interaction networks are related to
gene regulatory networks. However, here gene–gene interactions
are often indirect. Chromatin networks encode 3D interactions be-
tween distant DNA-segments of the chromatin structure, and may
be regarded as a specific representation of genetic interaction net-
works. While genetic interaction networks already helped drug de-
sign, chromatin interaction networks are recent developments
holding a great promise for future studies.

3.5.1. Definition and structure of genetic interaction networks
The most stringent (and traditional) description of a genetic inter-

action comes from comparing the phenotypes of the individual single
mutants with the phenotype of the double mutant. We can distin-
guish between negative and positive genetic interactions: if the fit-
ness of the double mutants is worse than the additive effect of the
two single mutants, then the genes have a negative interaction. Con-
versely, if the fitness of the double mutants is better than expected,
the two genes interact positively. A severe type of negative interac-
tions is synthetic lethality, when the two single mutants are viable,
but their double mutant becomes lethal. Genes of negative (i.e. aggra-
vating) interactions may operate in parallel processes, while those of
positive (i.e., alleviating or epistatic) interactions may function in the
same process (Guarente, 1993; Hartman et al., 2001; Dixon et al.,
2009). The complexity of the genetic interaction network is illustrat-
ed well by compensatory perturbations, where a debilitating effect
can be compensated by another inhibitory effect (Motter, 2010;
Cornelius et al., 2011).

Most comprehensive genome-wide studies were performed in in-
bred model systems, such as yeast and worm, as well as in isogenic
populations of cultured cells derived from fruit flies and mammals.
It is plausible that many genetic interactions identified in these uni-
cellular organisms can be relevant for all other eukaryotes (Tong
et al., 2004; Dixon et al., 2008, 2009; Roguev et al., 2008; Costanzo
et al., 2010). However, comparison between orthologous genes of
yeast and worm found less than 5% of synthetic lethal genetic interac-
tions to be conserved (Byrne et al., 2007). Furthermore, most of the
human disease genes are metazoan-specific. Despite the widespread
specificity, there are some genetic interactions (such as those of
DNA repair enzymes, which are commonly mutated in cancer),
which are conserved from yeast to humans (McManus et al., 2009).

Besides mutational studies, system-wide assessments of output
signals, such as transcriptomes, allowed the phenotype analysis of
thousands of perturbations inferring a genetic interaction network.
We reviewed the reverse engineering methods allowing network in-
ference in Section 2.2.3. It appears that no single inference method
performs optimally across all datasets. Therefore, the integration of
predictions from multiple inference methods seems to give the best
results (Marbach et al., 2012). The genetic interaction network
obtained by direct mutational studies, or by reverse engineering
methods exhibited dense local neighborhoods, while highly correlat-
ed profiles delineated specific pathways defining gene function, and
were used for pre-clinical drug prioritization (Xiong et al., 2010). Re-
cently, an algorithm called HotNet was introduced to identify genetic
interaction network clusters (http://compbio.cs.brown.edu/software.
html; Vandin et al., 2012).

Mapping of genetic interactions to protein–protein interaction or
to signaling networks may uncover the underlying mechanisms. Con-
sequently, we can define ‘between-pathway’, ‘within-pathway’ and
‘indirect’ types of genetic interactions. With this approach, ~40% of
the yeast synthetic lethal genetic interactions were mapped to phys-
ical pathway models identifying 360 between-pathway and 91
within-pathway models (Kelley & Ideker, 2005). Synthetic lethal
gene pairs were found mostly close to each other (often within the
same modules), while rescuing genes were often in alternative path-
ways and/or modules (Hintze & Adami, 2008). Combinations of
genetic interactions with mRNA expression patterns, interactome
data, gene–drug interactions, or with chemical compound similarity
measures (for details see the compendium of Table 5) offered a
great help in the identification of drug targets and drug-affected
genes (Parsons et al., 2006; Hansen et al., 2009; Gosline et al., 2012).

Measurement of time-series of genome-wide mRNA expression
patterns after drug treatment of 95 genotyped yeast strains led to
the identification of novel genetic interaction network relationships
including novel feedback loops and transcription factor binding sites
(Yeung et al., 2011). BioLayout Express gives an integrative network
visualization and analysis of gene expression data (http://www.
biolayout.org; Freeman et al., 2007; Theocharidis et al., 2009).
SteinerNet provides integrated transcriptional, proteomic and inter-
actome data to assess regulatory networks (http://fraenkel.mit.edu/
steinernet/; Tuncbag et al., 2012). Genetic interaction networks may
also be defined in a more general manner, where any types of interac-
tions, such as correlated expression levels, interacting protein prod-
ucts, or co-participation in a disease etiology or drug action, may
form an edge between two genes serving as nodes of the network
(Schadt et al., 2009). Genome-wide association studies (GWAS)
identified single-nucleotide polymorphism (SNP) derived gene–gene
association networks revealing novel between-pathway models
(Cowper-Sal lari et al., 2011; Fang et al., 2011; Hu et al., 2011; Li
et al., 2012b).

3.5.2. Chromatin networks and network epigenomics
An underlying molecular mechanism establishing genetic interac-

tion networks is the network of long-range interactions of the 3D
chromatin structure. Recent methodologies based on proximity
ligation with next generation sequencing (abbreviated as Hi-C or
ChIA-PET) enabled the construction of a functionally associated,
long-range contact network of the human chromatin structure. This
chromatin network contains functional modules, and has a rich club
of hub–hub interactions (Fullwood et al., 2009; Lieberman-Aiden
et al., 2009; Dixon et al., 2012; Li et al., 2012c; Sandhu et al., 2012).

The chromatin network determines cancer-associated chromo-
somal alterations (Fudenberg et al., 2011). Moreover, the chromatin
network configuration was shown to be grossly altered by the
overexpression of ERG, an oncogenic transcription factor activated
primarily in prostate cancers (Rickman et al., 2012). The structure of
the chromatin network is largely determined by inheritable epigenet-
ic factors, such as histone posttranslational modifications, DNA si-
lencers and nascent RNA scaffolds (Schreiber & Bernstein, 2002;
Moazed, 2011; Pujadas & Feinberg, 2012). Chromatin networks are
an exciting and fast-developing area of network-studies, which will
provide promising tools to predict drug–drug interactions, drug
side-effects and system-wide effects of anti-cancer and other drugs
inducing chromatin reprogramming.

http://compbio.cs.brown.edu/software.html
http://compbio.cs.brown.edu/software.html
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3.5.3. Genetic interaction networks as models for drug discovery
The genetic interaction network of yeast can be used as a system

for rational ranking of potential new antifungal targets; it may also
shed light on human drug mechanisms of action, since several
human drugs specifically inhibit the orthologous proteins in yeast
(Hartwell et al., 1997; Cardenas et al., 1999; Hughes, 2002). The iden-
tification of 16 genes, whose inactivation suppressed the defects in
the retinoblastoma tumor suppressor pathway in another widely
used model system, C. elegans, could point out potential targets for
pharmaceutical intervention or prevention of human retinoblastoma-
linked tumors (Lee et al., 2008b). Extending this methodology,
McGary et al. (2010) defined orthologous phenotypes, or ‘phenologs’,
which can be regarded as evolutionarily conserved outputs that arise
from the disruption of a set of genes. The phenolog approach identified
non-obvious equivalences between mutant phenotypes in different
species, establishing a yeast model for angiogenesis defects, a worm
model for breast cancer, mouse models of autism, and a plant model
for the neural crest defects associatedwith theWaardenburg syndrome
(McGary et al., 2010).

Many pharmacologically interesting genes, such as nuclear hor-
mone receptors and GPCRs occur in large families containing paralogs,
i.e. duplicated homologous genes. Though model organisms can signif-
icantly help us to understand how human genes interact with each
other, it is important to keep in mind that paralogs often do not have
the same function. This problem can be circumvented by targeting
paralog-sets, whichmakes the identification of paralogs and their func-
tions a key point in multi-target drug design (Searls, 2003).

Wang et al. (2012c) gave an interesting example for the use of ge-
netic interaction networks in the assessment of the effects of drug com-
binations. They showed that drug combinations have significantly
shorter effect radius than random combinations. Drug combinations
against diseases affecting the cardiovascular and nervous systems
have a more concentrated effect radius than immuno-modulatory or
anti-cancer agents.

3.6. Metabolic networks

In this section we will describe metabolic networks, i.e. networks
of major metabolites connected by enzyme reactions, which trans-
form them to each other. Metabolic networks are the biochemically
constrained subsets of the chemical reaction networks we summa-
rized in Section 3.1.2. After the description of the structure and prop-
erties of metabolic networks we will summarize their use in drug
targeting with special reference to the identification of essential reac-
tions as potential drug targets in infectious diseases and in cancer.

3.6.1. Definition and structure of metabolic networks
In a metabolic network, each node represents a metabolite. Two

nodes are connected, if there is a biochemical reaction that can trans-
form one into the other. Edges of metabolic networks represent both
reactions and the enzymes that catalyze them. (We note that meta-
bolic networks may also have another projection, where nodes are
the enzymes and edges are the metabolites connecting them, but
this projection is seldom used, since it is less relevant to biological
processes.) Metabolic processes may be represented as hypergraphs,
where edges connect multiple nodes. An edge may correspond to
multiple reactions both in the forward direction and in the opposite
direction. Moreover, some reactions occur spontaneously, and there-
fore have no associated enzymes. Most metabolites are fairly general,
but the biochemical reaction structure connecting them is often rath-
er special to the given organism (Guimera et al., 2007b; Ma &
Goryanin, 2008; Chavali et al., 2012).

Reconstruction of metabolic networks became a highly integrative
process, which applies genome sequences, enzyme databases, and
specifies the network using transcriptome and proteome data (Kell,
2006; Ma & Goryanin, 2008). In the last decade several metabolic
networks, such as those of Escherichia coli, yeast and humans have
been assembled. Moreover, recently bacterium-, strain-, tissue- and
disease-specific metabolic networks were reconstituted. However, it
should be kept in mind that metabolic network data are often still
incomplete, and often reflect optimal growth conditions (Edwards &
Palsson, 2000a; Forster et al., 2003; Duarte et al., 2007; Ma et al.,
2007; Shlomi et al., 2008, 2009; Folger et al., 2011; Holme, 2011;
Chavali et al., 2012; Szalay-Bekő et al., 2012).

Metabolic networks have a small-world character, possess hubs,
and display a hierarchical bow-tie structure similar to other directed
networks, such as the world-wide-web. Metabolic networks have a
hierarchical modular structure (Jeong et al., 2001; Wagner & Fell,
2001; Ravasz et al., 2002; Ma & Zeng, 2003; Ma et al., 2004;
Guimera & Amaral, 2005; Zhao et al., 2006). Correlated reaction sets
(Co-sets) are representations of metabolic network modules en-
coding reaction-groups with linked fluxes. Hard-coupled reaction
sets (HCR-sets) are those subgroups of Co-sets, where consumption/
production rates of participating metabolites are 1:1. Since all reac-
tions of a HCR-set changes, if any of its reactions is targeted,
HCR-sets help in prioritizing potential drug target lists (Papin et al.,
2004; Jamshidi & Palsson, 2007; Xi et al., 2011). Metabolic networks
have a core and a periphery (Almaas et al., 2004, 2005; Guimera &
Amaral, 2005; Guimera et al., 2007b). Core and periphery may also
be discriminated in the non-topological sense that genes and gene
pairs of the ‘core’ are essential under many environmental conditions,
while those of the ‘periphery’ are needed under some environmental
conditions (Papp et al., 2004; Pál et al., 2006; Harrison et al., 2007).

Metabolic control analysis (MCA) is good for smaller networks
where kinetic parameters are known, while flux balance analysis
(FBA), flux-variability analysis (FVA) and elementary flux mode anal-
ysis are very useful methods to characterize systems-level metabolic
responses (Fell, 1998; Cascante et al., 2002; Klamt & Gilles, 2004;
Chavali et al., 2012). Resendis-Antonio (2009) integrated high
throughput metabolome data describing transient perturbations in a
red blood cell metabolic network model. This approach may be appli-
cable for the modeling and metabolome-wide understanding of drug-
induced metabolic changes (Fan et al., 2012). In Table 8 we list
resources to define and analyze metabolic networks.

3.6.2. Essential enzymes of metabolic networks
as drug targets in infectious diseases and in cancer

Metabolic networks help in the identification essential proteins.
This requires a systems-level approach, since an essential metabolite
might be produced by several pathways (Palumbo et al., 2007). As an
example of metabolic robustness, the early work of Edwards and
Palsson (2000b) showed that the flux of even the tricarboxylic acid
cycle can be reduced to 19% of its optimal value without significantly
influencing the growth of E. coli. When designing a drug against a
metabolic network of an infectious organism or against cancer cells,
many parameters should be kept in mind. We list a few of them here.

• Network topology analysis is not enough to predict essential en-
zymes, since it does not indicate whether the topologically impor-
tant enzymes are active under specific conditions. Moreover,
metabolic fluxes are determined by gene expression levels (repre-
sentative to the affected tissue, or cell status) and by signaling- or
interaction-related activation/inhibition of pathway enzymes. Genes
that are not identified correctly as essential genes are usually
connected to fewer reactions and to less over-coupled metabolites,
and/or their associated reactions are not carrying flux in the given
condition (Becker & Palsson, 2008; Chavali et al., 2012; Kim et al.,
2012).

• Infectious organisms often take advantage of the metabolism of
the host requiring the analysis of integrated parasite–host meta-
bolic networks (Fatumo et al., 2011).

• Essentiality is not a yes/no variable: essentiality of a given reaction



Table 8
Metabolic network resources.

Name Content Website References

KEGG Metabolic pathway resource http://kegg.jp Kanehisa et al., 2012
MetaCyc http://metacyc.org Caspi et al., 2012
HumanCyc http://humancyc.org Romero et al., 2005
SMPDB Small Molecule (e.g., drug) Pathway Database http://smpdb.ca Frolkis et al., 2010
HMDB Human Metabolome Database http://hmdb.ca Wishart et al., 2009
BRENDA Comprehensive enzyme data resource http://brenda-enzymes.info Scheer et al., 2011
YeastNet Yeast metabolic network http://comp-sys-bio.org/yeastnet Herrgard et al., 2008
iMAT another metabolic network
construction and analysis tools

Several metabolic network construction and
analysis tools

http://www.cs.technion.ac.il/~tomersh/
methods.html

Shlomi et al., 2008; Zur et
al., 2010

ModelSEED and its Cytoscape plug-in,
CytoSEED

Genome level metabolic network reconstruction and
analysis

https://github.com/ModelSEED, http://
sourceforge.net/projects/cytoseed

Henry et al., 2010;
DeJongh et al., 2012

Markov Chain Monte Carlo modeling Bayesian inference method to uncover perturbation
sites in metabolic pathways

ftp://anonymous@dbkweb.mib.man.ac.uk/pub/
Bioinformatics_BJ.zip

Jayawardhana et al., 2008

PyNetMet Python library of tools for the analysis of metabolic
models and networks

http://pypi.python.org/pypi/PyNetMet Gamermann et al., 2012
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depends on the environment of the infectious organism, or cancer
cells. Therefore, metabolic network-based drug-design should incor-
porate environment interactions and stressor effects (Guimera et al.,
2007b; Jamshidi & Palsson, 2007; Ma & Goryanin, 2008; Kim et al.,
2012).

• A promising current trend, metabolic interactions of bacterial com-
munities, such as the gut microbiome, are also important factors to
consider (Chavali et al., 2012; Kim et al., 2012).

• Drug targets against infectious organisms or against cancer should
be specific for the target itself or for its drug binding site, or for its
network-related consequences of targeting (Guimera et al., 2007b;
Ma & Goryanin, 2008; Chavali et al., 2012). This highlights the impor-
tance of comparing metabolic network pairs.

• Finally, network-analysis offers a great help to predict side-effects
(Guimera et al., 2007b). We will detail network-methods of side-
effect prediction in Section 4.3.5.

Enzymes catalyzing a single chemical reaction on one particular
substrate are frequently essential (Nam et al., 2012). Through the
analysis of metabolic network structure, choke points were identi-
fied as reactions that either uniquely produce or consume a certain
metabolite. Efficient inhibition of choke points may cause either a
lethal deficiency, or toxic accumulation of metabolites in infectious
organisms (Yeh et al., 2004; Singh et al., 2007). Later choke point
analysis was combined with load point analysis (identification of
nodes with a high ratio of k-shortest paths to the number of
nearest neighbor edges providing many alternative metabolic
pathways) and with comparison of the metabolic networks of
pathogenic and related non-pathogenic strains. Such methods can
test multiple knock-outs on a high throughput manner predicting
effective drug combinations (Fatumo et al., 2009, 2011; Perumal
et al., 2009).

Guimera et al. (2007b) developed a network modularity-based
method for target selection in metabolic networks. They systemat-
ically analyzed the effect of removing edges from the metabolic
networks of E. coli and Heliobacter pylori quantifying the effect
by the difference in growth rate. In both bacteria, essential reac-
tions (edges) mostly involved satellite connector metabolites
that participate in a small number of biochemical reactions, and
serve as bridges between several different modules (Guimera
et al., 2007b).

Essential and non-essential genes propagate their deletion effects
via distinct routes. Flux selectivity of a deletion of a metabolic reaction
was used to design the appropriate type and concentration of the inhib-
itor (Gerber et al., 2008). Recently, several iterative methods have been
constructed, sequentially identifying a set of enzymes whose inhibition
can produce the expected inhibition of targetswith reduced side-effects
in human and E. coli metabolic networks (Lemke et al., 2004; Sridhar
et al., 2007, 2008; Song et al., 2009). Ma et al. (2012b) assembled ‘dam-
age lists’ of reactions affected by deleting other reactions using
flux-balance analysis. They showed that the knockout of an essential
gene mainly affects other essential genes, whereas the knockout of a
non-essential gene only interrupts other non-essential genes. Genes
sharing the same ‘damage list’ tend to have the same level of essentiality.

A subset of genes and gene pairs may be essential under various
environmental conditions, while most genes are essential only
under a certain environmental condition. In yeast environmental
condition-specificity accounts for 37–68% of dispensable genes,
while compensation by duplication and network-flux reorganization
is responsible for 15–28 and 4–17% of yeast dispensable genes, re-
spectively (Papp et al., 2004; Blank et al., 2005). Almaas et al.
(2005) suggested the use of metabolic network cores to identify
drug targets. Barve et al. (2012) identified a set of 124 superessential
reactions required in all metabolic networks under all conditions.
They also assigned a superessentiality index for thousands of reac-
tions. Superessentiality of the 37 reactions catalyzed by enzymes hav-
ing a very low homology to human genes (Becker et al., 2006; Aditya
Barve & Andreas Wagner, personal communication) can provide sub-
stantial help in drug target selection, since the index is not highly sen-
sitive to the chemical environment of the pathogen.

An interesting approach to narrow metabolic networks to essen-
tial components is to identify essential metabolites. As examples of
this process, in two pathogenic organisms a total of 221 or 765 me-
tabolites were narrowed to 9 or 5 essential metabolites, respectively,
after the removal of the currency metabolites, i.e. those present in the
human metabolic network and those participating in reactions cata-
lyzed by enzymes having human homologs. Enzymes that catalyze re-
actions involved in the production or consumption of these essential
metabolites may be considered as drug targets. Moreover, structural
analogs of essential metabolites may be considered as drug candi-
dates for experimental evaluation (Kim et al., 2010, 2011a, 2011b).

Using a comparison of metabolic networks, Shen et al. (2010) pro-
vided a blueprint of strain-specific drug selection combining metabol-
ic network analysis with atomistic level modeling. They deduced
common antibiotics against E. coli and Staphylococcus aureus, and
ranked more than a million small molecules identifying potential
antimicrobial scaffolds against the identified target enzymes.

The analysis of disease-specific metabolic networks is a key step to
find ‘differentially essential’ genes (Murabito et al., 2011). Analysis of
cancer-specific human metabolic networks led Folger et al. (2011) to
predict 52 cytostatic drug targets, of which 40% were targeted by
known anticancer drugs, and the rest were new target-candidates.
Their method also predicted combinations of synthetic lethal drug
targets and potentially selective treatments for specific cancers. We
will describe network-related anti-infection and anti-cancer strate-
gies in more detail in Sections 5.1 and 5.2.

http://kegg.jp
http://metacyc.org
http://humancyc.org
http://smpdb.ca
http://hmdb.ca
http://brenda-enzymes.info
http://comp-sys-bio.org/yeastnet
http://www.cs.technion.ac.il/~tomersh/methods.html
http://www.cs.technion.ac.il/~tomersh/methods.html
http://sourceforge.net/projects/cytoseed
http://sourceforge.net/projects/cytoseed
http://sourceforge.net/projects/cytoseed
ftp://anonymous@dbkweb.mib.man.ac.uk/pub/Bioinformatics_BJ.zip
ftp://anonymous@dbkweb.mib.man.ac.uk/pub/Bioinformatics_BJ.zip
http://pypi.python.org/pypi/PyNetMet
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3.6.3. Metabolic network targets in human diseases
Many human diseases cause a metabolic deficiency rather than

overproduction making the recovery of a specific metabolic reaction
a widely used drug-development strategy (Ma & Goryanin, 2008).
Systems-level assessment may lead to the development of successful
combined-therapies, such as the combination of Niacin, an inhibitor
of cholesterol transportation, with Lovastatin, an inhibitor of the cho-
lesterol synthesis pathway to reduce blood cholesterol level (Gupta &
Ito, 2002). As a very interesting approach, a flux-balance analysis
model was developed to predict compensatory deletions (also called
as synthetically viable gene pairs, or synthetic rescues), where a
debilitating effect can be compensated by another inhibitory effect
(Motter et al., 2008; Motter, 2010; Cornelius et al., 2011). Since inhi-
bition is often a pharmacologically more feasible intervention than
activation, this approach opens novel possibilities for drug design to
restore disease-induced malfunctions. The approach of Jamshidi and
Palsson (2008) to describe temporal changes of metabolic networks
is an example of what seems to be a very promising future direction
to study the process of disease progression, and to design disease-
stage specific drug treatment protocols.

4. Areas of drug design: an
assessment of network-related added-value

In this section we will highlight the added-value of network related
methods inmajor steps of the drug design process. Fig. 18 illustrates var-
ious stages of drug development starting with target identification,
followed by hit finding, lead selection and optimization including various
methods of chemoinformatics, drug efficiency optimization, ADMET
(drug absorption, distribution, metabolism, excretion and toxicity)
studies, as well as optimization of drug–drug interactions, side-effects
and resistance. Table 9 summarizes a few major data-sources and
web-services, which can be used efficiently in network-related drug
design studies.

4.1. Drug target prioritization, identification and validation

Network-based drug target prioritization and identification are es-
sentially a top–down approach, where system-wide effects of putative
targets are modeled to help in the identification of novel network drug
targets. These network drug targets are non-obvious from a traditional
magic-bullet type analysis aiming to find the single most important
Ta
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firmation and hit expansion leading to lead selection/optimization and concluded by c
chemoinformatics (left side), drug efficiency optimization, ADMET (drug absorption, distr
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discussing the given drug development stage.
cause of a given disease. Network node-based drug target prediction
may highlight non-obvious hits, and edge-targeting may make these
hits even more specific. Drug target networks allow us to see the
system-wide target landscape and, combined with other network
methods, help drug repositioning. Multi-target drug design needs the
integration of drug effects at the system level. The new concept of
allo-network drugs may identify non-obvious drug targets, which spe-
cifically influence the major targets causing fewer side-effects than di-
rect targeting. Finally, treating the whole cellular network (or its
segment) as a drug target, gives a conceptual synthesis of network de-
scription and analysis in drug design.

4.1.1. Two strategies of network-based drug
targeting: the central hit and the network influence strategies

Here we propose that our current knowledge discriminates two
network-based drug identification strategies.We name the first strategy
the central hit strategy. This strategy is useful to find drug target candi-
dates in anti-infectious and in anti-cancer therapies. The second strategy
is named network influence strategy. This strategy uses systems-level
knowledge tofind drug target candidates in therapies of polygenic, com-
plex diseases (Fig. 19). In the central hit strategy our aim is to damage
the network integrity of the infectious agent or of the malignant cell in
a selective manner. For this, detailed knowledge of the structural dif-
ferences of host/parasite or healthy/malignant networks can help. In
the network influence strategy we would like to shift back the mal-
functioning network to its normal state. For this, an understanding of
networkdynamics both inhealthy anddiseased states is required. Knowl-
edge of the existing drug targets of the particular disease also helps.

System destruction of the central hit strategy finds hubs and cen-
tral nodes of various networks (the latter are called load-points in
metabolic networks), and uses the methods listed in Section 3.6.2 to
find essential enzymes of metabolic networks (Jeong et al., 2001;
Chin & Samanta, 2003; Agoston et al., 2005; Estrada, 2006; Guimera
et al., 2007b; Yu et al., 2007b; Fatumo et al., 2009, 2011; Missiuro
et al., 2009; Perumal et al., 2009; Li et al., 2011a). In addition, choke
points of metabolic networks, i.e. proteins uniquely producing or
consuming a certain metabolite are also excellent targets in anti-
infectious therapies (Yeh et al., 2004; Singh et al., 2007). In the case
of directed, hierarchical networks nodes at the top of the hierarchy
should be attacked by the central hit strategy. Liu et al. (2012)
suggested the random upstream attack to find high position nodes
in hierarchical networks. Recent work on connections of essential
unmet
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Table 9
Drug-design related resources.

Name Content Website References

Section 4.1. Drug target prioritization, identification and validation
Pubchem Repository of small molecule biological activities http://pubchem.ncbi.nlm.nih.gov Wang et al., 2010b
chEMBLdb Chemical properties and biological activities of drug-like molecules https://www.ebi.ac.uk/chembldb Gaulton et al., 2012
DailyMed Drug package insert texts http://dailymed.nim.nih.gov de Leon, 2011
DrugBank Integrated drug and drug target information resource http://drugbank.ca Knox et al., 2011
PharmGKB http://pharmgkb.org Thorn et al., 2010
Therapeutic Target Database http://bidd.nus.edu.sg/group/cjttd/

TTD_HOME.asp
Zhu et al., 2012b

MATADOR http://matador.embl.de Günther et al., 2008
Supertarget http://insilico.charite.de/supertarget Hecker et al., 2012
KEGG DRUG http://genome.jp/kegg/drug Kanehisa et al., 2012
TDR Drug targets of neglected tropical diseases http://tdrtargets.org Agüero et al., 2008
PDTD—Potential Drug
Target Database

Information on drug targets http://dddc.ac.cn/pdtd Gao et al., 2008

DTome Drug–target network construction tool http://bioinfo.mc.vanderbilt.edu/DTome Sun et al., 2012
My-DTome Myocardial infarction-related drug target interactome http://my-dtome.lu Azuaje et al., 2011
PROMISCUOUS Interactome-based database for drug-repurposing http://bioinformatics.charite.de/promiscuous von Eichborn et al., 2011
MANTRA mRNA expression profile-based server for drug-repurposing http://mantra.tigem.it Iorio et al., 2010
CDA Combinatorial drug assembler and drug repositioner (mRNA

expression profiles, signaling networks)
http://cda.i-pharm.org Lee et al., 2012c

Section 4.2.1. Hit finding for ligand binding sites
STITCH 3 Integrated network resource of chemical–protein interactions http://stitch.embl.de Kuhn et al., 2012
CARLSBAD Cytoscape plug-in connecting common chemical patterns to

biological targets via small molecules
http://carlsbad.health.unm.edu

BindingDB Binding affinity data for almost a million protein–ligand pairs http://bindingdb.org Liu et al., 2007a
BioDrugScreen Structural protein ligand interactome+scoring system http://biodrugscreen.org Li et al., 2010c
CREDO a protein–ligand interaction database including a wide range

of structural information
http://www-cryst.bioc.cam.ac.uk/
databases/credo

Schreyer & Blundell, 2009

Section 4.2.2. Hit finding for protein–protein interaction hot spots
TIMBAL A curated database of ligands inhibiting protein–protein

interactions
http://www-cryst.bioc.cam.ac.uk/
databases/timbal

Higueruelo et al., 2009

Dr. PIAS—Druggable
Protein-protein
Interaction Assessment
System

Machine learning-based web-server to judge, if a protein–protein
interaction is druggable

http://drpias.net Sugaya & Furuya, 2011;
Sugaya et al., 2012

Section 4.3. Drug efficiency, ADMET, drug–drug interactions, side-effects and resistance
Supertarget Drug metabolism information http://insilico.charite.de/supertarget Hecker et al., 2012
KEGG DRUG http://genome.jp/kegg/drug Kanehisa et al., 2012
ACToR Integrated toxicity resource http://actor.epa.gov Judson et al., 2012
DITOP Drug-induced toxicity related protein database http://bioinf.xmu.edu.cn:8080/

databases/DITOP/index.html
Zhang et al., 2007

DCDB Drug combination database http://www.cls.zju.edu.cn/dcdb Liu et al., 2010b
DTome Adverse drug–drug interactions http://bioinfo.mc.vanderbilt.edu/DTome Sun et al., 2012
KEGG DRUG http://genome.jp/kegg/drug Kanehisa et al., 2012
SIDER Drug side-effect resource http://sideeffects.embl.de Kuhn et al., 2010
DRAR-CPI Drug-binding structural similarity based server for adverse drug

reaction and drug repositioning
http://cpi.bio-x.cn/drar Luo et al., 2011

DvD An R/Cytoscape plug-in assessing system-wide gene expression
data to predict drug side effects and drug repositioning

http://www.ebi.ac.uk/saezrodriguez/DVD Pacini et al., 2013

NPC Approved and experimental drugs useful for drug-repositioning http://tripod.nih.gov/npc Huang et al., 2011b
SePreSA Binding pocket polymorphism-based serious adverse drug

reaction predictor
http://sepresa.bio-x.cn Yang et al., 2009a;

Yang et al., 2009b

Section 4.3. Drug efficiency, ADMET, drug–drug interactions, side-effects and resistance (continuation)
SADR-Gengle PubMed record text mining-based data on 6 serious adverse

drug reactions
http://gengle.bio-x.cn/SADR Yang et al., 2009c
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reactions and on superessential reactions (where the latter are need-
ed in all organisms) suggests that essential reactions form a core of
metabolic networks (Barve et al., 2012; Ma et al., 2012b). Cytostatic
drug targets have also been identified through analysis of cancer-
specific human metabolic networks (Folger et al., 2011). Recent anti-
cancer strategies mostly use the cancer-specific targeting of signaling
networks as we will describe in detail in Section 5.2.

At the protein structure level the central hit strategy may mostly
target active sites. Targeting allosteric regulatory sites may be shared
by both strategies. These, cavity-like binding sites are easier to target
than the flat, ‘hot-spot’-type protein–protein interfaces mostly in-
volved in the network influence strategy (Keskin et al., 2007;
Ozbabacan et al., 2010). We will discuss the network-based identifi-
cation of ligand binding sites in Sections 4.2.1 and 4.2.2.

Network-based methods of the network influence strategy are
much less developed than those of the central hit strategy. Using
the network influence strategy we need to conquer system robustness
to push the cell back from the attractor of the diseased state to that
of the healthy state, which is a difficult task—as we summarized in
Section 2.5.2 on network dynamics. Nodes with intermediate
connection numbers located in vulnerable points of disease-related
networks (such as in inter-modular, bridging positions) driving
disease-specific network traffic are preferred targets of the network
influence strategy (Kitano, 2004a, 2004b, 2007; Ciliberti et al., 2007;

http://pubchem.ncbi.nlm.nih.gov
https://www.ebi.ac.uk/chembldb
http://dailymed.nim.nih.gov
http://drugbank.ca
http://pharmgkb.org
http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp
http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp
http://matador.embl.de
http://insilico.charite.de/supertarget
http://genome.jp/kegg/drug
http://tdrtargets.org
http://dddc.ac.cn/pdtd
http://bioinfo.mc.vanderbilt.edu/DTome
http://my-dtome.lu
http://bioinformatics.charite.de/promiscuous
http://mantra.tigem.it
http://cda.i-pharm.org
http://stitch.embl.de
http://carlsbad.health.unm.edu
http://bindingdb.org
http://biodrugscreen.org
http://www-cryst.bioc.cam.ac.uk/databases/credo
http://www-cryst.bioc.cam.ac.uk/databases/credo
http://www-cryst.bioc.cam.ac.uk/databases/timbal
http://www-cryst.bioc.cam.ac.uk/databases/timbal
http://drpias.net
http://insilico.charite.de/supertarget
http://genome.jp/kegg/drug
http://actor.epa.gov
http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html
http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html
http://www.cls.zju.edu.cn/dcdb
http://bioinfo.mc.vanderbilt.edu/DTome
http://genome.jp/kegg/drug
http://sideeffects.embl.de
http://cpi.bio-x.cn/drar
http://www.ebi.ac.uk/saezrodriguez/DVD
http://tripod.nih.gov/npc
http://sepresa.bio-x.cn
http://gengle.bio-x.cn/SADR
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Antal et al., 2009; Hase et al., 2009; Zanzoni et al., 2009; Fliri et al.,
2010; Cornelius et al., 2011; Farkas et al., 2011; Yu & Huang, 2012).
In signaling networks preferred nodes of the network influence
strategy inhibit certain outputs of the signaling network, while leav-
ing others intact redirecting the signal flow in the network (Dasika
et al., 2006; Ruths et al., 2006; Pawson & Linding, 2008). The network
influence strategy often targets network segments, e.g. disease-
modules (Cho et al., 2012), as we will discuss in Section 4.1.7. Edgetic
drugs (Section 4.1.2.), multi-target drugs (Section 4.1.5.) and
allo-network drugs (Section 4.1.6.) are all very promising forms of
the network influence strategy.

It is important to note that the central hit strategy is applied against
rapidly growing cells, such as those of infectious agents or cancer cells.
Networks of these cells are in an ‘exploratory phase’, have larger entro-
py (West et al., 2012), and are presumablymuchmore flexible, than the
networks of differentiated cells. Efficient targeting of flexible systems
having a high plasticity needs the targeting of their central nodes/
edges. This is the major mode through which the central hit strategy
operates.

In contrast, the network influence strategy is applied to differenti-
ated cells. Networks of these cells are in an ‘optimized phase’, where
the optimum was re-set for a diseased cell to a different attractor of
its state-space than that of healthy cells. Networks of differentiated
cells are presumably much more rigid than the networks of rapidly
growing, undifferentiated or dedifferentiated cells. This is true all
the more, since diseases are typically recognized by their late-
appearing manifestations (Loscalzo and Barabasi, 2011), where the
corresponding network already reached the disease-specific, rigid
state. Targeting the central nodes/edges of systems having a low plas-
ticity may easily ‘over-saturate’ the system leading to a change, which
becomes too large to be selective, and causes side-effects and toxicity.
Therefore, the network influence strategy often needs an indirect ap-
proach, where e.g. neighbors of the real target are targeted (allo-
network drugs), or multiple targets are targeted ‘mildly’ (multi-target
drugs), and their indirect and/or superposing effects lead to the
reconfiguration of diseased network state back to normal.

In general, the strategy-pair we described here for drug action ap-
pears valid, and is a key for efficient modification of molecular struc-
tures, as well as neuronal and social systems at their different states
besides the cellular networks discussed here. Thus, the best targeting
strategy depends on the extent of network rigidity. Flexible, plastic
systems are ‘under-defined’, and dissipate the perturbations well.
These plastic systems may generally require a well-defined attack in
the form of targeting of their central nodes/edges. Note that central
nodes form the most rigid segments of these flexible, plastic net-
works, which transmit the attack with the best efficiency. On the
other hand, rigid systems are ‘well-defined’, and transmit (but not
dissipate) the perturbations well. Thus optimal modification of rigid
systems may be achieved by an indirect, ‘under-defined’ attack of
the neighbors of their central nodes or rigid clusters. Note that
nodes connecting rigid clusters (or being neighbors of central
nodes) constitute the most flexible segments of these rigid networks,
which dissipate the perturbation best, thus their attack does not
over-excite the network. Moreover, rigid systems often contain mul-
tiple rigid clusters, and are often multi-modular (Mihalik & Csermely,
2011; Gáspár & Csermely, 2012). A single central hit may not optimal-
ly target a multi-modular, multi-centered system, which makes the
network influence strategy even more efficient.

Network effects of existing drugs (e.g. in the form of drug target
networks detailed in Section 4.1.3) may help in finding disease-
specific network control-points. Drugs showing an mRNA expression
profile that is strongly anticorrelated with a disease expression profile
might actually reverse some of the disease effects and can be used for
drug-repurposing. On the contrary, positively correlated profiles may
reveal side effects (Dudley et al., 2011; Sirota et al., 2011; Iskar et al.,
2012; Pacini et al., 2013). Reverse-engineering methods finding the
underlying network structure from complex dynamic system output
data (such as genome-wide mRNA expression patterns, signaling net-
work or metabolome, see Section 2.2.3), as well as discriminating the
primary targets from secondarily affected network nodes help in
identifying control nodes directing network dynamics (Gardner
et al., 2003; di Bernardo et al., 2005; Hallén et al., 2006; Lamb et al.,
2006; Xing & Gardner, 2006; Lehár et al., 2007; Madhamshettiwar
et al., 2012). The identification of disease-specific control-points of
network dynamics will be an exciting task in the near future.

Disease-specificity may well be hierarchical. Suthram et al. (2010)
identified 59 modules out of the 4620 modules of the human
interactome, which are dysregulated in at least half of the 54 diseases
tested, and were enriched in known drug targets. Influence-cores of
the interactome, signaling, metabolic and other networks may be in-
volved in the regulation of many more diseases than the connection-
core (e.g. hub containing rich club) or periphery of these networks.

Potential methods to find influential nodes redirecting perturba-
tions, affecting cellular cooperation or asserting network control
have been described in Sections 2.3.4, 2.5.2 and 2.5.3 (Xiong & Choe,
2008; Antal et al., 2009; Kitsak et al., 2010; Luni et al., 2010; Farkas
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et al., 2011; Liu et al., 2011, 2012; Banerjee & Roy, 2012; Cowan et al.,
2012; Mones et al., 2012; Nepusz & Vicsek, 2012; Valente, 2012;
Wang et al., 2012a). Influential nodes may have a hidden influence,
like those highly unpredictable, ‘creative’ nodes, which may delay
critical transitions of diseased cells (see Sections 2.2.2 and 2.5.2 for
more details; Csermely, 2008; Scheffer et al., 2009; Farkas et al.,
2011; Sornette & Osorio, 2011; Dai et al., 2012). Finding sets of
influence-core nodes with fewer side-effects, or periphery nodes spe-
cifically influencing an influence-core or connection-core node, will
be the subject of Sections 4.1.5 and 4.1.6 on multi-target drugs and
allo-network drugs (Nussinov et al., 2011), respectively.

4.1.2. Edgetic drugs: edges as targets
Perturbations of selected network edges give a grossly different

result than the partial inhibition (or deletion) of the whole node. De-
velopment of drugs targeting network edges (recently called: edgetic
drugs) has a number of advantages (Arkin & Wells, 2004; Keskin
et al., 2007; Sugaya et al., 2007; Dreze et al., 2009; Zhong et al.,
2009; Schlecht et al., 2012; Wang et al., 2012b).

• Many disease-associated proteins, e.g. p53, were considered non-
tractable for small-molecule therapeutics, since they do not have
an enzyme activity. In these cases edgetic drugs may offer a solu-
tion.

• Edgetic drugs are advantageous, since targeting network edges,
i.e. protein–protein interaction, signaling or other molecular net-
works, is more specific than node targeting. This becomes particularly
useful, when a protein simultaneously participates in two complexes
having different functions, where only one of these functions is
disease-related, like in the case of the mammalian target of
rapamycin, mTOR (Huang et al., 2004; Agoston et al., 2005;
Ruffner et al., 2007; Zhong et al., 2009; Wang et al., 2012b).

• Due to its larger selectivity, edge targeting may provide an efficient
solution in targeting networks of multigenic diseases described as
the network influence strategy in the preceding section. Edge tar-
geting may also be used in the central hit strategy (targeting whole
network-encoded systems) in the case of cancer, where selectivity
may bemore limited than in targeting of infectious agents. Important-
ly, the selectivity of edgetic drugs is not unlimited: hitting frequent
interface motifs in a network may be as destructive as eliminating
hubs. However, “interface-attack” may affect functional changes bet-
ter than the attack of single proteins (Engin et al., 2012).

Edgetic drug development has inherent challenges. Interacting
surfaces lack small, natural ligands, which may offer a starting point
for drug design. Moreover, protein–protein binding sites involve
large, flat surfaces, which are difficult to target. However, these flat
surfaces often contain hot spots, which cluster to hot regions corre-
sponding to a smaller set of key residues, which may be efficiently
targeted by a drug of around 500 Da (Keskin et al., 2007; Wells &
McClendon, 2007; Ozbabacan et al., 2010). We showed the usefulness
of protein structure networks in finding hot spots in Section 3.2.4, and
will summarize the possibilities to define edgetic drug binding sites in
Section 4.2.2.

In one of the few systematic studies on edgetic drugs, Schlecht et al.
(2012) constructed an assay to identify changes in the yeast in-
teractome in response to 80 diverse small molecules, including the im-
munosuppressant FK506, which specifically inhibited the interaction
between aspartate kinase and the peptidyl-prolyl-cis–trans isomerase,
Fpr1. Sugaya et al. (2007) provided an in silico screening method to
identify human protein–protein interaction targets. Edgetic perturbation
of a C. elegans Bcl-2 ortholog, CED-9, resulted in the identification of a
new potential functional link between apoptosis and centrosomes
(Dreze et al., 2009). The TIMBAL database is a hand curated assembly
of small molecules inhibiting protein–protein interactions (http://
www-cryst.bioc.cam.ac.uk/databases/timbal; Higueruelo et al., 2009).
The Dr. PIAS server offers a machine learning-based assessment if a
protein–protein interaction is druggable (http://drpias.net; Sugaya
& Furuya, 2011; Sugaya et al., 2012).

Current development of edgetic drugs is mostly concentrated on
protein–protein interaction networks. (We note here that most met-
abolic network-related drugs are by definition ‘edgetic drugs’, since in
these networks target-enzymes constitute the edges between metab-
olites.) Signaling networks and gene interaction networks (including
chromatin interaction networks) are promising fields of edgetic drug
development. Scaffolding proteins and signaling mediators are partic-
ularly attractive targets of edgetic drug design efforts (Klussmann &
Scott, 2008). In conclusion of this section, we list a few other future
aspects of edgetic drug design.

• To date, the preferential topology of edge-targets in the human
interactome has not been systematically addressed. Thus, currently
we do not know, if indeed such a preference exists. Similarly, little
attention has been paid to systematic studies of edge-weights,
i.e. binding affinity-related drug target preference. Low-affinity bind-
ing is easier to disrupt, but interventions may not be that efficient.
Disruption of high-affinity interactions may be more challenging
(Keskin et al., 2007).

• Those interactions of intrinsically disordered proteins, which couple
binding with folding, display a large decrease in conformational en-
tropy, which provides a high specificity and low affinity. This pair of
features is useful for regulation of protein–protein interactions and
signaling, and this mechanism is widely used in human cells. Coupled
binding and folding interactions often involve localized, small hydro-
phobic interaction surfaces, which provide a feasible targeting option
in edgetic drug design (Cheng et al., 2006).

• Both low-probability interactions and interactions of intrinsically
disordered proteins involve transient binding complexes. Modulation
of these transient edges by ‘interfacial inhibition’ (Pommier & Cherfils,
2005; Keskin et al., 2007) may be an option in future edgetic drug
design.

• Edgetic drugs are usually inhibiting interactions (Gordo & Giralt,
2009). Stabilization of specific interactions is an area of great promise
in drug design as we will discuss in Section 4.1.6 on allo-network
drugs (Nussinov et al., 2011). Since the changed cellular environment
in diseases often induces protein unfolding, general stabilizers of pro-
tein–protein interactions in normal cells, such as chemical chaper-
ones, or chaperone inducers and co-inducers (Vígh et al., 1997; Sőti
et al., 2005; Papp & Csermely, 2006; Crul et al., 2013) offer an exciting
therapeutic area of network-wide restoration of protein–protein
interactions.

4.1.3. Drug target networks
A broader representation of drug target networks are the protein-

binding site similarity networks, where network edges between two
proteins are defined by not only common, FDA-approved drugs, but
also by a wide variety of common natural ligands and chemical com-
pounds, as well as by binding site structural similarity measures. We
list a few approaches to construct such protein binding site similarity
networks below.

• Protein binding site networks can be constructed by large-scale ex-
perimental studies. One of these systematic studies examined natu-
rally binding hydrophobic molecule profiles of kinases and proteins
of the ergosterol biosynthesis in yeast using mass spectrometry. Hy-
drophobic molecules, such as ergosterol turned out to be potential
regulators of many unrelated proteins, such as protein kinases (Li
et al., 2010b).

• Protein binding site similarity networks may be constructed using a
simplified representation of binding sites as geometric patterns, or
numerical fingerprints. Here similarities are ranked by similarity
scores based on the number of aligned features (Kellenberger
et al., 2008).

http://www-cryst.bioc.cam.ac.uk/databases/timbal
http://www-cryst.bioc.cam.ac.uk/databases/timbal
http://drpias.net


Fig. 20. A refined representation of a drug target network includes protein conforma-
tions. In current drug target network representations drug targets (gray circles) are
interpreted as single entities connected through drugs (black circles). In these representa-
tions protein conformations preferred or dispreferred by a certain drug are ignored. For a
more complete understanding of the interactions of drugs to their targets a target should
be represented by its different functionally relevant conformations (differently colored
shapes within gray line enclosed areas). Drug targets that are represented by single struc-
tures are connected to drugs by blue dashed lines. The target conformations that preferen-
tially bind a drug are connected by red dashed lines.
Reproduced by permission from Isin et al. (2012).
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• Pocket frameworks encoding binding pocket similarities were also
used to create protein binding site similarity networks (Weisel et
al., 2010). Pocket frameworks are reduced, graph-based representa-
tions of pocket geometries generated by the software PocketGraph
using a growing neural gas approach. Another pocket comparison
method, SMAP-WS combines a pocket finding shape descriptor
with the profile-alignment algorithm, SOIPPA (Ren et al., 2010).

• Enzyme substrate and ligand binding sites have been compared using
cavity alignment. Clustering of cavity space resembles most the struc-
ture of chemical ligand space and less that of sequence and fold
spaces. Unexpected links of consensus cavities between remote tar-
gets indicated possible cross-reactivity of ligands, suggested putative
side-effects and offered possibilities for drug repositioning (Zhang &
Grigorov, 2006; Liu et al., 2008a; Weskamp et al., 2009).

• Andersson et al. (2010) proposed a method avoiding geometric
alignment of binding pockets and using structural and physicochem-
ical descriptors to compare cavities. This approach is similar to QSAR
models of comparison detailed in Section 3.1.3.

Identifying clusters of proteins with similar binding sites may help
drug repositioning, and could be a starting point for designing
multi-target drugs as we will describe in the following two sections.
Binding site similarities help in finding appropriate chemical mole-
cules for new drug target candidates as described in Section 4.2. How-
ever, designing drugs for a group of targets with similar binding sites
is challenging due to low specificity as exemplified by the drug design
efforts against the ATP binding sites of protein kinases. Construction
and analysis of protein binding site similarity networks in these
cases can be helpful to identify proteins, whose active sites are differ-
ent enough to be targeted selectively. Using 491 human protein
kinase sequences, Huang et al. (2010b) constructed similarity net-
works of kinase ATP binding sites. The recent tyrosine kinase target,
EphB4 belonged to a small, separated cluster of the similarity network
supporting the experimental results of selective EhpB4 inhibition.

Signaling components, particularly membrane receptors and tran-
scription factors form a major segment of drug target networks. Drug
target networks are bipartite networks having drugs and their targets
as nodes, and drug–target interactions as edges. These networks can
be projected as drug similarity networks (where two drugs are
connected, if they share a target). We summarized these projections
as similarity networks in Section 3.1.3. In the other projection of
drug–target networks, nodes are the drug targets, which are
connected, if they both bind the same drug (Keiser et al., 2007,
2009; Ma'ayan et al., 2007; Yildirim et al., 2007; Hert et al., 2008;
Yamanishi et al., 2008; Bleakley & Yamanishi, 2009; van Laarhoven
et al., 2011). We describe the drug development applications of this
projection in the remaining part of this section.

Drug target networks are particularly useful for comparisons of
drug target proteins, since such a network comparison can be more
informative pharmacologically than comparing protein sequences or
protein structures. Drug target networks are modular: many drug tar-
gets are clustered by ligand similarity even though the targets them-
selves have minimal sequence similarity. This is a major reason, why
drug target networks were successfully used to predict and ex-
perimentally verify novel drug actions (Keiser et al., 2007, 2009;
Ma'ayan et al., 2007; Yildirim et al., 2007; Hert et al., 2008;
Yamanishi et al., 2008, 2010; Bleakley & Yamanishi, 2009; van
Laarhoven et al., 2011; Nacher & Schwartz, 2012; Mei et al., 2013).

Chen et al. (2012a)merged protein–protein similarity, drug similar-
ity and drug–target networks and applied random walk-based
prediction on this meta-network to predict drug–target interactions.
Riera-Fernandez et al. (2012) developed a Markov–Shannon entropy-
based numerical quality score to measure connectivity quality of
drug–target networks extended by both the chemical structure
networks of the drugs and the protein structure networks of their
targets. As we will detail in Section 4.1.6 on allo-network drugs
(Nussinov et al., 2011), the integration of protein structure networks
and protein–protein interaction networks may significantly enhance
the success-rate of drug target network-based predictions of novel
drug target candidates. Importantly, many drugs do not target the
actual disease-associated proteins but proteins in their network-
neighborhood (Yildirim et al., 2007; Keiser et al., 2009). Drugs having
a target less than 3 or more than 4 steps from a disease-associated pro-
tein in human signaling networks have significantly more side-effects,
and fail more often (Wang et al., 2012c). This substantiates the impor-
tance of the targeting of ‘silent’, ‘by-stander’ proteins further, which
may influence the disease-associated targets in a selective manner
(Section 4.1.6; Nussinov et al., 2011).

We listed a number of drug target databases and resources useful
for the construction of drug–target networks in Table 9 at the begin-
ning of Section 4. However, a refined representation of a drug target
network should also include protein conformations (Fig. 20). Drugs
may favor or disfavor certain protein conformations, and therefore
this information is important for a more detailed understanding of
drug action (Isin et al., 2012).

Indirect drug target networks may also be constructed using avail-
able data on human diseases, patients, their symptoms, therapies, or
the systems-level effects of drug-induced perturbations (see Fig. 6
in Section 1.3.1; Spiró et al., 2008). Recently, several approaches ex-
tended drug/target datasets. Vina et al. (2009) assessed drug/target
interaction pairs in a multi-target QSAR analysis enriching the dataset
with chemical descriptors of targets and affinity scores of drug–target
interactions. Wang et al. (2011b) assembled the Cytoscape (Smoot
et al., 2011) plug-in of the integrated Complex Traits Networks
(iCTNet, http://flux.cs.queensu.ca/ictnet) including phenotype/
single-nucleotide polymorphism (SNP) associations, protein–protein
interactions, disease–tissue, tissue–gene and drug–gene relationships.
Balaji et al. (2012) compiled the integrated molecular interaction data-
base (IMID, http://integrativebiology.org) containing protein–protein
interactions, protein–small molecule interactions, associations of inter-
actionswith pathways, species, diseases and Gene Ontology termswith
user-selected integration of manually curated and/or automatically
extracted data. These and other complex approaches to drug target net-
works (Yamanishi et al., 2010, 2011; Savino et al., 2012; Tabei et al.,
2012; Takarabe et al.;, 2012) will lead to the development of prediction
techniques of novel drug targets, and improve drug efficiency, aswell as
ADMET, drug–drug interaction, side-effect and resistance profiles.

http://flux.cs.queensu.ca/ictnet
http://integrativebiology.org
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4.1.4. Network-based drug repositioning
Drug repositioning (or drug repurposing) aims to find a new ther-

apeutic modality for an existing drug, and thus provides a cost-
efficient way to enrich the number of available drugs for a certain
therapeutic purpose. Drug repurposing uses a compound having a
well-established safety and bioavailability profile, and a proven for-
mulation and manufacturing process, as well as a well-characterized
pharmacology. Most drug repositioning efforts use large screens of
existing drugs against a multitude of novel targets (Chong &
Sullivan, 2007). The pharmacological network approach asks, given
a pattern of chemistry in the ligands, which targets a particular drug
may bind (Kolb et al., 2009)? Here we list network-based methods
mobilizing and efficiently using systems-level knowledge for rational
drug repositioning.

• Analysis of common segments of protein–protein interaction and sig-
naling networks affected by different drugs or participating in different
diseasesmay reveal unexpected cross-reactions suggesting novel op-
tions for drug repurposing (Bromberg et al., 2008; Kotelnikova
et al., 2010; Ye et al., 2012). As an example of these efforts,
PROMISCUOUS (http://bioinformatics.charite.de/promiscuous) of-
fers a web-tool for protein–protein interaction network-based
drug-repositioning (von Eichborn et al., 2011).

• As an extension of the above approach, analysis of the complex
drug similarity networks, by modularization, edge-prediction or
by machine learning methods, described in Section 3.1.3 (see
Table 5 there), may show unexpected links between remote drug
targets indicating possible cross-reactivity of existing drugs with
novel targets (Zhang & Grigorov, 2006; Liu et al., 2008a;
Weskamp et al., 2009; Zhao & Li, 2010; Gottlieb et al., 2011a;
Chen et al., 2012a; Cheng et al., 2012a, 2012b; Lee et al., 2012b).
Network-based comparison of drug-induced changes in gene expres-
sion profiles (combinedwith disease-induced gene expression changes,
disease–drug associations, interactomes, or signaling networks), was
used to suggest unexpected, novel uses of existing drugs (Hu &
Agarwal, 2009; Iorio et al., 2010, MANTRA server, http://mantra.tigem.
it; Kotelnikova et al., 2010; Suthram et al., 2010; Gottlieb et al., 2011a;
Luo et al., 2011, DRAR-CPI server, http://cpi.bio-x.cn/drar; Jin et al.,
2012; Lee et al., 2012c, CDA server: http://cda.i-pharm.org; Pacini
et al., 2013, DvD server as a Cytoscape plug-in: http://www.ebi.ac.uk/
saezrodriguez/DVD).

• Genome-wide association studies (GWAS) may also be used to con-
struct drug-related networks helping drug repositioning including in
a personalized manner (Zanzoni et al., 2009; Coulombe, 2011;
Cowper-Sal lari et al., 2011; Fang et al., 2011; Hu et al., 2011; Li et al.,
2012b; Sanseau et al., 2012). Important future applications may use
the comparison of phosphoproteome and metabolome data to reveal
further drug repositioning option, including personalized drug applica-
tion protocols.

• Drug target networks (including drug-binding site similarity networks
and drug–target–disease networks) summarized in the preceding sec-
tion help in drug repositioning. Modularization or edge prediction of
these networks may reveal novel applications of existing drugs
(Keiser et al., 2007, 2009; Ma'ayan et al., 2007; Yildirim et al., 2007;
Hert et al., 2008; Yamanishi et al., 2008; Bleakley & Yamanishi, 2009;
Kinnings et al., 2010; Mathur & Dinakarpandian, 2011; van Laarhoven
et al., 2011; Daminelli et al., 2012; Nacher & Schwartz, 2012).

• Central drugs of drug–therapy networks, where two drugs are
connected, if they share a therapeutic application (Nacher &
Schwartz, 2008), such as inter-modular drugs connecting two oth-
erwise distant therapies, may reveal novel drug indications. Drug–
disease networks have also been constructed and used for this
purpose (Yildirim et al., 2007; Qu et al., 2009). Moreover, disease–
disease networks (Goh et al., 2007; Rzhetsky et al., 2007; Feldman
et al., 2008; Spiró et al., 2008; Hidalgo et al., 2009; Barabási et al.,
2011; Zhang et al., 2011a) and the other disease and drug-related
network representations we listed in Section 1.3.1 (see Fig. 6 there;
Spiró et al., 2008) may also be used for drug repositioning. Edge pre-
diction methods (detailed in Section 2.2.2) and network-based ma-
chine learning methods may also be applied to these networks to
uncover novel drug–therapy associations.

• Tightly interacting modules of drug–drug interaction networks (Yeh
et al., 2006; Lehár et al., 2007) may also reveal unexpected, novel
therapeutic applications.

• Side-effects of drugs, summarized in Section 4.3.5, may often reveal
novel therapeutic areas. Shortest path, random walk and modularity
analysis of side-effect similarity networks offers a number of novel
options for network-based drug repositioning (Campillos et al.,
2008; Yamanishi et al., 2010; Oprea et al., 2011; Takarabe et al.,
2012).

Network-related datasets and methods to reveal drug–drug inter-
actions (Section 4.3.4), or drug side-effects (Section 4.3.5) may all
give clues for drug re-positioning. Drug repositioning also has chal-
lenges, such as validation of the drug candidate from incomplete
and outdated data, and the development of novel types of clinical tri-
als (Mei et al., 2012). However, most network-based methods helping
drug repositioning may also be used to predict multi-target drugs, an
area we will summarize in the next section.

4.1.5. Network polypharmacology: multi-target drugs
Robustness ofmolecular networksmay often counteract drug action

on single targets thus preventing major changes in systems-level
outputs despite the dramatic changes in the target itself (see
Section 2.5.2; Kitano, 2004a; Kitano, 2004b; Papp et al., 2004; Pál et
al., 2006; Kitano, 2007; Tun et al., 2011). Moreover, most cellular
proteins belong to multiple network modules in the human inter-
actome, signaling or metabolic networks (Palla et al., 2005; Kovács et
al., 2010; Wang et al., 2012d). As a consequence, efficient targeting of
a single protein may influence many cellular functions at the same
time. In contrast, efficient restoration of a particular cellular function
to that of the healthy state (or efficient cell damage in anti-cancer strat-
egies) can often be accomplished only by a simultaneous attack on
many proteins, wherein the targeting efficiency on each protein may
only be partial. These target sets preferentially contain proteinswith in-
termediate number of neighbors having an intermediate level of influ-
ence of their own (Hase et al., 2009; Wang et al., 2012d).

The above systems-level considerations explain the success of
polypharmacology, also called as modular pharmacology, i.e. the
development and use of multi-target drugs (Fig. 21; Ginsburg, 1999;
Csermely et al., 2005; Mencher & Wang, 2005; Millan, 2006; Hopkins,
2008;Wang et al., 2012d). The goal of polypharmacology is “to identify
a compound with a desired biological profile across multiple targets
whose combined modulation will perturb a disease state” (Hopkins,
2008). Multiple targeting is a well-established strategy. Snake or spi-
der venoms, plant defense strategies are all using multi-component
systems. Traditional medicaments and remedies often contain multi-
component extracts of natural products. Combinatorial therapies are
used with great success to treat many types of diseases, including
AIDS, atherosclerosis, cancer and depression (Borisy et al., 2003;
Keith et al., 2005; Dancey & Chen, 2006; Millan, 2006; Yeh et al.,
2006; Lehár et al., 2007). Importantly, more than 20% of the approved
drugs are multi-target drugs (Ma'ayan et al., 2007; Yildirim et al.,
2007; Nacher & Schwartz, 2008). Many drugs interact with more
than one transporter, which increases the complexity of poly-
pharmacology (Kell et al., 2013). Moreover, multi-target drugs have
an increasing market-value (Lu et al., 2012). Multi-target drugs pos-
sess a number of beneficial network-related properties, which we
list below.

• Multi-target drugs can be designed to act on a selected set of primary
targets influencing a set of key, therapeutically relevant secondary
targets.

http://bioinformatics.charite.de/promiscuous
http://mantra.tigem.it
http://mantra.tigem.it
http://cpi.bio-x.cn/drar
http://cda.i-pharm.org
http://www.ebi.ac.uk/saezrodriguez/DVD
http://www.ebi.ac.uk/saezrodriguez/DVD
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Fig. 21. Multi-target drugs are target multipliers. The top left panel and the red circle of the bottom left part of the figure show the targets of single-target drugs situated in phar-
macologically interesting pathways and the hits of chemical proteomics, which represent those proteins, which can interact with druggable molecules. (The numbers are only
approximate, and in case of the human proteome contain only the non-redundant proteins.) The overlap between the two sets constitutes the ‘sweet spot’ of drug discovery
(Brown & Superti-Furga, 2003). On the right side of the figure the expansion of the ‘sweet spot’ is shown by multi-target drugs. The top left part illustrates the action of
multi-target drugs. Yellow asterisks highlight the indirect targets, where the changes initiated by the multiple primary targets are superposed. It is a significant advantage, if
these targets are disease-specific. On the bottom left part the indirect targets of multi-target action and the allowed low affinity binding of multi-target drugs both expand the
number of pharmacologically relevant targets, while low-affinity binding enlarges the number of druggable proteins. The overlap of the two groups (the ‘sweet spot’) displays a
dramatic increase.
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• Multiple targeting may need a compromise in binding affinity. How-
ever, even low-affinity bindingmulti-target drugs are efficient: in our
earlier study a 50% efficient, partial, but multiple attack on a few sites
of E. coli or yeast genetic regulatory networks caused more damage
than the complete inhibition of a single node (Agoston et al., 2005;
Csermely et al., 2005).

• Via the above, ‘indirect’ targeting, and via their low affinity binding,
multi-target drugs may avoid the presently common dual-trap of
drug-resistance and toxicity (Lipton, 2004; Csermely et al., 2005;
Lehár et al., 2007; Zimmermann et al., 2007; Ohlson, 2008; Savino
et al., 2012).

• Due to their low affinity binding, multi-target drugs may often stabi-
lize diseased cells, which sometimes may be at least as beneficial as
their primary therapeutic effect (Csermely et al., 2005; Korcsmáros
et al., 2007; Csermely, 2009; Farkas et al., 2011).

In summary, multi-target drugs offer a magnification of the ‘sweet
spot’ of drug discovery, where the ‘sweet spot’ represents those
few hundred proteins, which are both parts of pharmacologically im-
portant pathways, and are druggable (Brown & Superti-Furga, 2003).
The resulting beneficial effects have two reasons. First, both indirect
and partial targeting by multi-target drugs expand the number of
possible targets. Second, low affinity binding eases druggability con-
straints, and allows the targeting of partially hydrophilic binding
sites by orally-deliverable, hydrophobic molecules. These two effects
cause a remarkable increase of the drug targets situated in the overlap
region of the potential target and druggable pools. Thus, multi-target
drugs are, in fact, target multipliers (Fig. 21; Keith & Zimmermann,
2004; Csermely et al., 2005; Korcsmáros et al., 2007).
We list a number of network-related methods below to find target-
sets ofmulti-target drugs by systems-level, rationalmulti-target design.

• Network efficiency (Latora & Marchiori, 2001), or critical node de-
tection (Boginski & Commander, 2009) may serve as a starting mea-
sure to judge network integrity after multi-target action (Agoston
et al., 2005; Csermely et al., 2005; Li et al., 2011c). Pathway analysis
of molecular networks gives a more complex picture, and may re-
veal multiple intervention points affecting pathway-encoded func-
tions, utilizing pathway cross-talks, or switching off compensatory
circuits of network robustness. Network methods allow the identi-
fication of target sets, which disconnect signaling ligands from
their downstream effectors with the simultaneous preservation of
desired pathways (Dasika et al., 2006; Ruths et al., 2006; Lehár
et al., 2007; Jia et al., 2009; Hormozdiari et al., 2010; Kotelnikova
et al., 2010; Pujol et al., 2010). Deconvolution of network dynamics
showing interrelated dynamics modules, such as those of elementa-
ry signaling modes (Wang & Albert, 2011), is a promising approach
for future multi-drug design efforts.

• Experimental testing of drug combinations may uncover unexpect-
ed effects in drug–drug interactions, which may be used for selec-
tion of multi-target sets (Borisy et al., 2003; Keith et al., 2005;
Dancey & Chen, 2006; Yeh et al., 2006; Lehár et al., 2007; Jia et al.,
2009; Liu et al., 2010b). Combination therapies may also be
designed using network methods, such as the minimal hitting set
method (Vazquez, 2009), or a complex method taking into account
adjacent network position and action-similarity (Li et al., 2011d).
Recently, several iterative algorithms were developed to find optimal
target combinations restricting the search to a few combinations out

image of Fig.�21
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of the potential search space of severalmillions to billions of combina-
tions (Calzolari et al., 2008;Wong et al., 2008; Small et al., 2011; Yoon,
2011; Zhao et al., 2011a). Pritchard et al. (2013) demonstrated the ex-
istence of simple and predictable combination mechanisms using
RNA interference signatures. Network-based search algorithms may
improve this search efficiency even further in the future. Drug combi-
nations against diseases affecting the cardiovascular and nervous sys-
tems have a more concentrated effect radius in the human genetic
interaction network than that of immuno-modulatory or anti-cancer
agents (Wang et al., 2012e). Network methods were applied to pre-
dict and avoid unwanted drug–drug interaction effects and the emer-
gence of multi-drug resistance as we will describe in Sections 4.3.4
and 4.3.6, respectively.

• Side-effect networks connect drugs by the similarity of their side-
effects. Shortest path and random walk analysis, as well as the iden-
tification of tight clusters, bridges and bottlenecks of these networks
(Campillos et al., 2008; Yamanishi et al., 2010; Oprea et al., 2011;
Takarabe et al., 2012) combined with the selective optimization of
side activities (Wermuth, 2006) may be used to design multi-target
drugs.

• The combined similarity networks of chemical molecules including
drug targets, various molecular networks (such as interactomes or
signaling networks), system-wide biological data (such as mRNA ex-
pression patterns) and medical knowledge (such as disease charac-
terization) listed in Tables 5 and 9 (Lamb et al., 2006; Paolini et al.,
2006; Brennan et al., 2009; Hansen et al., 2009; Iorio et al., 2009; Li
et al., 2009a; Huang et al., 2010a; Zhao & Li, 2010; Azuaje et al.,
2011; Bell et al., 2011; Taboureau et al., 2011; Wang et al., 2011b;
Balaji et al., 2012; Edberg et al., 2012) may all be used for
multi-target drug design using modularization method-, similarity
score-, network inference-, Bayesian network- or machine learning-
based clustering (Hopkins et al., 2006; Hopkins, 2008; Chen et al.,
2009e; Xiong et al., 2010; Yang et al., 2010; Hu et al., 2011;
Takigawa et al., 2011; Yabuuchi et al., 2011; Cheng et al., 2012a,
2012b; Lee et al., 2012c; Nacher & Schwartz, 2012; Yu et al., 2012).
We note that some of the above methods describe and interpret
multi-target action and thus need further development for multi-
target prediction.

• Multiple perturbations of interactomes, signaling networks or meta-
bolic networks may uncover alternative target sets causing a similar
systems-level perturbation to that of the original target set. Differen-
tial analysis of networks in healthy and diseased statesmay enable an
even more efficient prediction (Antal et al., 2009; Farkas et al., 2011).
Such perturbation studies were successfully applied to smaller,
well-defined networks before using differential equation sets and
disease-state specific Monte Carlo simulated annealing (Yang et al.,
2008). Assessment of network oscillations may reveal central node
sets governing the dynamic behavior (Liao et al., 2011).

• Recent advances in establishing the controllability conditions of large
networks and in defining complex network hierarchy measures
(Cornelius et al., 2011; Liu et al., 2011, 2012; Banerjee & Roy, 2012;
Cowan et al., 2012; Mones et al., 2012; Nepusz & Vicsek, 2012;
Wang et al., 2012a; Yazicioglu et al., 2012) may uncover multiple tar-
get sets, as shown by the assessment of the controllability of smaller
networks (Luni et al., 2010). Controlling sets, which can assign any
prescribed set of centrality values to all other nodes by cooperatively
tuning theweights of their out-going edges (Nicosia et al., 2012) may
also be promising in the identification of multi-target sets.

• Appropriate reduction of the definition of dominant node sets, i.e.
sets of nodes reaching all other nodes of the network, may also be
used to determine target sets of multi-target drugs (Milenkovic
et al., 2011). Minimal dominant node set determination was recently
shown to be equal to findingminimal transversal sets of hypergraphs
(i.e. a hitting set of a hypergraph, which has a nonempty intersection
with each edge; Kanté et al., 2011), which extends this technique to
the powerful hypergraph description, where an edge may connect
any groups of nodes and not only two nodes. Definition and determi-
nation of appropriately limited dominant edge-sets (Milenkovic
et al., 2011) constitute a powerful approach for multi-target identifi-
cation.

• Analysis of transport between multiple sources and sinks in directed
networks (Morris & Barthelemy, 2012), such as in signaling networks
or in metabolic networks may reveal preferred source sets (encoding
target sets of multi-target drugs) preferentially affecting pre-defined
sink sets (encoding the desired effects). Throughflow centrality has
been recently defined as an important measure of such network con-
figurations (Borrett, 2012). Methods to find conceptually similar seed
sets of information spread in social networks (Shakarian & Paulo,
2012) may also be applied to find multi-target drug sets.

• Recently highly powerful methods were published to design and op-
timize multitarget ligands for polypharmacology profiles (Ajmani &
Kulkarni, 2012; Besnard et al., 2012). Besnard et al. (2012) tested
800 automatically designedmulti-target ligands of G-protein coupled
receptors, and found that 75% of them had a correctly predicted
polypharmacology profile. This area will remain an exciting priority
of multi-target drug design efforts.

Some of the above methodologies (such as those based on chem-
ical similarity networks) result in target sets, where lead design is a
more feasible process. Target sets, which are highly relevant at the
systems-level, but have diverse binding site structures may require
the identification of a set of indirect targets selectively influencing
the desired target set, but posing a more feasible lead development
task. We will describe the network-based identification of such indi-
rect targets in the next section describing allo-network drugs
(Nussinov et al., 2011). We note that almost all methods finding tar-
get sets of multi-target drugs can be used for drug repositioning sum-
marized in the preceding section. Moreover, all these methods are
related to the in silico prediction of drug–drug interactions (detailed
in Section 4.3.4) and side-effects (summarized in Section 4.3.5).

4.1.6. Allo-network drugs: a novel concept of drug action
Allosteric drugs (binding to allosteric effector sites; Fig. 22) are

considered to be better than orthosteric drugs (binding to active cen-
ters; Fig. 22) due to 4 reasons. 1.) The larger variability of allosteric
binding sites than that of active centers causes less allosteric
drug-induced side-effects than that of orthosteric drugs. 2.) Allosteric
drugs allow themodulation of therapeutic effects in a tunable fashion.
3.) In most cases the effect of allosteric drugs requires the presence of
endogenous ligand making allosteric action efficient exactly at the
time when the cell needs it. 4.) Allosteric drugs are non-competitive
with the endogenous ligand. Therefore, their dosage can be low
(DeDecker, 2000; Rees et al., 2002; Goodey & Benkovic, 2008; Lee &
Craik, 2009; Nussinov et al., 2011; Nussinov & Tsai, 2012).

We summarized our current knowledge on allosteric action
(Fischer, 1894; Koshland, 1958; Straub & Szabolcsi, 1964; Závodszky
et al., 1966; Tsai et al., 1999; Jacobs et al., 2003; Goodey & Benkovic,
2008; Csermely et al., 2010; Zhuravlev & Papoian, 2010; Rader &
Brown, 2011; Dixit & Verkhivker, 2012; Szilágyi et al., in press) from
the point of view of protein interaction networks in Section 3.2.2. In
that section we described the rigidity front propagation model as a
possible molecular mechanism of the propagation of allosteric
changes (Fig. 14; Csermely et al., 2012).

The concept of allosteric drugs can be broadened to allo-network
drugs, whose effects can propagate across several proteins via spe-
cific, inter-protein allosteric pathways of amino acids activating or
inhibiting the final target (Fig. 22; Nussinov et al., 2011). Earlier
data already pointed to an allo-network type drug action. Inter-
protein propagation of allosteric effects (Bray & Duke, 2004; Fliri
et al., 2010) and its possible use in drug design (Schadt et al., 2009)
were mentioned sporadically in the literature. Moreover, drug–target
network studies revealed that in more than half of the established
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network perturbation induced by the primary targets. In the top part of the middle panel the allosteric drug binds to an allosteric site and affects the pharmacologically active
site of the target protein (marked by a red asterisk) via the intra-protein allosteric signal propagation shown by the dark green arrow. In the top part of the right panel the signal
propagation (illustrated by the light green arrows) extends beyond the original drug binding protein, and via specific interactions affects two neighboring proteins in the
interactome. The pharmacologically active site is also marked by a red asterisk here. Orange arrows illustrate an intracellular pathway of propagating conformational changes,
which is disease-specific in case of successful allo-network drugs. Allo-network drugs allow indirect and specific targeting of key proteins by a primary attack on a ‘silent’ protein,
which is not involved in major cellular pathways. Targeting ‘silent’, ‘by-stander’ proteins, which specifically influence pharmacological targets, not only expands the current list of
drug targets, but also causes much less side-effects and toxicity.
Adapted with permission from Nussinov et al. (2011).
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922 drug–disease pairs drugs do not target the actual disease-
associated proteins, but bind to their 3rd or 4th neighbors. However,
the distance between drug targets and disease-associated proteins
was regarded as a sign of palliative drug action (Yildirim et al.,
2007; Barabási et al., 2011), and the expansion of the concept of allo-
steric drug action to the interactome level has been formulated only
recently (Nussinov et al., 2011). Interestingly, targeting neighbors
was found to be more influential on the behavior of social networks
than direct targeting (Bond et al., 2012).

Allo-network drug action propagates from the original binding
site to the interactome neighborhood in an anisotropic manner,
where propagation efficiency is highly directed and specific. Binding
sites of promising allo-network drug targets are not parts of ‘high-
intensity’ intracellular pathways, but are connected to them. These
intracellular pathways are disease-specific in the case of promising
allo-network drugs (Fig. 22). Thus allo-network drugs can achieve
specific, limited changes at the systems level with fewer side-effects
and lower toxicity than conventional drugs. Allosteric effects can be
considered at two levels: 1.) small-scale events restricted to the
neighbors or interactome module of the originally affected protein;
2.) propagation via large cellular assemblies over large distances
(i.e. hundreds or even thousands of Angstroms; Nussinov et al., 2011;
Szilágyi et al., in press). Drugs with targets less than 3 steps (or more
than 4 steps) from a disease-associated proteinwere shown to have sig-
nificantly more side-effects, and failedmore often (Wang et al., 2012c);
however, rational drug design in recent years proceeded in the opposite
direction, identifying drug targets closer to disease-associated proteins
than earlier (Yildirim et al., 2007). The above data argue that reversing
this trendmay bemore productive. Allo-network drugs point exactly to
this direction.

Databases of allosteric binding sites (Huang et al., 2011a; http://
mdl.shsmu.edu.cn/ASD) help the identification possible sites of allo-
network drug action. However, allo-network drugs may also bind to
sites, which are not used by natural ligands. For the identification of
allo-network drug targets and their binding sites, first the inter-
actome has to be extended to atomic level (amino acid level) resolu-
tion. For this, docking of 3D protein structures and the consequent
connection of their protein structure networks are needed. Thus
allo-network drug targeting requires the integration of our knowl-
edge on protein structures, molecular networks, and their dynamics
focusing particularly on disease-induced changes. We conclude this
section by listing a few possible methods to define allo-network
drug target sites.

• A general strategy for the identification of allosteric sites may in-
volve finding large correlated motions between binding sites. This
can reveal which residue-residue correlated motions change upon
ligand binding, and thus can suggest new allosteric sites (Liu &
Nussinov, 2008) even in integrated networks of protein mega-
complexes.

• Reverse engineering methods (Tegnér & Bjorkegren, 2007) allow
us to discriminate between ‘high-intensity’ and ‘low-intensity’
communication pathways both in molecular and atomic level net-
works, and thus may provide a larger safety margin for allo-network
drugs.

• As we summarized in Section 3.2.2, network-based analysis of per-
turbation propagation is a fruitful method to identify intra-protein al-
losteric pathways (Pan et al., 2000; Chennubhotla & Bahar, 2006;
Ghosh & Vishveshwara, 2007, 2008; Tang et al., 2007; Daily et al.,
2008; Goodey & Benkovic, 2008; Sethi et al., 2009; Tehver et al.,
2009; Vishveshwara et al., 2009; Park & Kim, 2011; Csermely et al.,
2012; Ma et al., 2012a). A successful candidate for the inter-protein
allosteric pathways involved in allo-network drug action disturbs
network perturbations specific to a disease state of the cell at a site
distant from the original drug-binding site. Perturbation analysis
(see Section 2.5.2; Antal et al., 2009; Farkas et al., 2011) applied to
atomic level resolution of the interactome in combination with dis-
ease specific protein expression patterns may help the identification
of such allo-network drug targets.

• Central residues play a key role in the transmission of allosteric
changes (Section 3.2.2; Chennubhotla & Bahar, 2006; Chennubhotla
& Bahar, 2007; Zheng et al., 2007; Chennubhotla et al., 2008;
Tehver et al., 2009; Liu & Bahar, 2010; Liu et al., 2010a; Su et al.,
2011; Park & Kim, 2011; Dixit & Verkhivker, 2012; Ma et al., 2012a;

http://mdl.shsmu.edu.cn/ASD
http://mdl.shsmu.edu.cn/ASD
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Pandini et al., 2012). We may use a number of centrality measures
(Kovács et al., 2010), including perturbation-based or game-
theoretical assumptions (see Sections 2.5.2 and 2.5.3; Farkas et al.,
2011), to find the level of importance of proteins and pathways in
interactomes, in signaling networks and important amino acids in
their extensions to atomic level resolution (Szalay-Bekő et al., 2012).

• At both the molecular network level and its extension to atomic level
resolution we may subtract network hierarchy (Ispolatov & Maslov,
2008; Jothi et al., 2009; Cheng & Hu, 2010; Hartsperger et al., 2010;
Rosvall & Bergstrom, 2011; Liu et al., 2012; Mones et al., 2012;
Szalay-Bekő et al., 2012) to assess the importance of various nodes
(proteins and/or amino acids), or we may find nodes or edges con-
trolling the network by the application of recently published
methods (Cornelius et al., 2011; Liu et al., 2011, 2012; Banerjee &
Roy, 2012; Cowan et al., 2012; Mones et al., 2012; Nepusz & Vicsek,
2012; Wang et al., 2012a; Pósfai et al., 2013).

• Combination of evolutionary conservation data proved to be an effi-
cient predictor of intra-protein signaling pathways (Tang et al., 2007;
Halabi et al., 2009; Joseph et al., 2010; Jeon et al., 2011; Reynolds
et al., 2011). Similar approachesmay be extended to protein neighbor-
hoods helping to find starting sites for allo-network drug action.

• Disease-associated single-nucleotide polymorphisms (SNPs; Li et al.,
2011b) and/or mutations (Wang et al., 2012b) may be part of the
propagation pathways of allosteric effects. In-frame mutations are
enriched in interaction interfaces (Wang et al., 2012b), and provide
a potential dataset to assess the existence of allo-network drug bind-
ing sites.

Targeting disease-induced dynamical changes in molecular net-
works may also be focused on transient interactions specific to dis-
ease. Thus allo-network drugs might also provide a novel solution
to uncompetitive, ‘interfacial’ drug action (Pommier & Cherfils,
2005; Keskin et al., 2007). When available, current drugs aim to di-
rectly inhibit protein–protein interactions (Gordo & Giralt, 2009).
We note that the methods above are suitable to find allo-network
drugs, which stabilize/restore/activate a protein, its function or one
(or more) of its interactions. The methods we listed here are suitable
for finding both primary targets of allo-network drugs in molecular
networks and allo-network drug binding sites in the amino acid net-
works of involved proteins. We will describe additional network-
related methods to find binding sites of allo-network drugs proper
in Section 4.2.

4.1.7. Networks as drug targets
The last two sections on multi-target drugs and allo-network

drugs already demonstrated the utility of network-based thinking in
the determination of drug-targets. In this closing section on drug tar-
get identification we summarize the ideas considering key segments
of networks as drug targets.

Considering molecular networks as targets has gained increasing
support in recent papers on systems-level drug design (Brehme
et al., 2009; Schadt et al., 2009; Zanzoni et al., 2009; Baggs et al.,
2010; Pujol et al., 2010; Cho et al., 2012; Erler & Linding, 2012). As
we defined in the starting section on drug target identification, from
the network point of view it is important to discriminate between
two strategies: 1.) the central hit strategy aiming to destroy the net-
work of infectious agents or cancer cells and 2.) the network influ-
ence strategy using the systems-level knowledge to find drug target
candidates in therapies of polygenic, complex diseases (see Fig. 19
and Section 4.1.1 for further details). Here we list a few major charac-
teristics of both strategies.

Optimal network targeting of the central hit strategy:

• finds hubs and other central nodes or edges of molecular net-
works or identifies choke points of metabolic networks, i.e. proteins
uniquely producing or consuming a certain metabolite;

• finds unique targets of infectious agent- or cancer-specific networks.
Optimal network targeting of the network influence strategy:

• shifts disease-specific changes of cellular functions back to their
normal range (Kitano, 2007);

• applies precise targeting of selected network pathways, protein com-
plexes, network segments, nodes or edges avoiding highly influential
nodes and edges of molecular networks in healthy cells but converg-
ing drug effects at specific pathway sites of diseased cells;

• uses multiple or indirect targeting;
• takes into consideration tissue specificity.

Optimal network targeting of both the central hit and network in-
fluence strategies:

• incorporates patient- and disease stage-specific data (such as single-
nucleotide polymorphisms, metabolome, phosphoproteome or gut
microbiome data) ADMET-related data, side-effect- and drug
resistance-related data as detailed in the next section.

We believe that the arsenal of network (re)construction and net-
work analysis methods we listed in this review may offer help and
promise for the prediction of novel, systems-level drug targeting
possessing the characteristics detailed above.

4.2. Hit finding, expansion and ranking

Following target selection discussed in the preceding section, here
we will discuss the added-value of network-related methods in the
search, confirmation and expansion of hit molecules. Several steps in
this process, such as pharmacophore identification, network-based
QSARmodels, building of a hit-centered chemical library, hit expansion,
as well as other network-related methods of chemoinformatics and
chemical genomics, have already been discussed in Section 3.1.3. There-
fore, the Reader is asked to compare Section 3.1.3 with the current
chapter. Here we will first summarize the help provided by network
description and analysis in the determination of ligand binding sites,
as applicable to network nodes as drug targets. We will continue with
network methods to find hot spots, which reside in protein interfaces,
and are targets of edgetic drugs. Wewill conclude the section by a sum-
mary of network-related approaches in hit expansion and ranking.

4.2.1. In silico hit finding for ligand binding sites of network nodes
Node targeting aims to find a selective, drug-like (low molecular

weight, possibly hydrophobic) molecule that binds with high affinity
to the target (Lipinski et al., 2001). There are two main network-
based approaches for the identification of ligand binding sites. A
‘bottom–up approach’ uses protein structure networks (see Section 3.2
in detail), while a ‘top–down approach’ reconstructs binding site fea-
tures from binding site similarity networks (Section 4.1.3).

For in silico hit prediction, a logical first step is to find pockets
(cavities, clefts) on the protein surface. Medium-sized proteins have
10 to 20 cavities. Ligands often bind to the largest surface cavities of
this ensemble (Laskowski et al., 1996; Liang et al., 1998b; Nayal &
Honig, 2006). Using a protein structural approach, Coleman and
Sharp (2010) identified a hierarchical tree of protein pockets using
the travel depth algorithm that computes the physical distance a sol-
vent molecule would have to travel from a given protein surface point
to the convex hull of the surface. Using the similarity network ap-
proach, pocket similarity networks have been constructed, and their
small-world character, hubs and hierarchical modules were identi-
fied. Pocket groups were found to reflect functional separation (Liu
et al., 2008a, 2008b), and may be used for hit identification. However,
shape information alone is insufficient to discriminate between
diverse binding sites, unless combined with chemical descriptors
(http://proline.physics.iisc.ernet.in/pocketmatch; Yeturu & Chandra,
2008; http://proline.physics.iisc.ernet.in/pocketalign; Yeturu &
Chandra, 2011). CAVER (http://caver.cz; Chovancova et al., 2012)

http://proline.physics.iisc.ernet.in/pocketmatch
http://proline.physics.iisc.ernet.in/pocketalign
http://caver.cz
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uses molecular dynamics simulation to predict intra-protein transport
pathways.

Protein structure networks (Section 3.1) were relatively seldom used
so far to predict ligand binding sites. However, high-centrality segments
of protein structure networks were shown to participate in ligand bind-
ing (Liu & Hu, 2011). Evolutionary conservation patterns of amino acids
in related protein structures identified protein sectors related to catalytic
and allosteric ligand binding sites (Halabi et al., 2009; Jeon et al., 2011;
Reynolds et al., 2011). Protein structure networks were extended, incor-
porating ligand atoms, participating ions andwatermolecules and chem-
ical properties aiming to find networkmotifs representing a favorable set
of protein–ligand interactions used for as a scoring function (Xie &
Hwang, 2010; Kuhn et al., 2011). Protein structure network comparison
was demonstrated to be useful for the identification of chemical scaffolds
of potential drug candidates (Konrat, 2009).

Similarity clusters or network prediction methods of binding site
similarity networks (also called as pocket similarity networks, or cav-
ity alignment networks; Zhang & Grigorov, 2006; Kellenberger et al.,
2008; Liu et al., 2008a; Park & Kim, 2008; Andersson et al., 2010;
Weskamp et al., 2009; Xie et al., 2009a; BioDrugScreen, http://
biodrugscreen.org; Li et al., 2010c; Reisen et al., 2010; Ren et al.,
2010; Weisel et al., 2010) can be used to predict binding site topology
of yet unknown proteins. The complex drug target network, PDTD
(http://dddc.ac.cn/pdtd) incorporating 3D active site structures and
the web-server TarFishDock enables simultaneous target and
target-site prediction of new chemical entities (Gao et al., 2008).
The versatile protein–ligand interaction database, CREDO (http://
www-cryst.bioc.cam.ac.uk/databases/credo; Schreyer & Blundell,
2009) and the extensive protein–ligand databases, STITCH (http://
stitch.embl.de; Kuhn et al., 2012) and BindingDB (http://bindingdb.
org; Liu et al., 2007a) offer an important help to search for potential
targets and identify their binding sites.

4.2.2. In silico hit finding for edgetic drugs: hot spots
Edgetic drugs (Section 4.1.2) modify protein–protein interactions.

Protein–protein interaction binding sites were considered for a long
time as “non-druggable”, since they are large and flat. However,
Clackson and Wells (1995) discovered hot spots of binding surfaces,
which are residues providing a contribution to the decrease in binding
free energy of larger than 2 kcal/mol. Bogan and Thorn (1998) proposed
that hot spots are surrounded by hydrophobic regions excluding water
from the hot spot residues. Hot spots are often populated by aromatic
residues, and tend to cluster in hot regions, which are tightly packed,
relatively rigid hydrophobic regions of the protein–protein interface.
Hot spots and hot regions help in finding hits, since 1.) they constitute
small focal points of drug binding, which can be predicted within the
large and flat binding-interface; 2.) these focal points are relatively
rigid, and help in docking. An inhibitor needs to cover 70 to 90 atoms
at the protein–protein interaction site, which corresponds to the
‘Lipinski-conform’ (Lipinski et al., 2001) ~500 Da molecular weight.
Several small molecules were found, which are able to compete with
the natural binding partner very efficiently (Keskin et al., 2005, 2007;
Wells & McClendon, 2007; Ozbabacan et al., 2010). Druggable hot re-
gions have a concave topology combinedwith a pattern of hydrophobic
and polar residues (Kozakov et al., 2011).

Hot spots can be predicted as central nodes of protein structure
networks (del Sol & O'Meara, 2005; Liu & Hu, 2011; Grosdidier &
Fernández-Recio, 2012). In agreement with this, disease-associated
mutations (single-nucleotide polymorphisms) are enriched by
3-fold at the interaction interfaces of proteins associated with the dis-
order, and often occur at central nodes of the protein structure net-
work (Akula et al., 2011; Li et al., 2011b; Wang et al., 2012b). Using
this knowledge, the pyDock protein–protein interaction docking al-
gorithm was improved by protein structure network-based scores
(Pons et al., 2011). Intra-protein energy fluctuation pathways were
proposed to help in the prediction of hot spot localization (Erman,
2011). Recently the use of associative-memory, water-mediated
coarse-grained protein folding model, AWSEM was also demonstrated
to predict protein binding surfaces well (Zheng et al., 2012a).

Hit identification of edgetic drugs is helped by the TIMBAL database
containing ligands inhibiting protein–protein interactions (http://
www-cryst.bioc.cam.ac.uk/databases/timbal; Higueruelo et al., 2009).
The machine learning-based technique of the Dr. PIAS server as-
sesses if a protein–protein interaction is druggable (http://drpias.
net; Sugaya & Furuya, 2011; Sugaya et al., 2012). Despite the consid-
erable progress of this field in the last decade, we are still at the be-
ginning of using network-related knowledge to identify edgetic
drug binding sites. Network-related methods for hot spot and hot
region identification are also promising, if applied to aptamers,
peptidomimetics or proteomimetics.

4.2.3. Network methods helping hit expansion and ranking
An important step of hit confirmation is the check of the chemical

amenability of the hit, i.e. the feasibility up-scaling costs of its synthe-
sis. Core and hub positions or other types of centrality of the hits in
the chemical reaction network (Section 3.1.2; Fialkowski et al.,
2005; Bishop et al., 2006; Grzybowski et al., 2009) are all predictors
of good chemical tractability. Moreover, a simulated annealing-
based network optimization uncovered optimal synthetic pathways
of selected hits (Kowalik et al., 2012). In the case of multiple hits,
hit clustering can be performed by modularization of their chemical
similarity networks described in Section 3.1.3. Hubs and clusters of
hit-fragments in chemical similarity networks may be used for
hit-specific expansion of existing compound libraries (Benz et al.,
2008; Tanaka et al., 2009). QSAR-related similarity networks and
the other complex similarity networks we listed in Table 5 help the
lead development and selection efforts we will detail in the next
section.

Hit cluster should usually conform to the Lipinsky-rules of drug-
like molecules (Lipinski et al., 2001) restricting the hit-range to
small and hydrophobic molecules with a certain hydrogen-bond
pattern. Leeson and Springthorpe (2007) warned that systematic de-
viations from these rules may have a dangerous impact on drug de-
sign, increasing late-attritions due to side-effects and/or toxicity.
However, natural compounds also contain a set of ‘anti-Lipinsky’mol-
ecules, which form a separate island in the chemical descriptor space
having a higher molecular weight and a larger number of rotatable
bonds (Ganesan, 2008). The network-related methods predicting
the efficiency, ADME, toxicity, interactions, side-effect and resistance
occurrence detailed in the next section may help in decreasing the
risk of non-conform hit and lead molecules, and highlight issues of
drug safety in an early phase of drug development.

4.3. Lead selection and optimization: drug efficacy, drug absorption,
distribution, metabolism, excretion, toxicity, drug interactions, side-
effects and resistance

Following hit selection and expansion discussed in the preceding
section network-related methods may also help the lead selection
process. Various aspects of lead selection such as drug toxicity,
side-effects and drug–drug interactions are tightly interrelated. The
incorporation of personalized data, such as genome-wide association
studies/single-nucleotide polymorphisms (GWAS/SNPs), signaling
network or metabolome data into the complex network structures
which help lead selection may not only predict well the pharma-
cogenomic properties of the lead, but also help patient profiling in
clinical trials, as well as therapeutic guideline determination of the
marketed product.

4.3.1. Networks and drug efficacy, personalized medicine
Drug efficacy is the theoretical efficiency of drug action not taking

into account the effects in practice, such as patient compliance.

http://biodrugscreen.org
http://biodrugscreen.org
http://dddc.ac.cn/pdtd
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http://bindingdb.org
http://bindingdb.org
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Efficacy is a highly personalized efficiency measure of drug action,
which heavily depends on multiple factors including the genetic
background (e.g. single-nucleotide polymorphisms and other genetic
variants assessed in genome-wide association studies), network ro-
bustness and the ADME properties (see next section; Kitano, 2007;
Barabási et al., 2011; Yang et al., 2012). Single-nucleotide polymor-
phisms (SNPs) may alter the interaction properties of at least 20% of
the nodes in the human interactome (Davis et al., 2012), and were re-
cently shown to be a reason for the unexpectedly high variability of
protein–protein interactions (Hamp & Rost, 2012). A number of stud-
ies assessed the effects of SNPs on changing the underlying properties
of interactomes and gene–gene association networks (Akula et al.,
2011; Cowper-Sal lari et al., 2011; Fang et al., 2011; Hu et al., 2011;
Li et al., 2011b, 2012b; Wang et al., 2012b), which may change drug
efficacy both directly or indirectly. The integrated Complex Traits
Networks (iCTNet, http://flux.cs.queensu.ca/ictnet), including pheno-
type/single-nucleotide polymorphism (SNP) associations, protein–
protein interactions, disease–tissue, tissue–gene and drug–gene rela-
tionships, is a rich dataset helping drug efficacy assessments (Wang
et al., 2011b).

Incorporation of omics-type data into complex, drug action-
related networks will allow the construction of personalized efficacy
profiles. Integration of pharmacogenomics, signaling network or
metabolome data may improve clinical trial design. However,
network-related methodologies for complex drug efficacy profiling
have not been developed yet. Similarly, analysis of the semantic net-
works of medical records by text mining and by network analysis
techniques is a future tool to improve the assessment of drug efficien-
cy measures, extending the efficacy with patient compliance and
other effects occurring in medical practice (Chen et al., 2009a).
Network-related models may help in the development of optimal
drug dosage and frequency schedules. As an example of this, the
study of Li et al. (2011e) uncovered a ‘sweet spot’ of drug efficacy
dose and schedule regions by the extension of their model to the ge-
netic regulatory network environment of the drug target. Drug dose
and schedule considerations are already parts of the ADME character-
ization, which we will detail in the next section.

4.3.2. Networks and absorption, distribution, metabolism and excretion,
toxicity: drug absorption, distribution, metabolism and excretion

The integration of early ADME (absorption, distribution, metabo-
lism, excretion) profiling to lead selection is an important element
of successful drug design. Prediction of ADME properties using struc-
tural networks of lead candidates (Kier & Hall, 2005), molecular frag-
ment networks predicting human albumin binding (Estrada et al.,
2006), chemical similarity networks (Brennan et al., 2009), as well
as drug–tissue networks (Gonzalez-Diaz et al., 2010b), isotope-
labeled metabolomes and drug metabolism networks (Martinez-
Romero et al., 2010; Fan et al., 2012), non-linear diffusion models of
drug partitioning in lipid network structures, such as the stratum
corneum (Schumm et al., 2010), multiple binding to transporters
(Kell et al., 2013) and complex networks of major cellular mecha-
nisms participating in ADME determination (Ekins et al., 2006),
were all important advances which can help in incorporating better
ADME complexity into the lead selection process. Despite these
methods, there is room to improve ADME prediction and assessment
by network techniques. ADME studies are often combined with toxic-
ity assessments (ADMET), which we will detail in the next section.
Toxicity is related to side-effects discussed in Section 4.3.5. Drug com-
binations may have an especially complex ADME profile due drug–
drug interaction effects, which will be described in Section 4.3.4.

4.3.3. Networks and drug toxicity
Toxicity plays a different role in drug targets identified using

the central hit strategy and the network influence strategy of
Section 4.1.1. In the central hit strategy our aim is to kill the cells of
the infectious agent or cancer. Therefore, toxicity is a must here—
but it has to be selective to the targeted cells. In the network influence
strategy targeting other diseases, toxicity becomes generally avoid-
able. Toxicity is often a network property depending on the extent
of network perturbation and robustness (Kitano, 2004a, 2004b,
2007; Apic et al., 2005; Geenen et al., 2012). Network hubs and the
essential proteins described in Section 2.3.4 are less frequently
targeted by drugs—with the exception of anti-infective and anti-
cancer agents (Jonsson & Bates, 2006; Yildirim et al., 2007). In con-
trast, those inter-modular bridges, which modulate specific informa-
tion flows, are preferred drug targets (Hwang et al., 2008). Node
centrality in drug-regulated networks correlates with drug toxicity
(Kotlyar et al., 2012). All these findings give further support to the
utility of network-based toxicity assessments.

Hepatotoxicity is a major reason of drug attritions (Kaplowitz,
2001). The number of network studies addressing this important
issue is increasing, and includes cytokine signaling networks related
to idiosyncratic drug hepatotoxicity (Cosgrove et al., 2010) and
gene–gene interaction networks based on transcriptional profiling
(Hayes et al., 2005; Kiyosawa et al., 2010). Importantly, toxicity-
related networks should be understood as signed networks con-
taining both toxicity promoting effects and detoxifying effects, such
as the glutathione network in liver (Geenen et al., 2012), or hepatic
pro-survival (AKT) and pro-death (MAPK) pathways, where specific
pathway inhibitors may antagonize drug-induced hepatotoxicity
(Cosgrove et al., 2010).

Network-based in silico prediction of human toxicity aims to
bridge the gap between animal toxicity studies and clinical trials.
Toxicity assessment applications of chemical similarity networks
(Section 3.1.3; Kier & Hall, 2005; Brennan et al., 2009), as well as
the use of association networks between chemicals and toxicity-
related proteins or processes (DITOP, http://bioinf.xmu.edu.cn:8080/
databases/DITOP/index.html; Zhang et al., 2007; Audouze et al.,
2010; Iskar et al., 2012) open a number of additional possibilities
for network-predictions of human toxicity in the future.
4.3.4. Networks and drug–drug interactions
Drug–drug interactions may often cause highly unexpected effects.

As we already described in Section 4.1.5 on network polypharmacology
and multi-target drug design, most of the unexpected drug–drug inter-
actions are not due to direct competition for the same binding site, but
are caused by the complex interaction structure of molecular networks.
Experimental testing of drug–drug interactions may be used to help
infer the underlyingmolecular network structure, and drug–drug inter-
action networks (Borisy et al., 2003; Yeh et al., 2006; Lehár et al., 2007;
Jia et al., 2009) may be used to predict additional drug–drug interac-
tions using network modularization methods.

A drug–drug interaction network was assembled using drug pack-
age insert texts. This network was extended by potential mechanisms,
such as drug targets or enzymes involved in drug metabolism, and
was included in the KEGG DRUG database (http://genome.jp/kegg/
drug; Takarabe et al., 2008; Takarabe et al., 2011; Kanehisa et al.,
2012). Recently text mining rules to refine literature-derived drug–
drug interaction networks were proposed (Kolchinsky et al., 2013).
Drug–drug interaction networks may be perceived as signed networks
containing synergistic or antagonistic interactions (Yeh et al., 2006; Jia
et al., 2009), and have hubs, i.e. drugs which are involved in most of
the observed interactions (Hu & Hayton, 2011). Many of the drug-
related databases listed in Table 9 may help to uncover adverse drug–
drug interactions. Besides the KEGG DRUG database mentioned above
the DTome (http://bioinfo.mc.vanderbilt.edu/DTome; Sun et al., 2012)
database also explicitly contains adverse drug interactions. Complex
chemical similarity networks and drug–target networks, discussed in
Sections 3.1.3 and 4.1.3, respectively, were also used for the prediction
of unexpected drug–drug interactions (Zhao & Li, 2010; Yu et al., 2012).

http://flux.cs.queensu.ca/ictnet
http://bioinf.xmu.edu.cn:8080/databases/DITOP/index.html
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Drugs may affect each other's ADME properties by simple competi-
tion, or by more refined network-effects (Jia et al., 2009; Kell et al.,
2013), such as the positive synergism of amoxicillin and clavulanate,
where clavulanate is an inhibitor of the enzyme responsible for amoxi-
cillin destruction (Matsuura et al., 1980). Drug–herb interactions are
important aspects of drug–drug interaction analysis particularly in
China, where traditional Chinese medicine is often combined with
Western medicine. Here semantic networks and other combined net-
works of drug and herb effects and targetsmay offer help in prediction
of drug safety (Chen et al., 2009a; Zheng et al., 2012b). Despite the
wide variety of approaches listed, network techniques provide many
more possibilities in the prediction of drug–drug interaction effects.
In practice, all methods listed in Section 4.1.5 on multi-target drugs,
such as perturbation, network influence and source/sink analyses, as
well as the drug side-effect networks described in the next section
may be used for the prediction of drug–drug interactions.

4.3.5. Network pharmacovigilance: prediction of drug side-effects
Discovering unexpected side-effects by experimental methods

alone, is a daunting task requiring the screen of a large number of po-
tential off-targets. However, side-effects may have their origin in both
single and multi-target. Both are systems-level responses, which
allow the prediction of drug off-targets by computational methods
(Berger & Iyengar, 2011; Zhao & Iyengar, 2012). In this section we in-
troduce several network-related methods of side-effect identification.

Side-effects may come from the involvement of a single drug tar-
get in multiple cellular functions or may involve multiple drug tar-
gets. In a study on protein–protein interaction networks two third
of the side-effect similarities were related to shared targets, while
5.8% of the side-effect similarities were due to drugs targeting pro-
teins close in the human interactome (Brouwers et al., 2011). This re-
sult may reflect both the concentration of side-effects in direct drug
targets and the efficiency of those allo-network drugs (Section 4.1.6;
Nussinov et al., 2011), whose direct target is not the primary binding
site, but a neighboring protein in the interactome.

The previous sections uncovered many network-related strategies
to avoid side-effects at the level of target selection. We will summa-
rize only a few major considerations here.

• Avoidance of targeting hubs and high centrality nodes of inter-
actomes, signaling networks and metabolomes is a general network
strategy of side-effect reduction, especially when using the network
influence strategy of Section 4.1.1 against polygenic diseases such
as diabetes. Disease specific, limited network perturbation is a key
systems-level requirement to avoid drug adverse effects (Guimera
et al., 2007b; Hase et al., 2009; Zhu et al., 2009; Yu & Huang,
2012). Network algorithms focusing the downstream components
of node-targeting to a certain network segment are important
methods to reduce potential side-effects at the level of target iden-
tification (Dasika et al., 2006; Ruths et al., 2006; Pawson & Linding,
2008).

• Iterative methods sequentially identified sets of metabolic network
edges corresponding to enzymes, whose inhibition can produce the
expected inhibition of targets with reduced side-effects in humans
and in E. coli (Lemke et al., 2004; Sridhar et al., 2007, 2008; Song
et al., 2009).

• Unexpected edges between remote targets in ligand binding site
similarity networks (also called as pocket similarity networks, or
cavity alignment networks) suggest potential side-effects (Zhang
& Grigorov, 2006; Liu et al., 2008a; Weskamp et al., 2009).

• Edgetic drugs (Section 4.1.2) are usually more specific and may have
generally less side-effects than node-targeting drugs. However, com-
mon protein–protein interaction interface motifs are important indi-
cators of potential side-effects of edgetic drugs (Engin et al., 2012).

• Future analysis may uncover nodes and edges having a major influ-
ence on the occurrence of the disease-specific critical network-
transitions mentioned in Section 2.5.2. These influential nodes will
most probably represent the ‘Achilles-heel’ of network in the disease
state, and their targeting will induce fewer side-effects than the
average.

Side-effect prediction is tightly related to drug–target prediction
(Section 4.1) involving the comparison of novel target(s) with those
of existing drugs. The selective optimization of side-effects (Wermuth,
2006) is a known lead development technique. Consequently both
drug–target interaction networks (Section 4.1.3; Xie et al., 2009b;
Yang et al., 2010; Azuaje et al., 2011; Xie & Bourne, 2011; Yang et al.,
2011; Takarabe et al., 2012; Yu et al., 2012) and drug–disease networks
(Hu & Agarwal, 2009) may be used for the prediction of side-effects.
Analysis of drug–disease networks may be extended using pathway
analysis (Ye et al., 2012). Complex chemical similarity networks
(Section 3.1.3) also use a combination of network-related data includ-
ing e.g. interactomes for the prediction of off-target effects (Hase
et al., 2009; Yamanishi et al., 2010; Zhao & Li, 2010). The web-servers
SePreSA (http://SePreSA.Bio-X.cn; Yang et al., 2009a) and DRAR-CPI
(http://cpi.bio-x.cn/drar; Luo et al., 2011) were constructed to show
possible adverse drug reactions based ondrug–target interactions. Prac-
tically all methods listed in Section 4.1.5 on multi-target drugs may be
used to predict side-effects. As an example, the Monte Carlo simulated
annealing network perturbation method of Yang et al. (2008) correctly
predicted the well-known side-effects of non-steroidal anti-
inflammatory drugs and the cardiovascular side-effects of the recalled
drug, Vioxx. Moreover, side-effect determination may be extended to
any complex similarity networks we listed in Table 5 (such as that
containing disease-specific genome-wide gene expression data;
Huang et al., 2010a; the Cytoscape plug-in DvD program, http://www.
ebi.ac.uk/saezrodriguez/DVD; Pacini et al., 2013) and to those future
network representations, which will include signaling network or
metabolome data. These datasets may be used to construct personal-
ized or patient cohort-specific side-effect profiles enabling a better fo-
cusing of therapeutic indications and contraindications.

In recent years, many types of side-effect networks, drug target/
adverse drug reaction networks or drug target/adverse target net-
works were constructed.

• Campillos et al. (2008) and later Yamanishi et al. (2010) and
Takarabe et al. (2012) combined structural similarity and side-
effect similarity to construct a side-effect similarity network of
drugs, and used this network to identify novel drug targets for
drug repositioning (Section 4.1.4).

• Correlation analysis of drug protein-binding profiles and side-effect
profiles revealed the enrichment of drug targets participating in the
same biological pathways (Mizutani et al., 2012).

• Text mining of drug package insert text was used for the construc-
tion of side-effect networks showing a gross similarity of preclini-
cal and clinical compound profiles (Fliri et al., 2005; Oprea et al.,
2011). Text mining of scientific papers may result in an extended
drug–target network revealing potential side-effects (Garten
et al., 2010).

• A drug–target/adverse drug reaction network was constructed
from chemical similarity-based prediction of off-targets and relat-
ed side-effects of 656 drugs (Lounkine et al., 2012).

• A network of 162 drugs causing at least one serious adverse drug re-
action and their 845 targets showed similar target profiles for similar
serious adverse drug reactions. TheMHC I (Cw*4) protein was identi-
fied and confirmed as the possible target of the sulfonamide-induced
toxic epidermal necrolysis adverse effect (Yang et al., 2009b).

• Yang et al. (2009c) used the CitationRank network centrality algo-
rithm and a dataset of gene/serious adverse drug reaction associa-
tions (collected by text mining from PubMed records) to identify
the association strength of genes with 6 major serious adverse drug
reactions (http://gengle.bio-x.cn/SADR).

http://SePreSA.Bio-X.cn
http://cpi.bio-x.cn/drar
http://www.ebi.ac.uk/saezrodriguez/DVD
http://www.ebi.ac.uk/saezrodriguez/DVD
http://gengle.bio-x.cn/SADR
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Side-effect similarity networks were used for efficient refinement
of primary side-effect identification based on similarities in drug
structures (Atias & Sharan, 2011). Network prediction methods de-
tailed in Section 2.2.2 and network modularization methods may
help to decipher novel side-effects from side-effect networks in the
future.

The side-effect database, SIDER (http://sideeffects.embl.de; Kuhn
et al., 2010) considerably enhanced side-effect network studies. The
SIDER-derived side-effect network was extended by biological pro-
cesses related to Gene Ontology terms and text mining of PubMed
data (Lee et al., 2011). Combination of SIDER data with those on
disease-associated genes showed that drugs having a target less than
3 or more than 4 steps away from a disease-associated protein in
human signaling networks had significantly more side-effects, and
failed more often (Wang et al., 2012c).

Sources of unexpected side-effects can sometimes be focused on a
certain tissue or cellular process. Analysis of tissue-specific network
dynamics, such as that of the kidney metabolic network revealing hy-
pertensive side-effects (Chang et al., 2010), might be a promising
method to predict tissue-specific side-effects. Csoka and Szyf (2009)
raised the possibility of epigenetic side-effects, where a drug modifies
the chromatin structure, and thus indirectly influences a number of
other genes. Similarly, microRNA related side-effects may be devel-
oped by the interaction of a drug with the complex microRNA signal-
ing network (Section 3.4), where a change in the transcription of a
microRNA may influence a set of rather unrelated proteins and relat-
ed functions.

4.3.6. Resistance and persistence
In recent years antibiotic resistance became amajor threat of human

health (Bush et al., 2011). Antibiotic persistence is a form of antibiotic
resistance, which is related to a dormant, drug-insensitive subpopula-
tion of bacteria (Rotem et al., 2010). Resistance development against
chemotherapeutic agents is a key challenge of anti-cancer therapies
(Section 3.4.3; Kitano, 2004a; Logue & Morrison, 2012). Resistance
development is involved in the application of the central hit strategy de-
fined in Section 4.1.1 aiming to destroy pathogen- or cancer-related
networks.

Ligands may be optimized against resistance by targeting conserved
amino acids and main-chain atoms with strong interactions instead of
weaker interactions pointing towards mutatable residues (Hopkins et
al., 2006). Tuske et al. (2004) defined the substrate-envelope for HIV
reverse transcriptase as the space occupied by various conformations
of naturally occurring ligands and their targets. Lamivudine and zidovu-
dine induced resistance by protruding beyond this substrate-envelope,
while tenofovir, which did not have handles projecting beyond the sub-
strate envelope was more resistant against resistance development
(Tuske et al., 2004). Protein structure network studies may help in de-
signing more resistant-prone lead molecules.

Development of drug resistance is often a phenomenon involving
network-robustness, when the affected cell activates alternative or
counter-acting pathways to minimize the consequences of drug ac-
tion (Kitano, 2007). Oberhardt et al. (2010) offer a comprehensive
analysis of metabolic network adaptation of Pseudomonas aeruginosa
to a host organism during a 44-months period. Co-targeting of an ad-
ditional crucial point of drug-affected network pathways is an effi-
cient tool to fight against resistance. Drug combinations and multi-
target drugs develop less resistance (Zimmermann et al., 2007;
Pujol et al., 2010; Rosado et al., 2011; Savino et al., 2012). Analysis
of pathogen interactomes involving random walks or known drug
resistance-related proteins plus gene expression changes revealed
pathways often involved in resistance development helping co-
target determination (Raman & Chandra, 2008; Chen et al., 2012b).
Resistance-related proteins defined a subset of pathogen interactome,
called resistome. Drug-induced gene expression changes and be-
tweenness centralities of their interactions were used as weights of
resistome edges. Resistome hubs may serve as important co-targets
(Padiadpu et al., 2010). Differential assessment of molecular net-
works of normal and resistant pathogens allows more efficient drug
resistant target and/or co-target identification (Kim et al., 2010). As
we described in Section 3.4.3, the combination of anti-tumor drugs
and stress response targeting increases therapeutic efficiency
(Rocha et al., 2011; Tentner et al., 2012). The Hebbian learning rule,
i.e. the property of neuronal networks to increase edge-weights
along frequently used pathways (Hebb, 1949) may be extended to
molecular networks, and studied as a possible source of systems-
level resistance development.

Importantly, the most efficient synergistic drug combinations typi-
cally preferred in clinical settings may develop a faster resistance,
which might argue for other, e.g. antagonistic drug combinations
(Chait et al., 2007; Hegreness et al., 2008). Synthetic rescues (when
the inhibition of a target compensates for the inhibition of another;
Section 3.6.3) are good candidates for anti-resistant antagonistic
co-target action (Motter, 2010). Network simulation of resistance trans-
mission in bacterial populations also underlined the need for potent an-
timicrobials and high-enough doses to kill the susceptible population
segment as soon as possible (Gehring et al., 2010). Network-related
methods to fight drug-resistance may help both anti-infective and
anti-cancer strategies as we will describe in the next two sections.

5. Four examples of network
description and analysis in drug design

In this section we will illustrate the usefulness of network-related
methods in drug design with examples of four major threats of
human health: infectious diseases, cancer, diabetes (extended to met-
abolic diseases) and neurodegenerative diseases. The first two disease
groups (infectious diseases and cancer) are examples of the central
hit strategy aiming to destroy the network of infectious agents or can-
cer cells (see Section 4.1.1 for a definition of the two strategies). The
last two therapeutic areas (diabetes and neurodegenerative diseases)
are examples of the network influence strategy aiming to re-wire mo-
lecular networks of diseased cells to restore normal function (see
Section 4.1.7 for a summary of these two strategies). The sections
on the use of network science to combat these diseases will not give
a comprehensive summary, but will only highlight a few key solu-
tions and their results.

5.1. Anti-viral drugs, antibiotics, fungicides and antihelminthics

Drugs against infectious agents are central hit strategy drugs in the
classification that we introduced in Section 4.1.1. Efficient central hit
strategy drugs interfere with viral replication or kill the infectious cells
with high efficiency (instead of temporal growth inhibition, which
may induce resistance), and avoid any toxic effects in humans. We list
a number of selected illustrative examples of network approaches for
drug target identification against pathogenic agents in Table 10.

Integrated host–pathogen networks proved to be very efficient in
complex targeting strategies in the case of viral/host interactomes
(Uetz et al., 2006; Calderwood et al., 2007; de Chassey et al., 2008;
Chautard et al., 2009; Navratil et al., 2009, 2011; Brown et al., 2011;
Prussia et al., 2011; Xu et al., 2011b; Lai et al., 2012; Schleker et al.,
2012; Simonis et al., 2012). Complex databases of viral/host interac-
tions were also assembled (Zhang et al., 2005). Anti-viral target
proteins often emerge as bridges between host/pathogen and
human network modules, as well as hubs or otherwise central pro-
teins of the virus-targeted human interactome (Uetz et al., 2006;
Calderwood et al., 2007; de Chassey et al., 2008; Navratil et al.,
2011; Lai et al., 2012). Targets of viral proteins were shown to be
major perturbators of human networks (de Chassey et al., 2008;
Navratil et al., 2011). A machine learning technique with a learning
set including viral/host interactome-derived topological and functional

http://sideeffects.embl.de


Table 10
Illustrative examples of the use of network methods in anti-viral drugs, antibiotics, fungicides and antihelminthics.

Drug design area Network method References

Protein–protein interaction networks
Drug target identification Identification of (pathogen-specific) hubs as potentially essential proteins

(http://hub.iis.sinica.edu.tw/Hubba)
Lin et al., 2008; Kushwaha & Shakya, 2009

Identification of clique-forming, high-centrality, or otherwise topologically
essential proteins

Real et al., 2004; Estrada, 2006; Florez et al., 2010;
Milenkovic et al., 2011; Raman et al., 2012;
Zhang et al., 2012

Metabolic networks
Drug target identification Comparative load point (high-centrality) and choke point (unique reaction)

analysis of pathogenic and non-pathogenic bacteria (with the identification
of conserved critical amino acids forming similar cavities: UniDrugTarget
server, http://117.211.115.67/UDT/main.html)

Perumal et al., 2009; Chanumolu et al., 2012

Selection of essential metabolites Kim et al., 2011
Selection of super-essential reactions Barve et al., 2012

Drug target identification,
drug repositioning

Strain-specific anti-infective therapies by comparative metabolic network
analysis

Shen et al., 2010

Drug–target, drug–drug similarity and complex dataset networks
Target identification, drug
repositioning

Drug target network of Mycobacterium tuberculosis Kinnings et al., 2010

Prediction of drug activity
against different pathogens

Multi-tasking QSAR drug–drug similarity network analysis Gonzalez-Diaz & Prado-Prado, 2008; Prado-Prado
et al., 2008; Prado-Prado et al., 2009; Prado-Prado
et al., 2010; Prado-Prado et al., 2011

Drug target identification Interactome, signaling network and gene regulation network of
Mycobacterium tuberculosis

Vashisht et al., 2012
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information identified several formerly validated viral targets of the
influenza A virus, and predicted novel drug target candidates (Lai
et al., 2012). The combination of viral/host interactome data with
siRNA, transcriptome, microRNA, toxicity and other data may signif-
icantly extend the prediction efficiency of antiviral targets (Brown
et al., 2011).

Analysis of integrated bacterial/fungal/parasite and human meta-
bolic networks also became a widely used tool to predict potential
drug target efficiency (Bordbar et al., 2010; Huthmacher et al.,
2010; Fatumo et al., 2011; Riera-Fernandez et al., 2012). Chavali
et al. (2012) and Kim et al. (2012) offered comprehensive collections
of datasets and analyses of antimicrobial drug target identification
using metabolic networks. Combinations of the metabolic network
and the interactome ofMycobacterium tuberculosiswere used to iden-
tify the most influential network target singletons, pairs, triplets and
quadruplets (Raman et al., 2008, 2009; Kushwaha & Shakya, 2010).
Multiple targets are useful to prevent the development of resistance
(see preceding section; Raman & Chandra, 2008; Chen et al.,
2012b). However, recent studies showed that synergistic drug combi-
nations, which are preferred in clinical settings due to their high effi-
ciency, may develop a faster resistance. Therefore, antagonistic drug
combinations should also be tried (Yeh et al., 2006; Chait et al.,
2007; Hegreness et al., 2008).

Complex chemical similarity networks including chemical-genetic
interactions (i.e. hypersensitivity data of mutant strains for chemical
compounds; for additional examples see Table 5) help in the identifi-
cation of drug targets in anti-infective therapies (Parsons et al., 2006;
Hansen et al., 2009). The (random) upstream attack strategy pro-
posed by Liu et al. (2012) may uncover even more influential targets
than currently known in directed networks such as metabolic or sig-
naling networks. Mészáros et al. (2011) warned that the selective
targeting of bacterial proteins may involve complex domain architec-
ture. Complex similarity networks (Vilar et al., 2009) may allow
patient- and disease stage-specific target search in the anti-cancer
therapies detailed in the next section. As another approach linking
the two central hit strategy-type drug design areas, anti-infective
and anti-cancer therapies, the assessment of interactome and
transcriptome perturbations by DNA tumor virus proteins highlighted
the Notch- and apoptosis-related pathways that also go awry in can-
cer (Rozenblatt-Rosen et al., 2012).
5.2. Anti-cancer drugs

Cancer is a systems-level disease (Hornberg et al., 2006), where
the rapidly proliferating system is characterized by an increase of net-
work entropy (West et al., 2012), i.e. an increase of network flexibility
and plasticity. This increase in network flexibility may characterize
the initial stages of tumor development (such as adenomas) better
than later stages of malignant transformation (such as carcinomas;
DezsőMódos, Tamás Korcsmáros and Péter Csermely, in preparation).
Key aims of anti-cancer pharmacology include the identification of
targets and the efficient combination of drugs to overcome the ro-
bustness of cancer-specific cellular networks with the least toxicity
and resistance development possible (Kitano, 2004a, 2004b, 2007;
Werner, 2011; Cheng et al., 2012c; Rivera et al., 2012). Similarly to
the anti-pathogenic drugs described in the preceding section,
anti-cancer drugs mostly belong to central hit strategy drugs (see
Section 4.1.1). However, central targets of cancer cells are more
often central components of healthy cells, than those of infectious
agents discussed in the preceding section. Therefore, as we will dis-
cuss in Section 5.2.5, a few anti-cancer drugs (presumably those,
which target the more rigid networks of advanced cancer types)
start to resemble the network influence strategy-type drugs.

In the following sections we will show the help of interactomes,
metabolic and signaling networks to find cancer-specific drug targets
and drug combinations. To illustrate the special importance of
network-level thinking in anti-cancer drug design, we start the sec-
tion with the description of autophagy, which is a very promising
area to develop novel anti-cancer drugs—but only if treated in a
systems-level context using network description and analysis.

5.2.1. Autophagy and cancer—an
example for the need of systems-level view

Autophagy (cellular self-degradation) has a highly ambiguous role
in cancer. On the one hand, autophagy has tumor suppressing func-
tions a.) by limiting chromosomal instability; b.) by restricting oxida-
tive stress, which is also an oncogenic stimulus; and c.) by promoting
oncogene-induced senescence. On the other hand, autophagy is used
by tumor cells to escape hypoxic, metabolic, detachment-induced and
therapeutic stresses as well as to develop metastasis and dormant
tumor cells (Apel et al., 2009; Morselli et al., 2009; White & DiPaola,

http://hub.iis.sinica.edu.tw/Hubba
http://117.211.115.67/UDT/main.html
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2009; Kenific et al., 2010; Chen & Klionsky, 2011). Thus autophagy
should be modulated in a cell-specific manner. In cancer cells
over-activation of autophagy can induce cell death, while autophagy
inhibitors sensitize cancer cells to chemotherapy. In normal cells, au-
tophagy stimulators may be useful for cancer prevention by enhanc-
ing damage mitigation and senescence, while autophagy inhibitors
can induce tumorigenesis (White & DiPaola, 2009; Ravikumar et al.,
2010; Chen & Karantza, 2011). Network analysis of the regulation of
autophagy may point out such context-specific intervention points.
The recent work of Serra-Musach et al. (2012) showed that in con-
trast to most cancer-related proteins, proteins involved in autophagy
are more ‘failure-prone’, i.e. can be saturated by perturbations faster.
This gives an additional rationale to employ autophagy-related pro-
teins as drug targets corresponding to the ‘Achilles-heel’ of cancer
cells. Network approaches described in all the following sections
may be promising for the identification of autophagy-related drug
target candidates.

5.2.2. Protein–protein interaction network targets of anti-cancer drugs
Cancer-specificity in the anti-cancer drug targets is a primary

requirement to avoid toxicity. Target-specificity may increase by
selecting cancer-related mutation events or proteins having altered
gene expression. In addition, all these data can be combined at the
network-level (Pawson & Linding, 2008).

Large-scale sequencing identified thousands of genetic changes in
tumors, which were collected in databases, such as COSMIC (http://
www.sanger.ac.uk/genetics/CGP/cosmic; Forbes et al., 2011) or the
Network of Cancer Genes (http://bio.ieo.eu/ncg/index.html; D'Antonio
et al., 2012). Section 1.3.3 and Tables 2 and 3 listed a number of
network-related methods to identify cancer-associated proteins. From
the large number of tumor-associated genes, only a few play a key
role in tumor pathogenesis (called driver mutations). Driver mutations
can be characterized by their pathway association. Inmany tumors p53,
Ras and PI3K are themajor signaling pathways containing driver muta-
tions (Li et al., 2009b; Pe'er & Hacohen, 2011). Genes with co-occurring
mutations in the COSMIC database prefer direct signaling interactions.
Genes having a less coherent neighborhood in the network of co-
occurring mutations tend to have a higher mutation frequency (Cui,
2010). Driver mutations are in cancer-modules and are neighbors of
signature genes, whose expression can be used as a prognostic marker
of metastasis and survival in breast tumors (Li et al., 2010d). Recently
pathway and network reconstitution methods were suggested using
patient survival-related mutation data (Vandin et al., 2012).

In human interactomes, proteins with cancer-specific mutations
are hubs. They form a rich-club, acting as bridges between modules
of different functions, and behave as bottlenecks providing exclusive
connections between network segments or are otherwise central
nodes (Jonsson & Bates, 2006; Chuang et al., 2007; Sun & Zhao,
2010; Rosado et al., 2011; Xia et al., 2011). Preferential connectedness
of cancer-related proteins may contribute to their increased robust-
ness to transmit a large volume of perturbations without being dam-
aged (Serra-Musach et al., 2012). In agreement with the above
observations, targets of anticancer drugs have a significantly larger
number of neighbors than targets of drugs against other diseases
(Hase et al., 2009). Inter-modular interactome hubs were found to as-
sociate with oncogenesis better than intra-modular hubs (Taylor et
al., 2009). Integration of the interactome, protein domain composi-
tion, evolutionary conservation and gene ontology data in a machine
learning technique predicted target genes, whose knockdown greatly
reduced colon cancer cell viability (Li et al., 2009b). The interactomes
of cancer associated cells, such as cancer associated fibroblasts may
also highlight important prognostic markers of the disease (Bozóky
et al., in press).

Differential gene expression analysis became one of the key ap-
proaches to identify genes important in diagnosis and prediction of
cancer progression. The Oncomine resource includes more than
18,000 gene expression profiles (http://oncomine.org; Rhodes et al.,
2007a). Oncomine data were extended by drug treatment signatures
and target/reference gene sets providing a network of Molecular
Concepts Map (http://private.molecularconcepts.org; Rhodes et al.,
2007b). Differentially expressed proteins in human cancers were
cataloged in the dbDEPC database (http://lifecenter.sgst.cn/dbdepc/
index.do; He et al., 2012). Gene expression profiles may be used for
reverse engineering of cancer specific regulatory networks (Basso
et al., 2005; Ergun et al., 2007). Gene expression subnetworks showed
increased similarity with the progression of chronic lymphocytic
leukemia, suggesting that degenerate pathways converge into com-
mon pathways that are associated with disease progression (Chuang
et al., 2012).

Interactome nodes may be marked according to their up- or down-
regulation in cancer, and may identify clusters of proteins involved
in cancer progression, such as in metastasis-formation (Rhodes &
Chinnaiyan, 2005; Jonsson et al., 2006; Hernandez et al., 2007). Net-
work analysis measures (e.g. degree, betweenness centrality, shortest
path) of integrated interactome and expression data ranked cancer re-
lated proteins for target prediction, and showed their central network
position (Wachi et al., 2005; Platzer et al., 2007; Chu & Chen, 2008;
Mani et al., 2008).

However, altered expression of mRNAs is generally not enough to
predict target efficiency (Yeh et al., 2012). mRNAs are often regulated
by microRNAs, thus the inclusion of microRNA pattern analysis im-
proves prediction as we will show in the next section. Moreover,
the analysis of proteomic changes is also necessary in most cases
(Gulmann et al., 2006; Pawson & Linding, 2008). Changes in protein
levels may act synergistically (Maslov & Ispolatov, 2007). Starting
from this idea, random walk-based interactome analysis identified
sub-networks, which were around ‘seeds’ changing their protein
levels in colorectal cancer, and screened these subnetworks using
the level of the synergistic dysregulation of the associated mRNAs in
colorectal cancer (Nibbe et al., 2010). Inclusion of additional data in
the interactome and gene expression datasets, such as protein do-
main interactions, gene ontology annotations, cancer-related muta-
tions, or cancer prognosis information refined predictions further
(Franke et al., 2006; Pujana et al., 2007; Chang et al., 2009; Lee
et al., 2009; Wu et al., 2010; Xiong et al., 2010; Yeh et al., 2012).

5.2.3. Metabolic network targets of anti-cancer drugs
The metabolism of cancer cells is adapted to meet their prolifera-

tive needs in predominantly anaerobic conditions (Warburg, 1956).
Network modeling uses a number of cancer-specific pathways of en-
ergy metabolism (Resendis-Antonio et al., 2010; Vazquez et al., 2011;
Khazaei et al., 2012; Kung et al., 2012). Metabolic networks of several
cancer-types such as that of colorectal cancer were constructed re-
cently (Martinez-Romero et al., 2010). Li et al. (2010e) used the
k-nearest neighbor model to predict the metabolic reactions of the
NCI-60 set (a set of 60 human tumor cell lines derived from various
tissues of origin) influenced by approved anti-cancer drugs, and
extended their method to suggest possible enzyme targets for
anti-cancer drugs. Through the analysis of cancer-specific human
metabolic networks Folger et al. (2011) predicted 52 cytostatic drug
targets, of which 40% were targeted by known anti-cancer drugs,
and the rest were new target-candidates. However, it should be
kept in mind that key enzymes of cancer-specific metabolism, such
as the PKM2 isoenzyme of pyruvate kinase playing a predominant
role in the Warburg-effect (Warburg, 1956; Steták et al., 2007;
Christofk et al., 2008; Kung et al., 2012), were also shown to play a di-
rect role in cancer-specific signaling (Gao et al., 2012). Both metabolic
and signaling networks are directed networks, where a hierarchy can
be established, and where targeting of upstream, more influential
nodes may be a fruitful strategy (Liu et al., 2012). We will review
the use of signaling networks in anti-cancer therapies in the next
section.

http://www.sanger.ac.uk/genetics/CGP/cosmic
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5.2.4. Signaling network targets of anti-cancer drugs
Signaling-related anti-cancer therapies increasingly outnumber

metabolism-related chemotherapy options. From the network point
of view this trend is due to the more developed signaling in humans
than in pathogens, and to the increased selectivity of signaling inter-
actions as compared to metabolism-related targeting.

Mass spectrometry can be effectively used for the analysis of
post-translational modifications during the progression of cancer.
Post-translational modifications, e.g. phosphorylation may change
due to changes in the cellular environment and regulation under
physiological conditions, but also due to a mutation at the phosphor-
ylation site, or at a protein binding interface regulating kinase or
phosphatase activity (Pawson & Linding, 2008). The bioinformatics
resources NetworKIN (http://networkin.info; Linding et al., 2007)
and NetPhorest (http://netphorest.info; Miller et al., 2008) can help
in the analysis cancer-related signaling changes.

Rewiring of cancer-related changes of signaling networks is a
primary aim in signal transduction-related anti-cancer therapies
(Papatsoris et al., 2007). Cancer-specific changes in gene expression
may activate or inactivate noncanonical edges in signal transduction
networks (Klinke, 2010). Higher complexity of cancer-specific signaling
network was shown to correlate with shorter survival (Breitkreutz
et al., 2012). Proteins with cancer-related mutations are often hubs of
human signaling network and are enriched in positive signaling regula-
tory loops (Awan et al., 2007; Cui et al., 2007; Cloutier &Wang, 2011; Li
et al., 2012a). Alteration in cross-talking, multi-pathway, inter-modular
proteins of signaling networks was proposed to be a key process in
tumorigenesis (Hornberg et al., 2006; Taylor et al., 2009; Korcsmáros
et al., 2010; Rivera et al., 2012).

The mammalian target of rapamycin (mTOR) is an important ex-
ample of multi-pathway effects. mTOR has a key role in cell growth
and regulation of cellular metabolism. In most tumors, mTOR is mu-
tated, causing a hyper-active phenotype (Zoncu et al., 2011). Though
mTOR activity was expected to be a promising therapeutic target,
drugs showed poor results in clinical trials. mTOR could not meet
node-targeting expectations because of its multi-pathway position,
participating in at least two major signaling complexes, mTORC1
and mTORC2 (Huang et al., 2004; Caron et al., 2010; Catania et al.,
2011; Pe'er & Hacohen, 2011; Fingar & Inoki, 2012).

Edgetic drugs specifically targeting mTOR interactions may selec-
tively influence cancer-specific mTOR functions (Section 4.1.2;
Ruffner et al., 2007). Another example of edgetic anti-cancer therapy
options is that of nutlins, which block the interaction between p53
and its negative modulator MDM2 activating the tumor suppressor
effect of p53 (Vassilev et al., 2004). Cancer-related proteins have
smaller, more planar, more charged and less hydrophobic binding in-
terfaces than other proteins, which may indicate low affinity and high
specificity of cancer-related interactions (Kar et al., 2009). These
structural features make lead compound development of cancer-
related edgetic drugs a challenging task.

MicroRNAs are increasingly recognized as highly promising,
non-protein intervention points of the signaling network (see also
in Section 3.4). Loss- or gain-of-function mutations of microRNAs
have been identified in nearly all solid and hematologic types of can-
cer (Calin & Croce, 2006; Spizzo et al., 2009). In addition, microRNAs
were recently found as a form of intercellular communication (Chen
et al., 2012c). Thus, alteration of microRNA content may have an ef-
fect on the microenvironment of tumor cells. Drug-induced changes
in the expression of specific microRNAs can induce drug sensitivity
leading to an increased inhibition of cell growth, of invasion and of
metastasis formation (Sarkar et al., 2010). However, microRNAs
have a dual role in cancer, acting both as oncogenes targeting
mRNAs coding tumor-suppression proteins, or tumor suppressors
targeting mRNAs coding oncoproteins (Iguchi et al., 2010; Gambari
et al., 2011). This suggests the use of systems-level, network ap-
proaches to select microRNA targets.
Combination of cancer-specific mRNA and microRNA expression
data may be used to infer cancer-specific regulatory networks (Bonnet
et al., 2010). MicroRNAs involved in prostate cancer progression prefer-
entially target interactome hubs (Budd et al., 2012). MicroRNA net-
works obtained from 3312 neoplastic and 1107 nonmalignant human
samples showed the dysregulation of hub microRNAs. Cancer-specific
microRNA networks had more disjoined subnetworks than those of
normal tissues (Volinia et al., 2010). The fast growing complexity of
signaling networks still awaits a comprehensive treatment in antican-
cer therapies.

5.2.5. Influential nodes and edges in
network dynamics as promising drug targets

As we mentioned in the introduction of Section 5, the central hit
strategy of anti-cancer drug design would often hit a protein, which is
also central in the networks of healthy cells. Therefore, here the more
indirect targeting of the network influence strategymay also prove use-
ful.Many targets of anti-cancer therapies are not directly cancer-related
(Hornberg et al., 2006; Cheng et al., 2012c). Context can influence net-
work behavior in at least four differentways: a.) the genetic background
(e.g., single-nucleotide polymorphisms and other mutations); b) gene
expression changes (caused by e.g. transcription factor, epigenetic or
microRNA changes); c.) neighboring cells; and finally d.) exogenous
signals (e.g. nutrients or drugs) all providing increment to the patient-
specific, context-dependent responses to anti-cancer therapy (Klinke,
2010; Sharma et al., 2010b; Pe'er & Hacohen, 2011). Differential gene
expression and phosphorylation studies were already shown to be
useful to distinguish among different stages of cancer development in
the preceding sections. The next challenging step is to examine the
cancer-induced dynamic changes on a network-level.

The examination of differential networks of cancer stages, or net-
works of drug treated and un-treated cells, is one of the first steps in
possible solutions (Ideker & Krogan, 2012). Network level integration
of cancer-related changes (such as mutations, gene expression
changes, post-translational modifications, etc.) may capture key dif-
ferences in network wiring (Pe'er & Hacohen, 2011).

Network dynamics may be assessed by the dissipation of perturba-
tions, which can be used for the prioritization of drug target candidates.
The early work ofWhite andMikulecky (1981) used a small network to
assess the dynamics of methotrexate action. Stites et al. (2007) studied
changes of Ras signaling in cancer using a differential equation model
applied to a limited signaling network-set. They concluded that a hypo-
thetical drug preferably binding to GDP-Ras would only induce a
cancer-specific decrease in Ras signaling. Shiraishi et al. (2010) identi-
fied 6585 pairs of bistable toggle switch motifs in regulatory networks
forming a network of 442 proteins. Among the 24 conditions examined,
mRNA expression level changes reversed the ON/OFF status of a signif-
icantly high number of bistable toggle switches in various types of can-
cer, such as in lung cancer or in hepatocellular carcinoma. Serra-Musach
et al. (2012) found that cancer-related proteins have an increased ro-
bustness to transmit a large volume of perturbations without being
damaged. Extensions of such investigations to network-wide perturba-
tions (modulated by neighboring cells and exogenous signals) will be
an important research area for finding influential nodes/edges serving
as drug target candidates.

5.2.6. Drug combinations against cancer
As we have shown in the preceding sections cancer is a systems-

level disease, where magic-bullet type drugs may fail. Partially re-
dundant signaling pathways are hallmarks of cancer robustness.
Thus an inhibitor of a particular hallmark may not be enough to
block the related function. Moreover, when inhibitors of a specific
cancer hallmark are used separately, they may even strengthen
another hallmark, like certain types of angiogenesis inhibitors
increased the rate of metastasis. In most failures of anti-cancer ther-
apies, unwanted off-target effects and undiscovered feedbacks

http://networkin.info
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prevented the desired pharmacological goal. Combination therapies
and multi-target drugs may both overcome system robustness and
provide less side-effects (see Section 4.1.5; Gupta et al., 2007;
Berger & Iyengar, 2009; Wilson et al., 2009; Azmi et al., 2010;
Glaser, 2010; Hanahan & Weinberg, 2011).

Cancer-specific subsets of the human interactome can provide a
guide for the development of multi-target therapies. Mutually exclu-
sive gene alterations which share the same biological process may de-
fine cancer type-related interactome modules (Ciriello et al., 2012b).
Other types of cancer-related network modules were identified as
sub-interatomes, as in colorectal cancer. These were centered on pro-
teins, which markedly change their levels, and showed a synergistic
dysregulation at their mRNA levels (Nibbe et al., 2010). Simultaneous
targeting of these modules may be an efficient therapeutic strategy.

Multiple-targets can be identified using cancer-specific metabolic
network models. Combinations of synthetic lethal drug targets were
predicted in cancer-specific metabolic networks (Moreno-Sanchez
et al., 2010; Folger et al., 2011). Ensemble modeling, which exploited
a perturbation of known targets in a subset of 58 central metabolic re-
actions, was used to predict target sets of key enzymes of central en-
ergy metabolism (Khazaei et al., 2012).

Potential drug target sets were identified by an algorithm, which
calculates the downstream components of a prostate cancer-specific
signaling network affected by the inhibition of the target set (Dasika
et al., 2006). In the particular example of EGF receptor inhibition, sub-
sequent applications of drug combinations were shown to have a dra-
matically improved effect. This unmasked an apoptotic pathway, and
via complex signaling network effects dramatically sensitized breast
cancer cells to subsequent DNA-damage (Lee et al., 2012d). These
findings substantiate Kitano's earlier emphasis on the importance of
cancer chronotherapy (Kitano, 2004a, 2004b, 2007).

Tumors contain a highly heterogeneous cell population. Drug
combinations may act via an intracellular network of a single cell;
but also via inhibiting subsets of the heterogeneous population of ma-
lignant cells. Cell populations and their drug responses can be per-
ceived as a bipartite graph. Applying minimal hitting set analysis
allowed the search for effective drug combinations at the inter-
cellular network level (Vazquez, 2009).

As we showed in this section, analysis of network topology and, es-
pecially, network dynamics can predict novel anti-cancer drug targets.
Incorporation of personalized data, such as mutations, singalome or
metabolome profiles to the molecular networks listed in this section
may enhance patient- and disease stage-specific drug targeting in
anti-cancer therapies.

5.3. Diabetes (metabolic syndrome including
obesity, atherosclerosis and cardiovascular disease)

Diabetes is the first of our two examples showing the applications of
the network influence strategy defined in Section 4.1.1, where thera-
peutic interventions need to push the cell back from the attractor of
the diseased state to that of the healthy state. Diabetes is a multigenic
disease tightly related to central obesity, atherosclerosis and cardiovas-
cular disease, a connection also revealed by network representations
(Ghazalpour et al., 2004; Lusis & Weiss, 2010; Stegmaier et al., 2010).
Here we summarize network-related methods to predict novel drug
target candidates in diabetes and related metabolic diseases.

Type 2 diabetes is the most common form of diabetes that is char-
acterized by insulin resistance and relative insulin deficiency. T2D-db
is a database of molecular factors involved in type 2 diabetes (http://
t2ddb.ibab.ac.in; Agrawal et al., 2008) providing useful information
for the construction of various diabetes-related networks. Combination
of interactome and diabetes-related gene expression data identified
the possible molecular basis of several endothelial, cardiovascular and
kidney-related complications of diabetes, and revealed novel links
between diabetes, obesity, oxidative stress and inflammatory
abnormalities (Sengupta et al., 2009; Mori et al., 2010). Similar studies
suggested a network of protein–protein interactions bridging insulin
signaling and the peroxisome proliferator-activated receptor-(PPAR)-
related nuclear hormone receptor family (Liu et al., 2007b). Refinement
of interactome data containing domain–domain interactions combined
with the earlier observation that disease-related genes have a smaller
than average clustering coefficient (Feldman et al., 2008) led to the
prediction of type 2 diabetes-related genes (Sharma et al., 2010a).
Inter-modular interactome nodes between type 2 diabetes-, obesity-
and heart disease-related proteins may play a key role in the
dysregulation of these complex syndromes (Nguyen & Jordan, 2010;
Nguyen et al., 2011).

Type 1 diabetes is primarily related to the dysregulation of insulin
secretion of pancreatic ß-cells, where ß-cell dedifferentiation was re-
cently shown to play an important role (Talchai et al., 2012). The
ß-cell endoplasmic reticulum stress signaling network is an impor-
tant regulator of this process (Fonseca et al., 2007; Mandl et al.,
2009). Integration of interactome and genetic interaction data re-
vealed novel protein network modules and candidate genes for type
1 diabetes (Bergholdt et al., 2007).

Reconstruction of changes of the human metabolic network of skel-
etal muscle in type 2 diabetes enabled the identification of potential
newmetabolic biomarkers. Analysis of gene promoters of proteins asso-
ciated with the biomarker metabolites led to the construction of a
diabetes-related transcription factor regulatory network (Zelezniak
et al., 2010). Recently an integrated, manually curated and validated
metabolic network of human adipocytes, hepatocytes and myocytes
was assembled. Several metabolic states, such as the alanine-cycle, the
Cori-cycle and an absorptive state, as well as their changes between
obese and diabetic obese individuals were characterized (Bordbar
et al., 2011). Such studies will highlight key enzymes of metabolic net-
work, where a drug-induced activity and/or regulation changemay sig-
nificantly contribute to the rewiring of the metabolic network to its
normal state.

Insulin signaling is in the center of the etiology ofmetabolic diseases.
Several studies highlighted diabetes-responsible segments of the
human signaling network enriching and re-focusing the traditionally
known insulin signaling pathway. The mammalian target of rapamycin
(mTOR) protein is one of the focal points of the insulin signaling
network. From the two mTOR-related signaling complexes mentioned
in the preceding section, Complex 1 (mTORC1) is a key player in
nutrient-related signaling involving the hypothalamus, peripheral
organs, adipose tissue differentiation and ß-cell dependent insulin se-
cretion (Catania et al., 2011; Fingar & Inoki, 2012). An siRNA knockout
screen of 300 genes involved in the lipolysis of 3T3-L1 adipocytes led
to the identification of a core, insulin resistance-related sub-network
of the insulin signaling pathway highlighting a number of novel genes
related to insulin-resistance, such as the sphingosine-1-phosphate
receptor-2 (Tu et al., 2009). Reconstruction of the subnetwork of
human interactome related to insulin signaling and the determination
of its hubs and bottleneck proteins (Durmus Tekir et al., 2010) is an
ongoingwork, whichwill uncovermany important novel targets of ther-
apeutic interventions in the future. As an additional extension of insulin
signaling, recent studies started to uncover the changes and most influ-
ential members of the microRNA regulatory network in diabetes
(Huang et al., 2010c; Zampetaki et al., 2010). Phosphoproteome-studies
help to extend the insulin signaling network further, and to uncover its
time-dependent changes (Schmelzle et al., 2006).

Tissue-specific gene expression data identified metabolic disease-
specific regulatory network modules, and revealed the involvement of
both macrophages and the inflammatome in the pathogenesis of
metabolic diseases (Schadt et al., 2009; Lusis & Weiss, 2010; Wang
et al., 2012f). These studies show the inter-pathway and inter-organ
complexity reached in the network understanding ofmetabolic disease.
In Section 4.1.7 we summarized the network influence strategy; that is,
to rewire the cellular networks from their diseased state to healthy state

http://t2ddb.ibab.ac.in
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as a tool to help in successful drug design. This includes avoiding net-
work segments which are essential in healthy cells, and focusing on
targeting pathway sites specific to diseased cells, and the use ofmultiple
or indirect targeting. For this,metabolic disease network studies need to
apply network dynamics methods such as we listed in Section 2.5. Sys-
tematic, network-based identification of edgetic, multi-target and
allo-network drugs (see Section 4.1) could also be beneficial. Refined
network methods should also incorporate patient- and disease
stage-specific data. These are intimately related to the network conse-
quences of aging, which will be described in the next section.

5.4. Promotion of healthy aging and neurodegenerative diseases

Aging is one of the most complex processes of living organisms.
Aging was described as a network phenomenon (Kirkwood & Kowald,
1997; Sőti & Csermely, 2007; Simkó et al., 2009; Chautard et al.,
2010). In the first half of this section we will summarize the few initial
network studies on age-related multifactorial changes. Besides cancer
and the metabolic syndrome described in the preceding sections,
neurodegeneration is one of the major aging-associated diseases. In
the concluding part of the section we will describe network-related
studies on the prediction of potential drug targets to prevent and
slow down various forms of neurodegeneration, such as Alzheimer's,
Parkinson's, Huntington's and prion-related diseases.

5.4.1. Aging as a network process
Aging organisms show similar early warning signals of critical

phase transitions (i.e.: slower recovery from perturbations, increased
self-similarity of behavior and increased variance of fluctuation-
patterns) as described for a wide variety of complex systems
(Section 2.5.2; Scheffer et al., 2009; Sornette & Osorio, 2011; Dai et
al., 2012). Aging can be perceived as an early warning signal of a crit-
ical phase transition, where the phase transition itself is death (Farkas
et al., 2011). However, this soberingmessage also has a positive impli-
cation: phase transitions of complex systems can be slowed down,
postponed, or prevented by nodes having an independent and un-
predictable behavior (Csermely, 2008). The identification of these
nodes may lead to the discovery of novel molecular agents promoting
healthy aging.

The complexity of the aging process is illustrated well by the dual-
ity of possible aging-related trends in network changes. Aging-related
disorganization causes an increase of non-specific edges, and an aged
organism has fewer resources predicting the loss of network edges
during aging. Thus, small-worldness may often be lost during the
aging process, and the hub-structure may get reorganized. Aging net-
works are likely to become more rigid, and may have less overlapping
modules (Sőti & Csermely, 2007; Csermely, 2009; Kiss et al., 2009;
Simkó et al., 2009; Gáspár & Csermely, 2012). The longest documented
lifespan is currently 122 years achieved by a French woman (Allard et
al., 1998). It is currently an open question, whether lifespan has any
upper limits. It will be interesting if future aging-related studies of
network topology and behavior will predict any upper limit of human
lifespan.

Aging-associated genes form an almost fully connected sub-
interactome (also called longevity networks; Budovsky et al., 2007),
and occupy both hub (Promislow, 2004; Ferrarini et al., 2005;
Budovsky et al., 2007; Bell et al., 2009) and inter-modular positions
(Xue et al., 2007). Aging-associated genes are concentrated in 4 mod-
ules of the yeast interactome (Barea & Bonatto, 2009). Similarly,
age-related gene expression changes preferentially affect only a few
modules of the human brain and Drosophila interactomes (Xue
et al., 2007). The sub-interactome of aging-genes can be extended
by their neighbors and the related network edges. The extended net-
work provides a target-set to identify novel aging-related genes (Bell
et al., 2009). The sub-interactomes of aging-associated genes and
major age-related disease genes highly overlap with each other.
Aging-genes bridge other genes related to various diseases (Wang
et al., 2009; Wolfson et al., 2009).

Longevity networks are enriched by key signaling proteins (Reja
et al., 2009; Simkó et al., 2009; Wolfson et al., 2009; Borklu Yucel &
Ulgen, 2011). The complexity of age-related processes is exemplified
well by the extensive cross-talks of age-related signaling pathways
(de Magalhaes et al., 2012). As an example, the growth hormone-
related pathways, the oxidative stress-induced pathway and the dietary
restriction pathway all affect the FOXO (Daf-16) transcription factor
(Greer & Brunet, 2008). The yeast gene regulatory network was
reconstituted by reverse engineering methods using age-associated
transcriptional changes. The regulatory network revealed novel aging-
associated regulatory components (Lorenz et al., 2009). MicroRNAs
play an important role in aging-related signaling events (Chen et al.,
2010b). Network analysis will help the identification of critical nodes
of age-related signaling. These nodes may serve as potential targets of
drugs promoting healthy aging.

During the aging process, the nuclear pore complexes become
more permeable (D'Angelo et al., 2009). It is likely that age-induced
increase of permeability is a general phenomenon involving other
cellular compartments (Simkó et al., 2009) and increasing in the
number of non-specific edges of the inter-organelle network.

Though drug development efforts are rapidly increasing in the
field, currently there are only a few drugs which directly target the
aging process (Simkó et al., 2009; de Magalhaes et al., 2012). To
date, it is an open question, if central hit strategy-type or network in-
fluence strategy-type drug targeting (aiming to target key network
nodes, or aiming to influence aging-related changes, respectively)
will be the most efficient route for finding appropriate drugs for the
promotion of healthy aging. Most probably the network influence
strategy will be the ‘winner’, and the anti-aging drugs of the future
will be multi-target drugs, providing an indirect influence on key pro-
cesses of aging networks. For this additional studies on aging-related
dynamics of molecular networks are needed.

5.4.2. Network strategies against neurodegenerative diseases
As Lipton (2004) remarked, according to some predictions by 2050

the entire economy of the industrialized world could be consumed by
the costs of caring for the sick and elderly. Neurodegenerative diseases,
such as Alzheimer's, Parkinson's, Huntington's and prion diseases con-
stitute one of the major aging-related disease-class besides cancer and
metabolic diseases. Although several symptomatic drugs are available,
a disease-modifying agent is still elusive making novel approaches
especially valuable (Dunkel et al., 2012; Mei et al., 2012; Funke et al.,
in press).

We listed the major network-related methods to uncover novel
neurodegenerative disease-associated genes, potential drug targets, or
for drug repositioning in Table 11. Two major network methodologies
emerge, which are widely used in connection with neurodegenerative
diseases. One of them constructs, or extends disease-related protein–
protein interaction networks and predicts novel disease-associated
proteins. This appears a straightforward technique, since a neurodegen-
erative disease causes a major reconfiguration of cellular protein com-
plexes. The other major method uses network analysis of differentially
expressed genes in disease-affected patients or model organisms. This
method identifies novel regulatory and signaling components involved
in disease progression. Both methods may identify disease-affected
pathways, which may be used to construct “heat-maps” identifying
novel drug target candidates (Dunkel et al., 2012; Mei et al., 2012).

When summarizing neurodegenerative disease-related network
efforts, it was surprising that, besides a few initial attempts in
Alzheimer's disease, how little attention was devoted to chemical
similarity networks, metabolic networks, signaling networks and
drug–target networks in this field. Dysregulated, over-acting signal-
ing pathways have a major contribution to all neurodegenerative dis-
eases, and their network analysis would deserve more attention. A



Table 11
Illustrative examples of network strategies against neurodegenerative diseases.

Type of network Drug design benefit References

Alzheimer's disease
Protein–protein interaction network (extended with
drug interactions)

Prediction of novel disease-related genes and novel
disease-associated drugs from existing ones by interactome
proximity

Krauthammer et al., 2004; Li et al., 2009a;
Yang & Jiang, 2010; Hallock & Thomas, 2012;
Raj et al., 2012

Differentially co-expressed gene networks of normal
and Alzheimer's disease affected patients

Identification of co-expressed gene modules and
disease-related transcription factors

Ray et al., 2008; Satoh et al., 2009; Liang et al., 2012

Network of differentially expressed MicroRNAs of
Alzheimer's affected patients

Prediction of novel disease-associated signaling pathways and
regulators

Satoh, 2012

Drug binding site similarity networks Prediction of novel drug targets Yang et al., 2010
Drug target networks of anti-Alzheimer's herbal
medicines

Prediction of novel drug targets Sun et al., in press

Parkinson's disease
Differentially co-expressed gene networks of normal
and Parkinson's disease affected patients

Identification of central disease-associated genes Moran & Graeber, 2008

Poly-glutamine (polyQ) expansion diseases (Huntington's disease, ataxias)
Protein–protein interaction network of
poly-glutamine proteins (and their known
interactome neighbors)

Identification of novel modifiers of disease progression Goehler et al., 2004; Lim et al., 2006;
Kaltenbach et al., 2007; Kahle et al., 2011

Prion disease
Differentially co-expressed gene networks of normal
and prion disease affected mice

Identification of disease-associated pathways and modules Hwang et al., 2009; Kim et al., 2011b
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good anti-neurodegenerative drug is typically a network influence
strategy-type drug reconfiguring the distorted pathways of disease-
associated networks (Lipton, 2004; Dunkel et al., 2012). Learning
more on changes in network dynamics during neurodegenerative
disease progression would be a major advance of drug design efforts
in this crucially important field.

6. Conclusions and perspectives

The value of every drug design technology must be assessed by
asking: “How much does the new technology help to solve one of the two
central problems: the identification and validation of a disease-specific
target or the identification of a molecule that can modify this target in a
way that makes therapeutic sense?” (Brown & Superti-Furga, 2003;
Drews, 2003). Network description and analysis may offer novel leads
in both questions. In this concluding sectionwewill highlight the prom-
ises and perspectives of network-aided drug development.

6.1. Promises and optimization of network-aided drug development

One of the major promises of network description and analysis is
their help to overcome the “one-effect/one-cause/one-target” magic
bullet-type drug development paradigm (Ehrlich, 1908). Magic bullets
do work—sometimes. When designing “central hit strategy-type”
drugs (Sections 4.1.1 and 4.1.7), which target key nodes of the network
to eliminate pathogens or malignant cells, eradicating single hit may be
beneficial. However, pathogen resistance or unexpected toxicity of
anti-cancer drugs (and resistance against them) may dog the outcome.
In the development of “network influence strategy-type drugs”, where
an efficient reconfiguration of rigid networks needs to be achieved, net-
work dynamics has to be reset from its disease-affected state back to
normal (Sections 4.1.1 and 4.1.7). Under these circumstances, the
traditional approach of rational drug discovery selecting a single and
central target often fails. The paucity of disease-modifying anti-
neurodegenerative drugs described in the preceding section is an exam-
ple for the need for novel approaches in network influence strategy-
type drug design.

James Black described well a wide-spread behavior saying that
‘the most fruitful basis for the discovery of a new drug is to start
with an old drug’ (Chong & Sullivan, 2007). We started our review
with the statement that ‘business as usual’ is no longer an option in
drug industry (Begley & Ellis, 2012). Currently, there is a broad con-
sensus that this state, where the vast majority of new drugs are relat-
ed to existing ones, needs to be changed (Section 1.1; Cokol et al.,
2005; Yildirim et al., 2007; Iyer et al., 2011a).

Nonetheless, the question is how to find ‘surprisingly novel drugs’.
The failure of some efforts using the reductionist approach of rational
drug design shifted the thinking to the other extreme that ‘we need
unbiased research methods to cover complexity’. Indeed, unbiased
methods (including network analysis or machine learning) may suc-
cessfully predict novel drug targets. However, clearly, artificial intelli-
gence may miss ‘true’ surprises (Section 2.2.2). This leads to our first
major conclusion, which we summarized in Fig. 23: network descrip-
tion and analysis should be combined with human creativity and
background knowledge.

Network analysis helps in comprehending the vast amounts of
systems-level data, which accumulated over the last decade. However,
network analysis alone is clearly insufficient and has to be com-
plemented with the intuitions coming from background knowledge
(Valente, 2010). In this process creativity (marked as the ‘surprise fac-
tor’ in Fig. 23), which strives for novelty, and identifies it in networks
as the ‘prediction of the unpredictable’ (Section 2.2.2) cannot be
overlooked. Combined, the current boom in network dynamics-
related methods can help in discovering the key actors in the cellular
community, which are the hidden masterminds of cellular changes in
health and in disease (Fig. 23).

Our second major conclusion is that a protocol of network-aided
drug development would be aided by alternating exploration and op-
timization phases of drug design (Fig. 23). In the exploration phase
background knowledge may be temporarily suppressed. In contrast,
in the optimization phase we need to suppress the playfulness and
ambiguity tolerance of the exploration phase, and rank the options
by rigorous application of background knowledge including all the
well-orchestrated rules of the drug development process (Csermely,
in press; Gyurkó et al., in press). Importantly, the sequence of explo-
ration and optimization phases may be applied repeatedly, providing
a more detailed ‘zoom-in’ of the optimal (drug) target than a single
round of exploration/optimization (Fig. 23). The utility of repeated
exploration/optimization rounds was shown in a number of examples
ranging from thermal cycles of simulated annealing optimization
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Fig. 23. Optimized protocol of network-aided drug development. The figure illustrates the two major phases of discovery having three segments marked as boxes on the left side of
the triple arrows. The “surprise factor” box denotes originality (as the highest level of human creativity), a strong drive to discover the unexpected, including playfulness and am-
biguity tolerance. The “unbiased systems-level network analysis” box marks the network methods described in this review. The “background knowledge” box includes all our con-
textual, background knowledge on diseases, drugs and their actions, as well as the validation procedures guiding our judgment on the quality of the drug discovery process. In the
exploration phase the surprise factor is dominant. At this phase background knowledge may be temporarily suppressed. On the contrary, at the optimization phase we need to sup-
press the surprise factor, and rank our previous options by the rigorous application of our background knowledge. The arrow at the bottom of the figure marks the heretofore not
rigorously applied method that the sequence of exploration and optimization phases may be applied repeatedly, which gives a much more precise ‘zoom-in’ to the optimal (drug)
target than a single round of exploration/optimization.
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(Möbius et al., 1997) to the human learning process (Bassett et al.,
2011).

Drug design-related networks became increasingly complex dur-
ing the past decade. Albert Einstein's saying that “the supreme goal
of all theory is to make the irreducible basic elements as simple and
as few as possible without having to surrender the adequate repre-
sentation of a single datum of experience” (Einstein, 1934) (also
called ‘Einstein's razor’, extending the Occam's razor theorem advo-
cating only the simplest solution) encourages finding the optimal
network representation, which is simple enough, but not too simple.
Finding the optimal complexity of network representation in the drug
discovery process is an important task. Eventually, the recurring
application of exploration and optimization phases shown in Fig. 23
suggests that network data coverage should be extended in consecutive
phases separated by recurrent network simplifications based on back-
ground knowledge.

Thomas Singer wrote a few years ago “Extrapolation of preclinical
data into clinical reality is a translational science and remains an ulti-
mate challenge in drug development.” (Singer, 2007). Addressing this
challenge our third and last major conclusion stresses the importance
of network prediction of these human data, which are not available
experimentally. This includes overcoming three major hurdles
(Fig. 2; Brown & Superti-Furga, 2003; Austin, 2006; Bunnage, 2011;
Ledford, 2012): 1.) insufficient drug efficacy; 2.) unexpected major
adverse effects; 3.) unexpected forms of human toxicity. Network
analysis may help ameliorate the efficacy by taking into account
patient-, disease stage-, age-specificities (Section 4.3.1); it may help
obtain a better prediction of side-effects (Section 4.3.5) and predic-
tive human toxicology (Section 4.3.3; Henney & Superti-Furga, 2008).

Network science is a novel area of biology; and this is particularly
the case with respect to drug design. We often lack rigorous compar-
isons of existing methods, which could have allowed a more critical
approach to some of them. It is an ongoing effort of the current
years to develop benchmarks, gold-standards and rigorous assess-
ment tools in network science.

6.2. Systems-level hallmarks of drug quality and trends
of network-aided drug development helping to achieve them

In this closing section we identify the systems-level hallmarks of
drug quality, and list the major trends of network-aided drug devel-
opment helping to achieve them. From the network point of view
we propose two strategies in finding drug targets: 1.) the central hit
strategy aiming to destroy the network of infectious agents or cancer
cells and 2.) the network influence strategy aiming to shift the
network dynamics of polygenic, complex diseases back to normal
(Fig. 19; Sections 4.1.1 and 4.1.7). Both strategies converge to the
same level of network complexity in hit finding, hit expansion, lead
selection and optimization phases. We note that these two strategies
appear as general strategies to design the most efficient attack of
flexible, plastic systems (using the central hit strategy) or rigid sys-
tems (using the network influence strategy) valid from molecular
structures, through molecular and cellular networks to social and
engineered networks or ecosystems.

Table 12 lists the systems-level hallmarks of drug target identifica-
tion and validation, hit finding and development, as well as lead se-
lection and optimization. We believe that the systematic application
of these systems-level hallmarks will not only help the identification
of novel drug targets, but will also streamline the drug design process
to be more selective, less attrition-prone and more profitable.

Table 12 also includes the most important network-related drug
design trends helping the accomplishment of various systems-
level hallmarks. We highlight the development of edgetic drugs
(Section 4.1.2), multi-target drugs (Section 4.1.5) and allo-network
drugs (Section 4.1.6) among the richness of network strategies to
find novel drug targets. We believe that there are a large number of
unexplored drug targets, which are the hidden masterminds of cellular
regulation. Analysis of network dynamics can help to find them. In-
corporation of disease-stage, age-, gender- and human population-
specific genetic, metabolome, phosphoproteome and gut microbiome
data; the development of human ADME and toxicity network models;
and the use of side-effect networks to judge drug safety,may greatly in-
crease the efficiency of the drug development process.

Network-relatedmethods—if applied systematically (and carefully)—
will uncover a number of novel drug targets, and will increase the effi-
ciency of the drug development process. Analysis of the structure and
dynamics of molecular networks, extended by the network dynamics
of constituting proteins and in particular their binding sites, provides
a novel paradigm of drug discovery.
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Table 12
Systems-level hallmarks of drug quality and trends of network-related drug design helping to achieve them.

Systems-level hallmark of drug quality Network-related drug design trend

Drug target identification
• Using the central hit strategy: drug hits central (or otherwise essential) network
nodes, whose efficient inhibition selectively destroys infectious agent or cancer cell
• Using the network influence strategy: drug hits disease-specific network segments
(nodes, edges or their sets), whose manipulation shifts disease-affected functions
back to normal

Drug target validation
• Network dynamics-based, disease-specific early and robust human biomarkers are
used for drug target validation, drug added-value assessment over current standard
care, and translation for later monitoring in clinical trials

• Disease stage-related differential interactome, signaling network, metabolic
network data (including protein abundance, human/comparative genetic data and
microRNA profiles, optionally combined with protein, RNA and chromatin structure
information, as well as with subcellular localization)
• Network comparison and reverse engineering
• Disease-specific models of network dynamics (including deconvolution, perturbation,
hierarchy, source/sink/seeder analysis and network influence)
• Drug target, patient and therapy-related networks helping multi-target design and
drug repositioning
• Use of weighted, directed, signed, colored and conditional edges or hypergraph
structures
• Network prediction methods (sensitized for finding the unexpected)
• In the central hit strategy: network centrality measures; host/parasite, host/cancer
network combinations at the local ecosystem level
• In the network influence strategy: network controllability, influence, dynamic
network centrality; compensatory deletions; edgetic, multi-target and allo-network
drugs; chrono-therapies (temporal shifts in administration of drug combinations)

Hit finding and development
• Hit finding and ranking are helped by network chemoinformatics
• Hit expansion and library design are helped by chemical reaction networks

besides application of the trends listed above
• Complex chemical similarity (QSAR) networks including chemical similarity
networks, multi-QSAR networks, pocket similarity networks, and chemical
descriptors of ligand binding sites, integrated bio-entity networks
• Chemical reaction networks
• Network analysis of protein structures and correlated segments of protein dynamics
• Analysis of the substrate envelope to avoid drug resistance development
• Hot spot, and hot region identification

Lead selection and optimization
• Optimization of drug efficacy, selection of robust efficacy end-points and patient
populations are guided by network pharmacogenomics, as well as by disease-stage,
age-, gender- and population-specific metabolome, phosphoproteome and gut
microbiome data
• ADME and toxicity data are ‘humanized’, side-effect, drug–drug interaction and drug
resistance evaluation are helped, as well as indications and contraindications are
defined by extensive network data

Besides application of the trends listed above
• Network extension by disease-stage, age-, gender- and human population-specific
genetic, metabolome, phosphoproteome and gut microbiome data
• Analysis of semantic networks from medical records
• Human ADME and toxicity network models
• Network methods of multi-target drug design to uncover adverse drug–drug
interactions
• Assessment of side-effect networks
• Antagonistic drug combinations to avoid drug resistance development
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