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ABSTRACT

Here we present Translocatome, the first dedicated
database of human translocating proteins (URL:
http://translocatome.linkgroup.hu). The core of the
Translocatome database is the manually curated data
set of 213 human translocating proteins listing the
source of their experimental validation, several de-
tails of their translocation mechanism, their local
compartmentalized interactome, as well as their in-
volvement in signalling pathways and disease de-
velopment. In addition, using the well-established
and widely used gradient boosting machine learn-
ing tool, XGBoost, Translocatome provides translo-
cation probability values for 13 066 human proteins
identifying 1133 and 3268 high- and low-confidence
translocating proteins, respectively. The database
has user-friendly search options with a UniProt auto-
complete quick search and advanced search for pro-
teins filtered by their localization, UniProt identifiers,
translocation likelihood or data complexity. Down-
load options of search results, manually curated and
predicted translocating protein sets are available on
its website. The update of the database is helped
by its manual curation framework and connection
to the previously published ComPPI compartmen-
talized protein–protein interaction database (http:
//comppi.linkgroup.hu). As shown by the application
examples of merlin (NF2) and tumor protein 63 (TP63)
Translocatome allows a better comprehension of pro-
tein translocation as a systems biology phenomenon
and can be used as a discovery-tool in the protein
translocation field.

INTRODUCTION

Subcellular localization of proteins is essential in spatial and
temporal organisation of biological processes such as sig-
nalling pathways enabling their separation into organelles
(1). Translocating proteins play a key role in the reconfig-
uration of cellular functions after environmental changes,
as well as in embryonic or disease development. Different
subcellular organelles have well characterized interactomes
(2,3). With the advance of imaging techniques subcellular
dynamics became a rapidly expanding research area (4,5).
Restoring or affecting the cellular localization of disease-
related proteins emerges as an efficient therapeutic method
(6,7).

Protein translocation is a process which refers to the al-
teration of a given protein’s subcellular localization. How-
ever, this phenomenon has no unified definition, and the
word ‘translocation’ may also refer to gene translocation
or RNA translocation at the ribosome. In this work we
define protein translocation as a systems biology phe-
nomenon, which refers to the regulated movement of a
protein of a given post-translational state between sub-
cellular compartments. Translocation changes the interac-
tion partners and leads to altered function(s) of translo-
cating proteins. There are certain processes (such as co-
translational, post-translational delivery-type, cell division-
induced, downregulation- or passive diffusion-related phe-
nomena; for their detailed description see Supplementary
Texts S1 and S2) that may change the localization of a pro-
tein, but to increase the focus and clarity of our database we
did not consider them as translocation.

There are widely used protein databases that contain
information on protein translocation, e.g. the MoonProt
(8) or UniProt (9) databases. However, these databases are
not dedicated collections of translocating proteins. Here
we present Translocatome, which is a manually curated
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database of 213 human translocating proteins with exten-
sive information on their translocation. Moreover, Translo-
catome contains 13 066 human proteins with predicted
likelihood of translocation. With the help of the well-
established and widely used gradient boosting machine
learning tool, XGBoost (10–12) we predicted 1133 high-
confidence translocating proteins. In addition, Translo-
catome contains 3268 and 8665 low-confidence and non-
translocating proteins, respectively. To train the XGBoost
algorithm, we also created a manually curated set of 139
non-translocating proteins as part of the database. In sum-
mary, Translocatome is a novel, dedicated database of hu-
man translocating proteins including their interaction part-
ners in the different subcellular localizations. This database
contributes to a better understanding of protein transloca-
tion as a systems biology phenomenon and facilitates fur-
ther discoveries of translocating proteins. As translocating
proteins are already targeted pharmaceutically (6,7) new
findings in this field may lead to better therapeutic options.

DESCRIPTION OF THE DATABASE

Overview of translocatome

Translocatome is the first database that collects manually
curated human translocating proteins including their in-
teracting partners in the localizations involved, translo-
cation mechanism (including protein structure details if
available), type of experimental evidence, affected sig-
nalling pathway(s) and pathological properties. The core
of the Translocatome database is the 213 manually cu-
rated human translocating proteins (http://translocatome.
linkgroup.hu/coredata) which were all collected based on
related publications containing experimental evidence. Al-
together Translocatome contains 13 066 human proteins,
which were selected from the compartmentalized protein–
protein interaction database (3; ComPPI http://comppi.
linkgroup.hu, downloaded on 20 July 2018) using the in-
clusion criterion that every protein needed to have at least
one experimentally validated subcellular localization. By
the application of the well-established gradient boosting
machine learning tool, XGBoost (10–12) we predicted 1133
high-confidence translocating proteins. All the 13 066 hu-
man proteins were characterized by their translocation like-
lihood named as Translocation Evidence Score (TES) calcu-
lated by the XGBoost machine learning algorithm (Figure
1). Various search and download options make it possible
for users to process these data according to their goals.

Database content

The core data of Translocatome is the extensively curated
set of 213 human translocating proteins (see Core Data at
the website: http://translocatome.linkgroup.hu/coredata).
With the manual curation process involving the judgement
of 3 independent experts we aimed to collect detailed and
experimentally validated information about every entry ex-
tracted from peer reviewed publications (for the details of
the manual curation process see Supplementary Text S3,

Supplementary Table S1 and Supplementary Figure S1).
For each of the 213 manually curated translocating proteins
we collected the available subset of the following data:

a) name set, gene name and UniProt (9) accession number
and link,

b) PubMed ID(s) and link(s) to peer-reviewed article(s) de-
scribing the experimental evidence of translocation,

c) initial and target localizations of the translocating pro-
tein,

d) interacting partners and biological functions (both in the
initial and target compartments),

e) translocation mechanism,
f) the used detection method,
g) protein structural information on translocation mecha-

nism,
h) disease group, exact disease involved and pathological

role,
i) signalling pathways affected.

We used the UniProt naming convention (9) for pro-
tein identification, Gene Ontology terms (13,14) for
localization/biological process identification and the
KEGG naming convention (15) for the standardization of
signalling pathways. Following the logic of our previously
published compartmentalized protein–protein interac-
tion database (ComPPI, 3) every protein was annotated
with one of six major cellular localizations (cytoplasm,
extracellular space, mitochondria, nucleus, membrane or
secretory-pathway). If there was more precise localization
information available it was included as a minor local-
ization. All 213 manually curated translocating proteins
are characterized by a Data Complexity Score (DCS) as
described later in detail, which makes it easier to assess
the amount of information associated with each protein.
53 of the manually curated proteins showed translocation
exclusively under pathological conditions (such as cancer).
Therefore, we used the remaining 160 physiologically
translocating proteins as a positive training set (Supple-
mentary Table S2) for the widely used XGBoost machine
learning algorithm (10–12).

We also collected a manually curated negative dataset
of 139 human non-translocating proteins, each one clas-
sified as a protein (a) with experimentally proved diffuse,
multi-compartmental distribution, (b) with exclusive single-
compartment localization, (c) docked to DNA/RNA, (d)
embedded in membranes or (e) attached to the cytoskeleton
(for additional details, see Supplementary Text S4). These
139 proteins were used as a negative training set (Supple-
mentary Table S3) for the application of the XGBoost ma-
chine learning algorithm (10–12). For a detailed description
of our database structure, see Figure 1A and B.

Altogether Translocatome contains 13 066 human pro-
teins having at least one experimentally validated localiza-
tion as described in our in house developed compartmen-
talized protein–protein interaction database (ComPPI, 3).
From the ComPPI database we also imported the inter-
actome of these human proteins having 151 889 interac-
tions. The translocation likelihood of all the 13 066 pro-
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Figure 1. The structure of the Translocatome database and performance of the XGBoost machine learning prediction method. (A) Schematic flowchart
of the Translocatome database construction process highlighting 6 major steps. The panel shows the main input sources of the Translocatome are manual
curation of peer reviewed articles and the ComPPI database (http://comppi.linkgroup.hu; 3). In the manual curation process we recorded the source of
experimental validation, several details of translocation mechanism, the local compartmentalized interactome, as well as the involvement in signalling
pathways and disease development (1). This extensive manual curation resulted in a set of 213 translocating and another set of 139 non-translocating
human proteins. To incorporate our data into a Protein-Protein Interaction (PPI) network we imported the PPI of 13 066 ComPPI (3) human proteins
with their 151 889 interactions (2). The Manual Curation Framework (MCF) is a user-friendly interface where the data of the Translocatome database
is stored and after registration users from all over the world can log in to modify and update its data, which is published as part of the Translocatome
database after expert cross-check (3). To enable the prediction of translocating proteins we annotated each protein in our database with Gene Ontology
(13,14) functional and ComPPI-derived interactome (3) topological properties (4). The XGBoost machine learning algorithm (10–12) classified the 13 066
human proteins into three sets: high-, low-confidence translocating proteins and non-translocating proteins (5). On the http://translocatome.linkgroup.hu
website the whole dataset is available for searching and downloading purposes freely and without registration. Translocatome can be updated by the
community-based Manual Curation Framework. Moreover, Translocatome is linked to the ComPPI database (3) so in the case of its update Translocatome
can be also updated (6). (B) Structure of the Translocatome database. As shown by a Venn-diagram the database consists of the Core Data of 213 manually
curated translocating proteins (available here: http://translocatome.linkgroup.hu/coredata), which are extended by 1133 and 3268 high- and low-confidence
translocating proteins, respectively. Green and red filled circles represent the positive and negative training sets, respectively. Core Data and positive learning
set differ, since the latter does not contain the 53 proteins showing translocation exclusively under pathological conditions (such as cancer). (C) Performance
of the widely-used XGBoost machine learning method (10–12) on the final feature set. Each of the 100 different receiver operating characteristic (ROC)
curves belong to a different 5 fold cross-validation run on the training set (containing 160 physiologically translocating and 139 non-translocating proteins).
In the runs the XGBoost machine learning method used the final feature set (see Table 1) selected earlier as described in the main text and Supplementary
Text S6. The minimal, maximal and average area under the curve (AUC) were 0.9047, 0.9333 and 0.9207 (±0.0061 standard deviation), respectively.

teins is characterized by a Translocation Evidence Score
(TES) as described later in detail. The translocation like-
lihood was calculated by the XGBoost machine learning al-
gorithm (10–12) as detailed in the next Section.

The XGBoost machine learning algorithm-based prediction
of translocating proteins

The machine learning procedure followed the general
methodology of supervised machine learning workflow:
data collection, feature extraction, feature selection, clas-
sification, training, testing and interpretation. For each
step we applied an existing, well-characterized approach.

Data collection and feature extraction were based on es-
tablished procedures as described below. For all additional
steps we applied the well-established, widely used gradient
boosting-type (10) machine learning tool, XGBoost (11).
XGBoost was successfully applied in hundreds of recent
studies to predict, e.g. host-pathogen protein–protein inter-
actions (16), microRNA disease association (17) and DNA
methylation (18). Several studies including our own previ-
ous paper showed that XGBoost gives the best performance
if compared with a number of known machine learning
methods (see e.g. Refs. 12, 16 and 18).

To train the XGBoost method first we annotated each
of the 13 066 proteins of the Translocatome database with
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their relevant Gene Ontology (GO, 13,14) cellular compo-
nent, biological process and molecular function terms also
including their ancestors. This resulted in 21 020 annotated
GO terms total (all details of the methodology are avail-
able here: https://github.com/kerepesi/translocatome ml).
The process was based on our previous work (12), for its
details please see Supplementary Text S5.

Next, each of the 13 066 proteins were annotated with
their degree and bridgeness in the compartmentalized
protein–protein interaction database (ComPPI, 3) derived
human interactome containing 151 889 interactions. De-
gree (the number of human interactome neighbours) was
included, since the 213 manually curated translocating pro-
teins showed a significantly higher degree than that of the
139 manually curated non-translocating proteins or the av-
erage (Supplementary Figure S2). This is not surprising
since translocating proteins often have a central role in reg-
ulation behaving as interactome hubs. Similarly, translocat-
ing proteins often connect interactome modules (large pro-
tein mega-complexes), thus act as bridges. Indeed, the 213
manually curated translocating proteins had significantly
higher bridgeness values than that of the 139 manually cu-
rated non-translocating proteins or the average (Supple-
mentary Figure S2). Degree and bridgeness values were cal-
culated using the CytoScape network analyser program (19)
and its ModuLand plug-in (20), respectively. GO terms, de-
gree and bridgeness formed the feature sets selected by the
XGBoost machine learning method.

Since the human interactome (3) we used for the calcula-
tion of degree and bridgeness did not contain interactions
observed in pathological conditions, we excluded those 53
of the manually curated proteins from the positive training
set of the XGBoost algorithm, which showed translocation
exclusively under pathological conditions (such as cancer).
The remaining 160 manually curated proteins were used as
the positive training set (Supplementary Table S2).

Following the methodology of several XGBoost studies
(11,16–18) including our previously published work (12) we
evaluated the XGBoost-selected feature sets by 5-fold cross-
validation, and we evaluated their predictive power by the
area under the curve of the receiver operating character-
istic curve (ROC AUC or shortly AUC, 21). 5-fold cross-
validation is a widely used method where the training data
is split into five random parts and four parts are used to
train the XGBoost machine learning tool and the predic-
tion of the fifth part is evaluated. For every feature set, we
repeated this process 100 times. We selected those GO fea-
tures which had a feature important value (produced by the
XGBoost program) greater than 0.02. With this generally
applied XGBoost procedure we reached an average AUC of
0.916 (±0.0046 standard deviation) with only 15 GO fea-
tures left from the initial 21 020 (see Table 1). We contin-
ued feature selection by adding the two interactome-derived
features degree and bridgeness using the giant component
of the ComPPI-derived human protein–protein interaction
network (3). In these calculations the giant component of
the interactome was used which did not contain 9 proteins
of the total. The inclusion of the two network-related fea-
tures produced an average AUC of 0.9207 (±0.0056 stan-
dard deviation), showing a further increase from the average
AUC of 0.916 and implying a high performance. We show

the ROC curves of 100 five-fold cross-validation runs of the
final feature set on Figure 1C having a minimal, average and
maximal AUC of 0.9047, 0.9207 and 0.9333, respectively. As
shown on Supplementary Figure S3 both precision-recall
and Matthews correlation coefficient curves also showed a
high performance of the learning process. For more details
of the generally applied machine learning procedure, see
Supplementary Text S6. All data of the procedure are avail-
able at https://github.com/kerepesi/translocatome ml along
with codes to reproduce the results.

The feature set of the XGBoost model with the best AUC
value is shown on Table 1. Features with positive impor-
tance values increase the probability of translocation. These
are Gene Ontology features from each main GO category
(cellular components, biological processes and molecular
functions), which are often associated with protein translo-
cation as described in Table 1 in detail. If a feature has a
negative importance value, then it decreases the probabil-
ity of translocation. Two categories of low degree and low
bridgeness values each, as well as six GO-terms negatively
associated with protein translocation are listed among these
negative features. Using the feature set shown on Table 1 we
calculated the Translocation Evidence Score characterizing
the translocation probability of each of the 13 066 proteins
in the Translocatome database as described in the next sec-
tion.

Data complexity and translocation evidence scores

Data complexity score. To provide an easy assessment of
the information available of a manually curated protein we
developed the Data Complexity Score (DCS). DCS varies
between 0 and 1, having increasing values if the protein has
more curated data. The score is calculated and normalized
after weighting all the available data, where those related to
translocation have a higher weight (please find the detailed
calculation process in Supplementary Text S7). Therefore,
DCS is not only shows the quantity but also the relevance of
the available data. In addition DCS indicates which entries
may require further curation.

Translocation evidence score. The XGBoost machine
learning method gave every protein of the Translocatome
database a Translocation Evidence Score (TES) that is pro-
portional with the translocation probability of the given
protein. For each protein we computed TES using Equa-
tion (1)

∑n

i = 1
wi xi , (1)

where wi is the importance value of the i th feature of the
model (see ith row of Table 1). The importance value was
calculated as described in the legend of Table 1. x = 1, if
the given feature is true for that protein and x = 0, if it is
false (n is the number of features of the model; here n = 19).
TES values were rescaled to the interval [0,1] by min–max
normalization using Equation (2)

x′ = x − xmin

xmax − xmin
, (2)

The larger the TES value, the greater the probability of
translocation. As a numerical example, suppose that ‘pro-
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Table 1. The feature set identified as best predictor by the XGBoost machine learning algorithm

Gene Ontology process (GO term name) or
interactome feature Importance Short biological explanation

Parameters having a positive predictive value
animal organ morphogenesis (GO:0009887) 2.68 Morphogenesis and other developmental processes are mostly

regulated through complex networks of transcription factors, where
translocation is often involved as a regulation step (29).

regulation of carbohydrate metabolic process
(GO:0006109)

1.53 Quite some metabolic enzymes also function as protein kinases and
translocate between cellular compartments playing a role e.g. in
carcinogenesis (30).

cytoplasm (GO:0005737) 1.35 Large cellular compartments are often associated with proteins that
translocate. Nucleo-cytoplasmic translocations play a key role in the
regulation of transcription factors (29).

nuclear part (GO:0044428) 1.12
negative regulation of cellular process
(GO:0048523)

1.12 Negative regulatory mechanisms are frequently exerted by
translocating proteins such as e.g. PTEN (31) or transcription factors.

plasma membrane part (GO:0044459) 0.70 Large cellular compartments are often associated with proteins that
translocate. Cytosol-membrane translocations play a key role in the
regulation of signalling pathways (32).

extracellular region (GO:0005576) 0.65
cytosol (GO:0005829) 0.57
spliceosomal complex (GO:0005681) 0.23 The spliceosome is constituted by snRNPs translocating from the

cytoplasm. Some spliceosome components are also involved in
mRNA export (33,34).

Parameters having a negative predictive value
bridgeness value is lower than 0.000292
(bridgeness lower than 0.000292)

−0.36 Translocating proteins often bridge the two interactome modules
(large protein complexes) of their two localizations. Therefore, their
bridgeness values tend to be high (20 and Supplementary Figure S1).

degree is smaller than 62.5 (degree lower than
62.5)

−0.50 A reasonably high number of interaction partners often indicates a
role in regulation and signal transduction. Many of these proteins are
‘date-hubs’, which may undergo a translocation process.
Nevertheless, too many partners could be a characteristics of a multi
compartmental housekeeping protein (35 and Supplementary Figure
S1).

degree is smaller than 14.5 (degree lower than
14.5)

−0.54

negative regulation of intracellular signal
transduction (GO:1902532)

−0.61 If the translocation process becomes inhibited, it may often prevent
signal transduction. Inhibition often occurs via sequestration by large
protein complexes which usually have only one localization (36).

myeloid cell differentiation (GO:0030099) −0.74 Cell adhesion and membrane bound proteins play an important role
in myleoid cell differentiation (37,38). Both protein categories are
typically non-translocating proteins, which may over-compensate the
role of translocating transcription factors in this process.

intrinsic component of membrane
(GO:0031224)

−0.82 Intrinsic membrane components predominantly do not translocate to
other major localizations.

system process (GO:0003008) −0.91 A wide variety of proteins exert their system level biological functions
(e.g. secretion of molecules) in a non-translocating manner: cell
membrane channels, actin, myosin, etc.

single organismal cell-cell adhesion
(GO:0016337)

−1.06 Cell adhesion proteins usually have a strictly limited location in the
plasma membrane

bridgeness value is lower than 2.5e-06
(bridgness lower than 2.5e-06)

−1.10 Translocating proteins often bridge the two interactome modules
(large protein complexes) of their two localizations. Therefore, their
bridgeness values tend to be high (20 and Supplementary Figure S1).

protein complex (GO:0043234) −1.24 Proteins often fulfil their roles in large protein mega-complexes. These
complexes may assist for other proteins to translocate, but their own
components do not translocate.

Features selected by the XGBoost machine learning algorithm (10–12) can be human protein–protein interaction network-related (3) or GO term-related
(13,14), as listed in the first column. XGBoost assigns each feature with an importance score (as shown in the third column) which was calculated as the
leaf-scores of the one-depth trees of the best XGBoost model. In the fourth column there is a short (and most of the time, very partial) explanation to
explain why these features may become selected by the XGBoost machine learning process as best predictors of protein translocation including some key
references supporting the explanations.

tein A’ has 20 neighbours (degree) in the human interactome
and its UniProt record contains only two GO terms, ‘animal
organ morphogenesis’, and ’cytoplasm’. Then the predicted
translocation evidence score of ‘protein A’ is −0.497 + 2.675
+ 1.353 = 3.531. The value is then normalized using Equa-
tion (2). For each of the 13 066 proteins, the respective TES

scores can be found both in the search results and in the
downloadable datasets.

The Translocation Evidence Score gave the possibility to
define a cut-off value, below which proteins were considered
as non-translocating. To define this cut-off value, we used
the widely used measure of a test’s accuracy, the F1 score

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/D

1/D
495/5150229 by guest on 15 January 2019



D500 Nucleic Acids Research, 2019, Vol. 47, Database issue

(also called as F-measure, 22) that measures the perfor-
mance of a binary classification being a harmonic average
of precision and recall (also called as sensitivity). Supple-
mentary Figure S4 shows recall, fallout, precision and the
F1 score at different threshold values and illustrates the dis-
tribution of the TES values. The F1 score reached its max-
imum at the threshold of 0.4487, which gives a straightfor-
ward cut-off value for translocation probability. Thus pro-
teins having lower TES values than 0.4487 were considered
as non-translocating (for more details see Supplementary
Texts S6 and S8). In order to give an assessment of poten-
tial false positive predictions we also defined a higher TES
cut-off value separating low- and high-confidence translo-
cating proteins. We set this value as 0.6167, since above this
threshold there were not any negative set proteins. We as-
sume that the probability of false positive predictions is low
above this threshold value. Low-confidence translocating
proteins, which have a translocation evidence score (TES)
between the two threshold values are presumably translo-
cating but they need further validation.

The two Translocation Evidence Score cut-off values sep-
arated our original 13 066 human proteins to three classes:
(a) 1133 high-confidence translocating proteins having a
TES value higher than 0.6167; (b) 3268 low-confidence
translocating proteins having a TES value between 0.6167
and 0.4487, as well as (c) the residual 8665 proteins having
a TES value lower than 0.4487, which were considered as
non-translocating (Figure 1B).

Search, download options and output

As part of the user-friendly interface, various search func-
tions were developed. We provide an easy to use quick
search function (with UniProt AC autocompletion) which
can be used to find protein families or a given protein.
The advanced search option creates the possibility to search
for more elaborate sets of proteins filtered by their local-
ization, UniProt identifiers, Translocation Evidence Score
or Data Complexity Score. The web interface provides
eight pre-defined protein sets as download options cov-
ering (i) 213 manually curated translocating proteins, (ii)
160 physiologically translocating manually curated pro-
teins (the positive training set), (iii) manually curated non-
translocating proteins (the negative training set), (iv–vi)
high-, low-confidence and non-translocating protein sets,
as well as (vii) the whole protein set and (viii) its protein–
protein interaction network. These sets of proteins can be
downloaded in a comma separated .csv format. Besides
these pre-defined sets users can also download the results
of their search queries as a tabulator separated file (.tsv,
see the technical parameters in the ‘Design and implemen-
tation’ section). Examples and explanations of the output
formats are available in Supplementary Figures S5–S7.

Design and implementation

To allow the development of the Translocatome database as
a community effort a manual curation framework (MCF)
was designed. MCF uses the same MongoDB database
as the Translocatome site, with a user interface developed
in the Ruby on Rails 4.2 (https://rubyonrails.org) frame-

work. The MCF website follows the hierarchical model-
view-controller design pattern to ensure the separation of
the data layer from the business logic and the user inter-
face. The MCF stores all the data of the Translocatome and
provides them to the front-end of the Translocatome web-
site after expert review. To ease usability an end-user doc-
umentation is available as tutorials, detailed descriptions
and location-specific tooltips in the HELP menu on the site
(http://translocatome.linkgroup.hu/help). Further details of
design and implementation of the database are summarized
in Supplementary Text S9.

Application examples

The Translocatome database is the only current dedi-
cated collection of human translocating proteins. With its
Translocation Evidence Score (TES) for 13 066 proteins
it helps the identification and experimental validation of
novel translocating proteins. To demonstrate the prediction
efficiency of Translocatome we assessed the first 40 pro-
teins with the highest TES values. Table 2. shows the list
of the best performing 25 proteins. They fall into four cate-
gories: (A) were already included in the manually curated
213 translocating protein set (12 proteins: PTEN, PTK2,
FOXO3, GMNN, ATF2, MAPK1, GLI3, HRAS, AR,
SMAD3, SMAD2 and HSP90AB1); (B) were previously
shown to be translocating proteins but have not appeared
in our Core Data of 213 proteins collected from keyword-
based searches (11 proteins: NF2, TULP3, SNCA, FGFR2,
MTOR, GSK3B, EIF6, HDAC1, CARM1, CUL1 and
RARB; see Supplementary Table S4); (C) have not been de-
scribed as translocating proteins yet, but from the literature
we can conclude that their translocation is probable (one
protein: TP63); (D) there is no information in the literature
about their translocation (one protein: PRKRA). Proteins
of categories (C) and (D) are good candidates for further
experimental studies verifying their translocation.

The best hit of the XGBoost algorithm, the PTEN pro-
tein is a part of the manually curated 213 translocating pro-
teins. As its second best hit, the XGBoost algorithm cor-
rectly predicted NF2 (Merlin) as a translocating protein,
since NF2 in its dephosphorylated form indeed translocates
to the nucleus (23). NF2 is a hub having 48 neighbours and
was characterized by 6 out of the 15 Gene Ontology terms
that were important according to the best XGBoost model
predicting translocation.

Out of the 25 proteins listed on Table 2, the p63 protein
(tumor protein 63, TP63) is the only protein, which falls into
the category C.) containing ‘proteins having implications in
the literature that they are translocating’. p63 is not tagged
as translocating in available databases (8,9). p63 is a pro-
tein that is physiologically found in the nucleus of human
cells (Figure 2). It acts as a transcription factor either acti-
vating or repressing specific DNA sequences (24) and it is
an essential factor during embryogenesis (25). Besides these
conventional functions it is also known that p63 appears
in the cytoplasm of adenocarcinoma or prostate carcinoma
cells. Moreover, the cytoplasmic localization of p63 results
in the increased malignancy of these tumours (26,27). This
disease-altered localization of p63 is in compliance with our
definition for a translocating protein. Thus, the XGBoost
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Table 2. List of the first 25 proteins having the highest Translocation Evidence Score

UniProt ID Gene names Protein names

Translocation
evidence
score Group Summary

P60484 PTEN Phosphatidylinositol
3,4,5-trisphosphate 3-phosphatase
and dual-specificity protein
phosphatase

1.0000 A PTEN translocates to the nucleus from the
cytoplasm in response to oxidative stress

P35240 NF2 Merlin 0.9807 B Dephosphorylated merlin translocates to
the nucleus (23)

O75386 TULP3 Tubby-related protein 3 0.9802 B Membrane association with PIP2 anchors
Tub to sequester TULP3 from transport to
the nucleus. It also translocates from the
plasma membrane to the nucleus upon
activation of guanine nucleotide-binding
protein G(q) subunit alpha (39).

Q05397 PTK2 Focal adhesion kinase 1 (FADK 1) 0.9798 A Retinoid acid induced nuclear FAK
translocation leads to a reduced cellular
adhesion

P37840 SNCA Alpha-synuclein 0.9743 B Mitochondrial translocation occurs rapidly
under as a result of pH changes during
oxidative or metabolic stress (40)

O43524 FOXO3 Forkhead box protein O3 0.9740 A Dephosphorylated cytoplasmic Foxo is
unidirectionally translocated out of the
cytoplasm by the nuclear localization signal
and Ran GTPase driven nuclear import
system.

O75496 GMNN Geminin 0.9740 A Geminin is excluded from the nucleus
during part of the G1 phase and at the
transition from G0 to G1.

P21802 FGFR2 Fibroblast growth factor receptor 2
(FGFR-2)

0.9703 B Under PGF(2alpha) stimulation, FGF-2
and FGFR2 proteins accumulate near the
nuclear envelope and co-localize in the
nucleus of Py1a cells (41).

P15336 ATF2 Cyclic AMP-dependent transcription
factor ATF-2

0.9677 A Some drugs as paclitaxel or vemurafenib are
inducers of ATF-2 translocation.

P42345 MTOR Serine/threonine-protein kinase
mTOR

0.9635 B Long-term treatment with rapamycin
triggers dephosphorylation and cytoplasmic
translocation of nuclear rictor and sin1
accompanied by inhibition of mTORC2
assembly (42).

P28482 MAPK1 Mitogen-activated protein kinase 1 0.9480 A MAPK1 (ERK2) translocates to the nucleus
and mitochondria.

P49841 GSK3B Glycogen synthase kinase-3 beta 0.9462 B GSK3 translocated to the plasma
membrane, along with AXIN, upon Wnt
stimulation (43).

O75569 PRKRA Interferon-inducible double-stranded
RNA-dependent protein kinase
activator A

0.9439 D There is no information in the literature
about the translocation of this protein

P10071 GLI3 Transcriptional activator GLI3 0.9439 A Translocates after interaction with ZIC1.
P01112 HRAS GTPase Hras 0.9224 A Several pathological conditions such as

exogenous hyperoxia induce Ras
translocation from cytosol to the membrane.

P56537 EIF6 Eukaryotic translation initiation
factor 6

0.9208 B Increase in intracellular concentration of
calcium leads to rapid translocation of eIF6
from the cytoplasm to the nucleus, an event
that can be blocked by specific calcineurin
inhibitors, such as cyclosporin A (44).

P10275 AR Androgen receptor
(Dihydrotestosterone receptor)

0.9123 A Translocation happens after ligand binding
and is mediated by filamin, which is thought
to disrupt the association between Hsp90
and the receptor in the cytoplasm.

P84022 SMAD3 Mothers against decapentaplegic
homolog 3

0.9123 A Activated TGF-beta receptor
phosphorylates Smad2 and Smad3, which
then form a complex with Smad4 and
translocate to the nucleus.
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Table 2. Continued

UniProt ID Gene names Protein names

Translocation
evidence
score Group Summary

Q13547 HDAC1 Histone deacetylase 1 0.9123 B In neuroblastoma cells translocation of
HDAC1 was reported to the cytoplasm in
response to HSV-1 viral infection (45).

Q15796 SMAD2 Mothers against decapentaplegic
homolog 2

0.9123 A After phosphorylation of receptor-regulated
SMADs (SMAD1, SMAD2, SMAD3,
SMAD5 and SMAD8) they are recognized
by SMAD 4. This complex translocates to
the nucleus.

Q86X55 CARM1 Histone-arginine methyltransferase
CARM1

0.9123 B Nucleus → cytosol translocation mainly
occurs during mitosis, but it also occurs out
of the cell cycle (46).

Q9H3D4 TP63 Tumor protein 63 (p63) 0.9123 C Nuclear localization of p63 was correlated
with nuclear accumulation of p53, whereas
the presence of nuclear p63 had no apparent
effect on patient survival (24–27). The
mechanism remains to be elucidated.

P08238 HSP90AB1 Heat shock protein HSP 90-beta 0.9053 A Hsp90 has been found in the extracellular
region, and also in the nucleus.

Q13616 CUL1 Cullin-1 0.9034 B ROC1 promotes CUL1 nuclear
accumulation to facilitate its NEDD8
modification (47).

P10826 RARB Retinoic acid receptor beta 0.8967 B This is a nucleocytoplasmic shuttling
protein, AFP may inhibit translocation of
RAR-beta into the nucleus via competitive
binding to RAR-beta with ATRA (48).

Every protein are shown in the table with their 3 indicators (UniProt ID, Gene name and Protein name) and Translocation Evidence Score (TES) as
defined in the main text. The higher the TES score the higher the probability of translocation. Proteins fall into four categories as shown in the fifth
column. (A) The protein was included in the manually curated 213 translocating protein set. (B) The protein did not appear in our keyword-based searches
but was previously shown to be a translocating protein. (C) The protein has not been described as a translocating protein yet, but from the literature we
can conclude that its translocation is probable (p63 protein, for more information, see Figure 2). (D) There is no information in the literature about the
translocation of this protein (PRKRA). Categories C and D are good candidates for further evaluation. Short summary gives a brief description of the
translocation mechanism of each protein having a representative publication cited in categories B and C (for references describing the translocation of
proteins in category A see the Translocatome database entry of the respective protein).

machine learning algorithm correctly predicted the translo-
cation of p63. As p63 is associated with poor survival of
cancer patients (26,27) its targeting may serve as a thera-
peutic option.

With the above examples we demonstrated that the XG-
Boost machine learning algorithm (10–12) is able to clas-
sify previously known proteins effectively and may also pre-
dict new translocations correctly. Out of the 25 best hits
shown on Table 2 the PRKRA protein (interferon-inducible
double-stranded RNA-dependent protein kinase activator
A) is the only one, which appears to be a completely new
translocating protein candidate. It will be an interesting
question of further experimental studies, whether this pro-
tein is indeed translocating or shuttling between the cytosol
and the nucleus as predicted by the rather equal number of
its protein interactions (3) in these two compartments.

Comparison with similar tools

The existing MoonProt (8) and UniProt (9) databases con-
tain potentially translocating proteins performing multiple
biochemical functions or data related to protein translo-
cation, respectively. Out of the 75 human proteins of the
latest, 2.0 version of the MoonProt database (accessed on

04/01/2018), 55 proteins were shown in the literature to
translocate in a regulated manner (and were included to
the Translocatome). The other 20 human moonlighting pro-
teins achieve their multiple functions in the same cellu-
lar compartment. Out of the total number of 20 239 hu-
man UniProt proteins (accessed on 17 November 2017), we
can presume a translocation in 1013 cases based on their
UniProt description or subcellular location data. As only
75 (35%) of the 213 Translocatome gold standard proteins
were included in the 1013 presumably translocating UniProt
proteins, the Translocatome database can greatly supple-
ment this aspect of the UniProt database. From the residual
938 UniProt translocation candidates 25% and 34% were
predicted in the Translocatome as high- and low-confidence
translocating proteins, respectively. 31% of the 938 UniProt
proteins was predicted as non-translocating while 10% of
them was not part of the Translocatome database.

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, Translocatome offers a unique dataset of 213
specifically collected human translocating proteins listing
the source of their experimental validation, several details
of their translocation mechanism, local compartmental-
ized interactome as well as their involvement in signalling
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Figure 2. p63, a translocating protein predicted by the XGBoost machine learning algorithm. (A) In the left column the Gene Ontology (GO) terms
(13,14) that are associated with the p63 protein are summarized, showing that altogether the protein is characterized by 174 annotations. As some of these
annotations are redundant, altogether there are 12, 16 and 82 specific GO terms of cellular components, molecular functions and biological processes,
respectively. In the right column the degree and the bridgeness value of p63 in the ComPPI database-derived human interactome (3) are shown. In the
centre 6 highlighted GO terms show that p63 plays an important role in the regulation of transcription and the apoptotic process. A complete list of
associated GO terms was collected by Quick-GO (28) and is available here: https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q9H3D4. (B)
The XGBoost machine learning algorithm (10–12) selected 17 types of features as the best model when calculating the Translocation Evidence Score
(TES, see Table 1 and Supplementary Text S6). Out of the 17 features the p63 protein is characterized by 6 GO features and a large degree. For every
GO-related feature we have shown the name of the specific GO term and the respective importance value of this GO term. The high TES score shows that
the translocation of p63 is highly probable. (C) As it is also suggested by some of its major interaction partners shown, the p63 protein is a regulator of
transcription and apoptosis. Reviewing the literature, we found that besides the well-known nuclear localization of the p63 protein (24,25) in fact, it also
has a validated cytoplasmic localization, too. Moreover, cytoplasmic localization of p63 is a predictor of increased malignancy of some tumours (26,27).
This disease-altered localization of p63 is in compliance with our definition for a translocating protein. Thus p63 was correctly predicted by Translocatome
as a likely candidate of further experimental studies proving its translocation.

pathways and disease development. In addition, it pro-
vides translocation likelihood values (as Translocation Ev-
idence Scores) for 13 066 human proteins identifying 1133
and 3268 high- and low-confidence translocating proteins,
respectively. The assembly of the Translocatome database
(Figure 1) combines careful manual curation steps with a
state-of-art machine learning prediction protocol. The ap-

plication examples (Table 2 and Figure 2) show that the
Translocation Evidence Score of Translocatome is able to
highlight already experimentally verified translocating pro-
teins, which do not evidently appear by simple key word-
based search methods, as well as proteins, whose translo-
cation is already very likely from the literature, but has not
been directly verified yet. These features position Translo-
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catome as a discovery-tool in the field of protein transloca-
tion.

The Translocatome database can be accessed via a user-
friendly web-interface providing a quick search function
(with UniProt AC autocompletion) and an advanced search
to find sets of proteins filtered by their localization, UniProt
identifiers, Translocation Evidence Score or Data Complex-
ity Score. The web interface provides eight pre-defined pro-
tein sets as download options and a possibility to down-
load the search results. End-user documentation is avail-
able as tutorials, detailed descriptions and location-specific
tooltips in the HELP menu of the site.

Translocatome is available at http://translocatome.
linkgroup.hu. Translocatome is a community-annotation
resource, which is helped by its manual curation framework
(MCF). MCF allows the users to build in their own exper-
imentally verified translocating proteins. Translocatome
will be updated and upgraded annually for minimum 5
years. The Translocatome database is connected to our
previously developed, compartmentalized protein–protein
interaction database (ComPPI, 3). Thus the improvement
of the subcellular localization and interactome data can be
easily translated to regular updates of the Translocatome
database giving improved protein translocation likelihood
values.

We plan to resolve current Translocatome limitations,
such as extending the database to other species than hu-
mans. Future plans include the extension of positive and
negative datasets and localization-based network visualiza-
tion. Translocating RNAs play a key role in subcellular reg-
ulation as well, but their role is even more complex and mys-
terious. We plan to extend our database and add translo-
cating RNAs, to fill out this gap. The improvement of the
data not only means, that Translocatome will have more
proteins or more detailed information. In this process the
whole database will be updated meaning that the XGBoost
machine learning will reappraise the data and provide more
even accurate predictions based on the updated data.

In conclusion, the Translocatome database introduced
here provides the first dedicated collection of 213 translo-
cating human proteins including their interaction part-
ners in the different subcellular localizations. Importantly,
Translocatome gives a Translocation Evidence Score to
more than 13 thousand human proteins allowing the assess-
ment of their translocation probability. All these features
are accessible in a user-friendly manner. The Translocatome
database allows a better comprehension of protein translo-
cation as a systems biology phenomenon, and can be used
as a discovery-tool of the field. Since translocating proteins
become more and more important therapeutic targets (6,7)
Translocatome may contribute to the development of better
future therapeutic options.
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The Translocatome database of human translocating
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Supplementary Texts 

Supplementary Text S1. Cellular processes not assessed as translocation 

To increase the focus and clarity of the Translocatome dataset we did not consider co-translational; 
post-translational delivery-type; cell division-induced; downregulation- or passive diffusion-related 
phenomena as protein translocation despite of the fact that the subcellular localization of a given 
protein may change in these situations. Please find a rationale of these considerations in the following 
paragraphs. 

1. Co-translational delivery. During the translation process several proteins pass the membrane of 
the endoplasmic reticulum. We did not consider this phenomenon as protein translocation. 

2. Post-translational delivery. During post-translational maturation processes several proteins 
change their localization in the cell, e.g. move from the endoplasmic reticulum to the Golgi 
apparatus where they may undergo additional post-translational modifications. We did not 
consider these protein movements as translocation as they are part of the post-translational 
maturation process and they are mostly not induced by a specific signal. We considered protein 
translocation as a phenomenon which happens after the protein reached its final destination and 
started to function. 

3. Protein translocation during the cell division process. During mitosis or meiosis the 
subcellular membrane structure becomes reorganized. As one of the primary changes the integrity 
of the nuclear membrane is massively decreased, thus in these parts of the cell cycle 
nucleocytoplasmic translocation cannot be observed as in G0 phase. Therefore, protein 
translocations which were described during the cell division process were regarded with criticism 
and were added to the Translocatome database only if they had a functional meaning and not 
merely happened as a consequence of the cell division process. 

4. Protein movements related to downregulation. Downregulation of several proteins (e.g. that of 
plasma membrane receptors) is achieved by their internalization to endocytotic vesicles and finally 
to the lysosome. We did not consider these phenomena as protein translocation. 

5. Protein movements related to passive diffusion. If a protein is small enough it can passively 
transit through some subcellular membranes (where the best known example is the nuclear pore). 
This phenomenon results in a multicompartmental localization of these proteins. We, therefore, 
regarded the translocation of small-size proteins with special criticism. 
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Supplementary Text S2. Additional considerations in the definition of protein 
translocation 

1. Definition of subcellular compartments. We considered six subcellular compartments: 
cytoplasm, extracellular space, mitochondria, nucleus, membrane, secretory-pathway based on 
the compartmentalized protein-protein interaction database, ComPPI (http://comppi.linkgroup.hu, 
1). We used these six major localizations because there is enough, comprehensive, high 
confidence information to create a localization-specific interactome (localization information is 
usually a result of a high-throughput method, therefore using more detailed localization items 
could increase the level of noise and create more bias in the data used). There are lower level 
functional organelles in cells (e.g.: proteasome, lysosome etc.), but their interactomes are not 
always well characterized and are usually not separated in system-level studies. 

2. Intra-compartmental translocations. Most current methods thus do not make it possible to 
evaluate translocations happening inside major localizations. Thus, these “intra-compartmental” 
translocations where not included to the Translocatome database. However, we always saved the 
minor localization of translocating proteins, thus when systematic studies will provide a better 
resolution then the Translocatome database can be updated to cover these intra-compartmental 
translocations as well. 

3. Intra-compartmental moonlighting proteins. Moonlighting proteins are known as proteins that 
are capable of executing different biochemical processes and are collected in the MoonProt 2.0 
database (http://moonlightingproteins.org, 2). We considered moonlighting proteins as 
translocating proteins if their moonlighting involved more than a single subcellular organelle. There 
are proteins that have different function inside one subcellular organelle. As a specific example of 
the intra-compartmental translocation mentioned in point 2, these intra-compartmental 
moonlighting proteins were not included to our database.  

4. Extent of translocation. We did not consider translocation as an 'all-or-none' phenomenon. Thus 
we included proteins as translocating proteins when the ratio of a protein in two given 
compartments changed substantially (e.g.: a protein that was mainly localized to the cytoplasm 
became mainly localized to the nucleus, however, this change was not complete, and there is still 
a small amount of the protein, which can be found in the cytoplasm). 

5. Participation in translocation. Those papers, where "protein A" mediated the translocation of 
"protein B", or "protein A" interacted with the translocating "protein B" were considered only from 
the point of "protein B" and not regarding "protein A". 

6. Definition of regulated movement of a protein. We collected translocating proteins participating 
in different cellular signalling mechanisms and responses, where the regulated movement of the 
protein was achieved by a signal. In addition, we considered regulated movement of the protein 
when the differing localization was achieved by the onset of a pathological condition (like e.g. 
cancer). 

 



  5

Supplementary Text S3. Manual curation of translocating proteins 

The manual curation team consisted of biochemists, bioinformaticians, cell biologists, molecular 
biologists and physicians. To ensure high quality manual curation every curated entry was assessed in 
the following way. After a paper was carefully reviewed by the primary curator it was subsequently 
reviewed by a senior member of the Translocatome team. If the data contained any inconsistencies or 
wasn’t straightforwardly understandable in any way a discussion was initiated (involving at least one 
other member of the team) and the problematic information became corrected. The entry became 
accepted to the database only after every topic in question has been adequately cleared and the entry 
has been cross-checked by at least 3 independent experts in the process. 

We give a flow chart of the manual curation process on Supplementary Figure S1. Our method of the 
curation process was similar to the methodology of previously published, manually curated databases 
like the MoonProt database (2).To find relevant scientific papers for building the gold standard positive 
dataset of 213 translocating proteins we used the PubMed and Google Scholar search engines. Key 
word-based searches resulted in a high number of hits as shown in Supplementary Table S1. After the 
initial reading process we realized that protein translocation has no unified definition and the word 
"translocation" is also used in a genomic sense to mark translocation of DNA segments or referring to 
the translocation of RNA on the ribosome. We have summarized our considerations for the definition 
of protein translocation in Supplementary Texts 1 and 2. This led to key word combinations of protein 
translocation, nucleocytoplasmic translocation, nuclear translocation, cytoplasmic translocation and 
mitochondrial translocation. We also realized that protein translocation is often referred as "shuttling" 
so we used this keyword, too. As shown on Table S1 these, more adequate key words and key word 
combinations significantly reduced the number of hits. 

The manual curation process started on 25th October 2015 and finished at the end of 2017. During the 
browsing/filtering/selection process of the refined key word based searches we applied the following 
preferences and techniques: 

 recent papers were preferentially checked, especially regarding review papers; 

 several experimental papers were "traced back" using the relevant references of review 
papers and databases; 

 papers appearing as "best match sorting" of PubMed searches and starting hits of Google 
Scholar searches were preferentially checked; 

 key word searches were refined using word combinations in quotation marks; 

 key word searches were refined using restrictions to "title" or "title/abstract"; 

 searches were considering only human proteins; 

 only peer-reviewed papers were considered; 

 papers on chromosomal, RNA or other types of translocations not related to protein 
translocation were not considered; 

 the exclusion criteria summarized in Supplementary Text S1 were applied; 

 the additional exclusion criteria summarized in Supplementary Text S2 (such as intra-
compartmental translocation, intra-compartmental moonlighting, the necessity to have a 
regulated translocation movement, etc.) were applied; 

 papers describing redundant information on previous hits were not considered. 
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As a result of this filtering/selection process we read over a hundred review papers and over a 
thousand pre-selected experimental papers submitting them to the manual curation process described 
in the starting paragraph of this Supplementary Text. Since we did not record the number of irrelevant 
articles from the start, we may only give estimates of the total papers read here. In addition, we also 
used direct, name-based searches for well-known translocating proteins, like nuclear hormone 
receptors, p53, EGFR, HIF1-alpha and other proteins, mentioned in review papers or in databases 
such as ComPPI (1) or MoonProt (2). 

During the detailed reading process of the selected papers we first cross-checked all exclusion criteria 
mentioned in the screening process (including those listed in Supplementary Texts S1 and S2). We 
included only those proteins to our Core Data, where the papers were discussing not only the mere 
fact of their translocation but also the details of their translocation mechanism (e.g. its regulation or 
mechanism related to the structure of the translocating protein) based on experimental validation. 
However, these details of the translocation process were not discussed in equal depths in different 
articles. To give an information on the richness of data behind each of the 213 entries of our database 
we created the Data Complexity Score as described in the main text and in Supplementary Text S7.  

We finished data collection when an increasing amount of former hits appeared in our new searches 
completing our Core Data having 213 human translocating proteins described in the 238 papers 
available at the link in the footnote1.This does not mean that the number of 213 manually curated 
translocating proteins of this Core Data (see here http://translocatome.linkgroup.hu/coredata) would 
give a complete list of human translocating proteins, as it is shown by Table 1 of the main text and 
Supplementary Table S4, where 11 out of the best 25 predictions turned to be already known 
translocating proteins not being part of our Core Data. This is one of the reasons why we created the 
Manual Curation Framework (MCF) to allow the continuous possibility to add further entries to the 
manually curated positive dataset. MCF entry suggestions will be reviewed with the same rigor 
described for the initial manual curation process. In addition, we complemented the manually curated 
information on translocating proteins with the efficient machine learning tool, XGBoost (3-5) to predict 
the translocation likelihood of approximately 13 000 human proteins as described in the main text and 
in Supplementary text S6 in detail. 

                                                            
1
https://www.ncbi.nlm.nih.gov/pubmed?term=24491427+24434356+23435424+24074954+15071501+21900948+19210988+24113167+26449824+260794

48+26520802+23955340+25989275+26406376+26056081+26602019+25684142+25823029+26648570+27013058+17308100+24667139+24695740+167
72870+26942675+24725411+26516353+26387538+26549027+26470026+26499805+27292796+16390708+19524307+26827288+19808100+24735540+
19718473+26969532+21419860+18760948+19854831+22583914+26181205+26379505+26643147+10749215+18974300+25589722+23814078+171235
11+11818509+24954011+11679632+27641332+9765220+17786044+20498072+18075313+26559910+27572958+21469768+9822602+9039962+864349
1+22345668+12628186+11517310+22534175+16640563+23707396+11231586+16162498+11756542+1985107+22684108+12649597+24841202+23333
404+24013206+10477286+15809060+20132536+10512882+27099442+25609610+27346674+27913144+1532584+26891695+24573109+15485931+113
01021+14505568+22639060+11043577+28149448+7925301+24324740+9672244+11705999+7782294+15084609+10187816+22186421+24628430+774
8180+14733946+12432920+27496138+18636433+18716285+25835495+19815064+27875245+9636171+20826166+22482906+10397761+10811825+20
674093+17516504+15496412+1312324+18204201+16782877+22932683+18515545+10973496+11559828+27428427+19216841+19160485+18045535+
26319354+25862818+18337556+19651895+10744629+22832227+19503814+18238777+9679058+17289031+27245214+17157415+22178385+2646214
8+17535848+25635431+16110492+28235034+12115727+20346347+20308327+16807357+28515276+10547363+21157379+27721408+20511593+1640
3913+10508860+28552616+28504714+12011459+25893308+20651736+24196791+25961505+18334557+22885005+22824301+22391300+16215984+2
6738429+22692200+27251589+25701194+26500058+26358502+26633708+25882840+24965109+27272778+24784232+24489995+28811933+2589328
9+25164084+22473997+27462018+25755279+24959884+27941888+26900797+27510036+16375604+23128389+14715249+17595320+22623727+1796
7441+26651356+16792529+15314173+18973764+12015613+28812328+15728466+23979357+12191473+19114992+23384547+18061509+14769937+1
4652813+22296597+11925436+28863181+17218261+22989880+20148342+15951807+15803152+25926267+17003494+12809600+15623571+9660801
+20605787+16818237+20937816+16951195+10811646+17560175+25299576+17645779%5Buid%5D&cmd=DetailsSearch&log$=activity 
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Supplementary Text S4. Manual curation of non-translocating proteins 

The negative dataset could not be searched using specific keywords as we did in the case of the gold 
standard positive translocating set, since there are no keywords to identify those proteins that are not 
translocating. Thus, we designed a different approach using the following considerations.  

1. Database filtering to reveal proteins having only a single minor localization. Our first 
approach was to find proteins that only have only a single minor localization, which makes it rather 
unlikely that they translocate. In order to filter these proteins, we assessed the data of the 
compartmentalized protein-protein interaction (ComPPI, 1) the UniProt (6) and the Human Protein 
Atlas (HPA, 7) databases. We found 844 single minor localization proteins in ComPPI. From these 
proteins 98 had a single localization in UniProt. From these 98 entries 60 cases had the same 
localization in both databases. From these 60 proteins 18 had localization information in the HPA 
database. From these 18 proteins 11 proteins had the same localization in all 3 databases. These 
11 proteins having the same localization in all 3 databases were included to the negative dataset. 
To extend this dataset we decided to include those proteins, which had the same, single minor 
localization in ComPPI (1) and HPA (7). To achieve this we started the filtration process with HPA. 
Here we found 1001 proteins which had only a single validated localization. We could map 996 
SwissProt UniProt IDs to these proteins. We found 995 of these proteins in ComPPI, out of which 
18 proteins were found, which had only a single minor localization in the complex dataset of 
ComPPI having close to 200 thousand localizations for human proteins. 7 of these proteins did not 
have localization data in UniProt (6). Thus, altogether this process resulted in 18 proteins that 
have only a single subcellular localization. 

2. Proteins with experimentally validated mono-compartment localization. 29 proteins total, e.g. 
ASAT or GPT1. Note that among these proteins may have multi-compartmental localization 
achieved by high-throughput methods. Such proteins were not included to the search results 
described in point 1. Here we did include them, since we considered experimental validation more 
convincing than high-throughput results. 

3. Proteins with diffuse multicompartment localization. Example of the 4 proteins with diffuse 
multicompartment localization: PEX12. 

4. Proteins anchored to the cytoskeleton. Examples of the 16 proteins anchored to the 
cytoskeleton: titin or myosin. 

5. Docked proteins to the DNA or to the membrane. Examples of the 26 DNA-bound proteins 
TAF1B or GATA3. Examples of the 64 membrane-bound proteins: Na/K ATPase or RYR.  

Altogether these considerations resulted in 139 non-translocating proteins of the negative dataset (the 
18 proteins of the search described in point 1 also appeared in later searches showing the integrity of 
the approach). 
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Supplementary Text S5. Gene Ontology annotation of the proteins 

For each ComPPI protein (including the training set)  we extracted the associated GO terms (8,9). 
However, in some cases a UniProt (6) entry is associated with a given GO term but not all of the 
ancestors of this GO term. As an example, the Merlin (P35240) protein entry is associated with the GO 
term “negative regulation of cell proliferation” (GO:0008285) but not its ancestor GO terms  “regulation 
of cell proliferation” (GO:0042127), “regulation of cellular process” (GO:0050794), “regulation of 
biological process” (GO:0050789), “biological regulation” (GO:0065007) and “biological process” 
(GO:0008150)." We solved this problem in the same way as described in earlier studies (5,10). We 
downloaded the basic version of the Gene Ontology database (with the database filename “go-
basic.obo”) and by walking upward in the GO hierarchy, we added all of the ancestor GO terms to the 
proteins. Note that “go-basic.obo” is guaranteed to have a hierarchical organization where annotations 
can be followed in the structure of the term-hierarchy. The final feature table contains 13 066 proteins 
and 21 020 binary (true/false) GO features.  
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Supplementary Text S6. Prediction by the XGBoost machine learning method 

Labels of the binary classification. The target variable (labels) of the binary classification has value 
1 for the 160 manually curated translocating proteins (“translocating class”) and value 0 for the 139 
non-translocating proteins (non-translocating class). 

Feature selection on the training set. The well-established and widely used XGBoost machine 
learning algorithm (3-5) is capable of selecting the most important features by building small decision 
trees of the most important features and gradually refining the models by adding new trees. We 
started the feature selection process using the set of 21 020 annotated GO features for the whole 
training set (n=299). We evaluated the XGBoost-selected feature sets by 5-fold cross-validation (in 
which we split the data into 5 random parts and in each round, used 4 parts to train and evaluated the 
prediction on the fifth part) and measured the area under the curve of the receiver operating 
characteristic curve (AUC,11). For every feature set, we repeated this process 100 times and 
computed the average AUC.  

Final prediction for all the 13 066 proteins. This final feature set and the final model parameters 
was used to predict translocation for all the 13 066 proteins in the database. The selected features of 
the model with the best ROC AUC value is shown on Table 1 of the main text with their importance 
values calculated from the leaf-scores of the one-depth trees of the final XGBoost model 
(https://github.com/kerepesi/translocatome_ml/blob/master/Results/GO_features.csv-imp-n_est80-
thr0.02-table.csv-add_degree_bridgeness.csv_Trees-n_est80-max_d1.txt). Using this feature set we 
calculated the Translocation Evidence Score characterizing the translocation probability of each of the 
13 066 proteins in the database as described in a the main text. 

Evaluation measures for binary classification. TP (true positive) is the number of positives that are 
predicted as positives. TN (true negative) is the number of negatives that are predicted as negatives. 
FP (false positive) is the number of negatives that are predicted as positives. FN (false negative) is the 
number of positives that are predicted as negatives. In our context “positive” means “translocating”, 
“negative” means “non-translocation”. Precision, recall (or true positive rate), fall-out (or false positive 
rate), F1 score and Matthews correlation coefficient were computed by Equations 1 to 5, respectively: 

 

  (1) 

   (2) 

   (3) 

 (4) 
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 (5) 

To evaluate the final prediction of the XGBoost method (3-5), we plotted the receiver operating 
characteristic curve (ROC, Supplementary Figure S4A). The performance of the model was defined as 
the area under the curve of the receiver operating characteristic curve (AUC, 11). The receiver 
operating characteristic curve (ROC) is defined by the point pairs of recall (or true positive rates)and 
fall-out (or false positive rates) at different threshold settings (11). We show the ROC curves, as well 
as precision-recall curves and Matthews correlation coefficient curves of 100 five-fold cross-validation 
runs on Figure 1C of the main text and Supplementary Figure S3, respectively, all using the final 
feature set (see Table 1 of the main text). All showed a high performance as discussed in the main 
text and legend related to Figure 1C and the legend of Supplementary Figure S3. 
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Supplementary Text S7. Calculation of the Data Complexity Score (DCS) 

The data complexity score (DCS) characterizes the information content of the manually curated 
protein-associated data of the Translocatome database. DCS is calculated as a weighted measure. 
The following information can increase the DCS: 

Information category Weight of the respective information 

well described translocation mechanism 3 

protein structural background of the 
translocation 

3 

known biological processes in the 
subcellular compartments 

2 

known interactions in the subcellular 
compartments 

1 

affected signalling pathway is discovered 1 

known pathological function of the 
translocating protein 

1 

type of the pathological condition affected by 
translocation 

1 

exact pathology for which the translocation 
is an underlying factor is discovered 

1 

detection method of the cellular localizations 
is known 

1 

 

After summing the weight values that are true for a given entry we divide this number with the maximal 
achievable DCS score of 23. Thus, DCS is a weighted and normalized average of the information 
categories, which can vary between the minimum of zero and the maximum of 1. 
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Supplementary Text S8. Calculation of the F1 score 

Contribution of the various GO-related and network-related features selected by the XGBoost machine 
learning algorithm (3-5) made us possible to define the Translocation Evidence Score (representing 
the likelihood of the translocation of a given protein) for all the 13 066 human proteins of 
Translocatome as described in the main text. The Translocation Evidence Score gave the possibility to 
define a cut-off value, below which proteins were considered as non-translocating. To define this cut-
off value, we used the parameter, F1 score (also called as F-measure, see Equation 4 in 
Supplementary Text S6, and supplementary reference 12). To calculate the F1 score we defined true 
positive hits as the positive training set proteins that has been predicted as translocating, true negative 
hits as the negative training set proteins that has been predicted as negative, false positive hits as the 
negative training set proteins that has been predicted as translocating and false negative hits as the 
positive training set proteins that has been predicted as non-translocating proteins – as described in 
Supplementary Text S6 in more detail. 
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Supplementary Text S9. Design and implementation of the Translocatome 
database. 

The Translocatome database has altogether 13 066 human protein entries. The core dataset is the 
213 manually curated human translocating proteins. Our primary aim was to implement this database 
as a user-friendly application which is easily browsable, understandable and has powerful search and 
download options. The website is designed to satisfy the needs of different disciplines providing data 
addressing several aspects of the translocation phenomenon. 
 
The database has an industry standard-level software design by a multidisciplinary team (database 
expert, informatician, bioinformatician, physician, graphic expert). The Translocatome website is 
designed as a client-server architecture: a NodeJS back-end serves the requests and fetches data 
from the MongoDB database, while the front-end, implemented with React.js displays this data in a 
user-friendly way. 
 
We selected third-party tools and technologies that favour scientific reproducibility and open 
accessibility, including the Ubuntu Linux 16.04 operating system (http://ubuntu.com), the nginx HTTP 
server (http://nginx.org), the MongoDB 3.2 database server (https://www.mongodb.com), the git 
version control system (http://git-scm.com), the NodeJS 6.10 (https://nodejs.org/en) Javascript server 
runtime with the Express.js 4.15 framework (http://expressjs.com) and the React.js 15.4 
(https://reactjs.org) JavaScript framework. 
 
The dataset can be browsed and searched by various user preferences. Protein names are auto-
completed using UniProt (6) accession numbers. The advanced search option gives the choice of 
translocation direction (from one selected cellular compartment to another), as well as the range of 
Translocation Evidence Score and Data Complexity Score. During searching a NodeJS script 
automatically generates a downloadable version of the current data. Furthermore, we provide pre-
defined download sets. 
 
The files forming the base of the Translocatome database can be generated with a simple SQL query 
from our previously developed, MySQL-based compartmentalized protein-protein interaction database 
(ComPPI, 1). This feature connects the two databases. Thus the improvement of the subcellular 
localization and interactome data can be easily translated to regular updates of the Translocatome 
database giving improved protein translocation probability values. 
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Supplementary Tables 

 

Supplementary Table S1. Number of hits in PubMed and Google Scholar 
searches 

Key words  Unrestricted search 
PubMed/Google 

Scholar* 

Reviews only 
available in PubMed 

Filtered to human 
available in PubMed 

translocation  297 319/133 000 
(329 989/154 000)** 

32 602 
(36 096) 

144 728 
(160 749) 

protein translocation  251 037/99 000 
(278 900/109 000)** 

26 922 
(29 802) 

116 726 
(130 928) 

shuttling  3420/21 000 
(4001/23 000)** 

402 
(466) 

1743 
(1972) 

nucleocytoplasmic 
translocation 

2711/4000 
(3016/8000)** 

347 
(403) 

1551 
(1740) 

nuclear translocation  43 891/64 000 
(50 023/72 000)** 

3568 
(3955) 

25 130 
(28506) 

cytoplasmic 
translocation 

84 923/35 000 
(93 122/45 000)** 

8902 
(9799) 

38 047 
(42 454) 

mitochondrial 
translocation 

25 239/24 000 
(28 653/48 000)** 

2908 
(3318) 

10 409 
(12 135) 

Total  299 216/133 000 
(332 304/154 000)** 

32 858 
(36 398) 

145 528 
(161 674) 

 

To find relevant scientific papers for building the gold standard positive dataset of 213 translocating 
proteins we used the PubMed and Google Scholar search engines searching for the keywords: 
translocation, protein translocation, shuttling, nucleocytoplasmic translocation, nuclear translocation, 
cytoplasmic translocation and mitochondrial translocation. Articles found were manually curated using 
the definition and the exclusion criteria as discussed in Supplementary Text S3. This table shows the 
number of PubMed and Google Scholar search results for each keyword separated by a slash. In the 
first column the results of the unrestricted search are shown. We also included the number of search 
results if we filtered for only review articles or only human studies. The manual curation process 
started on the 25.09.2015. and the numbers show the results restricted until that time. Italic numbers 
in parentheses refer to the number of papers restricted until the end of the manual curation process 
which was on 31 December 2017. For the assembly of the data in this table both databases were 
accessed on 4th October 2018. 

*Google Scholar hits were rounded to thousands. The total of Google Scholar counts refers to the 
search of "translocation" since the addition of "OR shuttling" term did not improve the number of hits. 
Without any restrictions Google Scholar gives over 2 million hits for "translocation". 

**Italic numbers in parentheses refer to the number of papers restricted until the end of the manual 
curation process which was on 31 December 2017. 
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Supplementary Table S2. Positive training set 

UniProt 
AC 

Gene 
name 

UniProt 
AC 

Gene 
name 

UniProt 
AC 

Gene 
name 

UniProt 
AC 

Gene 
name 

Q8IZP0  ABI1  Q9UER7  DAXX  P17936  IGFBP3  P12272  PTHLH 

P00519  ABL1  Q08211  DHX9  P24593  IGFBP5  P49023  PXN 

P42684  ABL2  Q13316  DMP1  P24592  IGFBP6  P20339  RAB5A 

Q9NR19  ACSS2  P26358  DNMT1  Q92985  IRF7  P63000  RAC1 

P35869  AHR  Q01094  E2F1  Q92830  KAT2A  Q06609  RAD51 

Q9GZX7  AICDA  Q15029  EFTUD2  Q92831  KAT2B  P10276  RARA 

P55008  AIF1  P00533  EGFR  P01116  KRAS  Q08999  RBL2 

O95831  AIFM1  P18146  EGR1  Q9UN81  L1RE1  P18754  RCC1 

P31749  AKT1  Q9Y6B2  EID1  Q14847  LASP1  O94761  RECQL4 

P09917  ALOX5  P06730  EIF4E  P02545  LMNA  Q04206  RELA 

Q8NAG6  ANKLE1  Q15717  ELAVL1  Q02750  MAP2K1  P51449  RORC 

Q7Z6G8  ANKS1B  P78545  ELF3  P28482  MAPK1  P62829  RPL23 

P10275  AR  P06733  ENO1  P27361  MAPK3  P23396  RPS3 

P10398  ARAF  Q15303  ERBB4  P29966  MARCKS  Q13950  RUNX2 

P15336  ATF2  P03372  ESR1  O00255  MEN1  Q01105  SET 

P18848  ATF4  P09038  FGF2  P15941  MUC1  O00141  SGK1 

P35670  ATP7B  Q12778  FOXO1  P19878  NCF2  Q96EB6  SIRT1 

P54252  ATXN3  O43524  FOXO3  P19338  NCL  P14672  SLC2A4 

P15291  B4GALT1  P04406  GAPDH  O95644  NFATC1  Q15797  SMAD1 

Q16611  BAK1  P10071  GLI3  Q14934  NFATC4  P48431  SOX2 

Q07812  BAX  O75496  GMNN  Q16236  NFE2L2  P48436  SOX9 

Q07817  BCL2L1  P04899  GNAI2  P19838  NFKB1  Q9NYA1  SPHK1 

O15392  BIRC5  P56524  HDAC4  Q00653  NFKB2  Q12772  SREBF2 

P38398  BRCA1  Q9UQL6  HDAC5  P29474  NOS3  Q07955  SRSF1 

P27797  CALR  Q16665  HIF1A  P04150  NR3C1  P42224  STAT1 

O14936  CASK  P16403  HIST1H1C  Q6X4W1  NSMF  P40763  STAT3 

P14635  CCNB1  P52789  HK2  Q8TAK6  OLIG1  Q13043  STK4 

Q16589  CCNG2  P09429  HMGB1  P49585  PCYT1A  P32856  STX2 

P50750  CDK9  P09651  HNRNPA1  O15534  PER1  Q15561  TEAD4 

P46527  CDKN1B  O14979  HNRNPDL  P00558  PGK1  O14746  TERT 

P49918  CDKN1C  P52597  HNRNPF  P14618  PKM  P36897  TGFBR1 

P17676  CEBPB  P31943  HNRNPH1  P00749  PLAU  P21980  TGM2 

O14757  CHEK1  P61978  HNRNPK  P37231  PPARG  P10828  THRB 

Q99828  CIB1  Q00839  HNRNPU  Q00005  PPP2R2B  Q9BSI4  TINF2 

P49759  CLK1  P01112  HRAS  Q15172  PPP2R5A  P62328  TMSB4X 

Q16526  CRY1  P07900  HSP90AA1 Q14738  PPP2R5D  P04637  TP53 

P56545  CTBP2  P08238  HSP90AB1 P30041  PRDX6  Q13114  TRAF3 

P35222  CTNNB1  P11142  HSPA8  P17612  PRKACA  Q9NSU2  TREX1 

Q14247  CTTN  Q02363  ID2  P78527  PRKDC  P68543  UBXN2A 

P99999  CYCS  P18065  IGFBP2  P60484  PTEN  P46937  YAP1 

Supplementary Table S2 contains the 160 manually curated translocating proteins that translocate 
under physiological conditions and thus were selected as elements of the positive training set. 
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Supplementary Table S3. Negative training set 

UniProt 
AC 

Gene 
name 

UniProt 
AC 

Gene 
name 

UniProt 
AC 

Gene 
name 

UniProt 
AC 

Gene 
name 

A6NGB9  WIPF3  P08922  ROS1  P48764  SLC9A3  Q92824  PCSK5 

A8MQ14  ZNF850  P0C024  NUDT7  P49790  NUP153  Q92908  GATA6 

A8MUV8  ZNF727  P0CJ78  ZNF865  P51946  CCNH  Q96HA9  PEX11G 

B4DU55  ZNF879  P10635  CYP2D6  P54277  PMS1  Q96LT4  SAMD8 

C9JN71  ZNF878  P10721  KIT  P60709  ACTB  Q96MW1  CCDC43 

E7ETH6  ZNF587B  P11055  MYH3  P62068  USP46  Q99595  TIMM17A 

O00391  QSOX1  P12883  MYH7  P68133  ACTA1  Q99705  MCHR1 

O00623  PEX12  P13533  MYH6  Q12824  SMARCB1  Q99965  ADAM2 

O14576  DYNC1I1  P13535  MYH8  Q12931  TRAP1  Q9BRQ3  NUDT22 

O14925  TIMM23  P13569  CFTR  Q13423  NNT  Q9BRT6  LLPH 

O14964  HGS  P14416  DRD2  Q14108  SCARB2  Q9BWM7  SFXN3 

O14975  SLC27A2  P16278  GLB1  Q14249  ENDOG  Q9HCE1  MOV10 

O14983  ATP2A1  P16473  TSHR  Q15388  TOMM20  Q9NRP2  CMC2 

O60341  KDM1A  P16581  SELE  Q15722  LTB4R  Q9NS69  TOMM22 

O60563  CCNT1  P17174  GOT1  Q16678  CYP1B1  Q9NUJ7  PLCXD1 

O75027  ABCB7  P18847  ATF3  Q16822  PCK2  Q9NZ42  PSENEN 

O75192  PEX11A  P18859  ATP5J  Q16878  CDO1  Q9NZ52  GGA3 

O75694  NUP155  P19367  HK1  Q53T94  TAF1B  Q9NYW8  RBAK 

O94822  LTN1  P19404  NDUFV2  Q71U36  TUBA1A  Q9P0Z9  PIPOX 

O94826  TOMM70  P20309  CHRM3  Q7Z406  MYH14  Q9UH99  SUN2 

O94901  SUN1  P20585  MSH3  Q7Z412  PEX26  Q9UHC1  MLH3 

O95182  NDUFA7  P21439  ABCB4  Q86Y39  NDUFA11  Q9UHD2  TBK1 

O95198  KLHL2  P21817  RYR1  Q86YV0  RASAL3  Q9UJ83  HACL1 

O96008  TOMM40  P22303  ACHE  Q8IWY9  CDAN1  Q9UJM8  HAO1 

P01106  MYC  P23771  GATA3  Q8IXM3  MRPL41  Q9UKU7  ACAD8 

P03923  MT‐ND6  P24298  GPT  Q8N9L9  ACOT4  Q9UKX2  MYH2 

P04629  NTRK1  P24752  ACAT1  Q8N9W6  BOLL  Q9UL17  TBX21 

P05023  ATP1A1  P35548  MSX2  Q8NGJ1  OR4D6  Q9UQ90  SPG7 

P05026  ATP1B1  P35558  PCK1  Q8TD30  GPT2  Q9Y259  CHKB 

P05412  JUN  P35579  MYH9  Q8TES7  FBF1  Q9Y2Q9  MRPS28 

P05496  ATP5G1  P35580  MYH10  Q8WVN6  SECTM1  Q9Y2W1  THRAP3 

P06276  BCHE  P35749  MYH11  Q8WVX9  FAR1  Q9Y3A0  COQ4 

P06400  RB1  P36542  ATP5C1  Q8WXD0  RXFP2  Q9Y584  TIMM22 

P07949  RET  P40939  HADHA  Q8WZ42  TTN  Q9Y5J7  TIMM9 

P08684  CYP3A4  P48058  GRIA4  Q92621  NUP205     

Supplementary Table S3 contains the 139 manually collected non-translocating proteins that were 
collected based on the considerations discussed in Supplementary Text S4 and form the negative 
training set. 
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Supplementary Table S4. Occurrence of the 11 top high-confidence 
translocating proteins not part of our Core Data in PubMed searches 

PubMed search term 
Protein 
name 

UniProt 
ID 

PubMed ID 
“translocation”

“protein 
translocation”

“shuttling” 
“nucleo-

cytoplasmic 
translocation”

“nuclear 
translocation” 

“cytoplasmic 
translocation” 

“mitochondrial 
translocation” 

NF2 P35240 
24726726 
20178741 

21 
29709009 

0 1 0 4 
29709009  

1 0 

TULP3 O75386 11375483  3 
11375483 

0 0 0 0 0 0 

SNCA P37840 18440504* 5 0 2 0 0 0 0 

FGFR2 P21802 15654655  
32 

16365892 
15654655  

0 0 0 
5 

16365892 
15654655 

0 0 

MTOR P42345 11114166* 

14 
29512299 
28694500  
21822208  

0 2 
26097872 

0 3 
21822208 

0 0 

GSK3B P49841 17438332* 7 0 0 0 0 0 0 

EIF6 P56537 21084295  2 
21084295  

0 1 
21084295 

0 0 0 0 

15897453 

20037577 HDAC1 Q13547 

27669993 

16 
24658119  

1 2 0 9 
24658119  

0 0 

19843527  

17848568  CARM1 Q86X55 

19208762  

4 
29681515  
19843527  

0 1 0 2 
29681515 

0 0 

26068074** 
CUL1 Q13616 

11027288 

13 
21247897 

0 0 0 4 
21247897  

1 0 

RARB P10826 19501957* 5 0 0 0 0 0 0 

Supplementary Table S4 contains the number of papers in boldface retrieved from Title/Abstract (in 
case of MTOR and HDAC1 Title/Title and HDAC1/Title, respectively) restricted PubMed searches. 
Nine digit PubMed IDs refer to those papers among these, where experimental evidence of 
translocation was listed. Experimental evidence for the translocation of three proteins (SNCA, GSK3B 
and RARB) were not found in keyword searches of their UniProt names, since these proteins were 
mentioned by different name versions in the papers describing the experimental evidence for their 
translocation. 
*The name of the protein was not the same as its UniProt name in the paper. 
**Note that this paper refers to an "SCF Ubiquitin Ligase Complex" which includes CUL1. 
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 Supplementary Figures 

 

Supplementary Figure S1. Workflow of the data acquisition process  

 

The figure shows the flow-chart of our manual curation process, which started on 25th October 2015 
and finished at the end of 2017. The curation process was similar to the methodology of previously 
published, manually curated databases like the MoonProt database (2). We started from a pool of 295, 
36 and 154 thousand PubMed experimental papers, PubMed reviews and Google Scholar papers, 
respectively, as shown on Supplementary Table S1 in detail. We especially considered recent review 
papers as references to more detailed searches and studies. The browsing/pre-selection process had 
the preferences described in Supplementary Text S3 in detail. As a result of this process we read 
more than a thousand research papers and over hundred reviews. We also made over a hundred 
direct searches for translocating proteins suggested by reviews and databases like ComPPI (1) or 
MoonProt (2). Applying the selection criteria of Supplementary Texts 1 through 3 during the careful 
manual curation process described in the starting paragraph of Supplementary Text S3, we finally 
selected the 238 papers which describe experimental evidence of the translocation of 213 human 
proteins forming the Core Data of our database (see here: http://translocatome.linkgroup.hu/coredata). 
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Supplementary Figure S2. Degree and bridgeness of all proteins, as well as the 
positive and negative training sets The figure shows the mean ± SD of the degree (Panel A) 
and the bridgeness (Panel B) values of all the 13 066 proteins as well as the 160 and 139 proteins of 
the positive and negative training sets, respectively. Using the giant component of the 
compartmentalized protein-protein interaction network (ComPPI)-derived human interactome having 
151 889 interactions (all downloadable from here: http://translocatome.linkgroup.hu/download, 1) the 
degree and bridgeness were calculated by CytoScape (13) and by its network module determination 
plug-in, ModuLand (14), respectively. Panel A shows that the average degree is 23.2, 37.9 and 124.1 
of all proteins, the negative and the positive training sets, respectively. The average degree of the 
positive set is significantly higher than the degree of the other two sets (p<0.05, Student's two tailed t-
test). Panel B shows that the average bridgeness is 0.04, 0.03 and 0.13 of all proteins, the negative 
and positive training sets, respectively. The average bridgeness of the positive set is significantly 
higher than the bridgeness of the other two sets (p<0.05, Student's two-tailed t-test). 



  20

 

Supplementary Figure S3. Performance of the widely-used XGBoost machine 
learning method on the final feature set evaluated by precision-recall and 
Matthews correlation coefficient curves of hundred 5-fold cross validations  
Each of the 100 different precision-recall (defined as Equations 1 and 2 of Supplementary Text S6) 
curves (panel A) and each of the 100 different Matthews correlation coefficient (MCC; defined as 
Equation 5 of Supplementary Text S6) curves (panel B) belong to a different 5 fold cross-validation run 
on the training set (containing 160 translocating and 139 non-translocating proteins). MCC values of 
the hundred 5-fold cross-validations were plotted as the function of threshold values dissecting the 
total range of MCC values to 50 equal segments. 5-fold cross validation runs were identical to those, 
whose receiver-operating characteristic (ROC) curves were shown on Figure 1C of the main text. 
ROC, precision-recall and MCC values are the generally suggested evaluation measures of machine 
learning methods (see e.g. in Refs. 12 and 15). In these 5-fold cross validation runs the well-
established XGBoost machine learning method (3-5) used the final feature set (as shown on Table 1 
of the main text) selected as described in the main text and Supplementary Text S6. The minimum, 
maximum and average of the area under the precision-recall curve values were 0.9116, 0.9432 and 
0.9291 (±0.0066 standard deviation), respectively. The minimum, maximum and average of the 
maximum MCC values were 0.6627, 0.7628 and 0.7202 (±0.0202 standard deviation), respectively. 
MCC values range between -1.0 and +1.0, where all MCC values higher than zero mean better 
predictions than random choice, and MCC=1 means a perfect prediction (12,15,16). 
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Supplementary Figure S4. Statistical parameters of the final prediction and 
translocation evidence-(TES)-scores Panel A shows the ROC curve for the prediction of the 
final model for the whole training set using the well-established, widely used XGBoost machine 
learning method (3-5, for more details see Supplementary Text S6). Panel B shows how the statistical 
parameters fallout, precision, recall and F1 score (see Equations 1 to 4 of Supplementary Text S6 and 
Supplementary Text S8) change their values as a function of the non-normalized Translocation 
Evidence Score (TES) values (for its detailed explanation see the main text). Panels C, D and E show 
the distribution of the TES values of all proteins, as well as those of the positive and negative training 
sets, respectively. Note that most of the positive training set entries have high TES values. On the 
contrary, most of the negative training set proteins have low TES values. 
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Supplementary Figure S5. Data structure of manually curated translocating 
protein download files Pre-defined download option files are in comma separated format (.csv), 
which can be opened using a spreadsheet. The figure shows a representative section from the 
“Manually curated translocating proteins” file. Each row represents a protein, with its data next to it. 
Each column contains the type of information marked in the upper top row. These explanations of the 
abbreviations of data types are: 

 UniProt AC: To identify every protein we use their UniProt accession number (6). You can 
find this number on the UniProt website (https://www.uniprot.org). 

 Gene name: Here we use the UniProt (6) Gene name. As a default we use the primary gene 
name. Some of the entries has more than one gene names separated with a pipe symbol. 

 Protein name: This is the full name of a protein from the UniProt database (6). 
 Reference: List of the PubMed IDs of the articles that discusses the information added to the 

latter cells. If more than one, they are separated with a pipe symbol. 
 Localization A: For every localization data we use a specific type of input (called 

subdocument). See the example of the IFI16 protein: 

{"major loc": ["nucleus (GO:0005634)"]," 
minor loc":"nucleoplasm (GO:0005654)", 
"comments": ["write your comments here"]} 

Every localization item is stored according to the Gene Ontology naming convention (8,9). We 
use six major localizations: Cytoplasm, Nucleus, Mitochondrion, Extracellular space, 
Secretory-pathway, Membrane. “Minor loc” refers to a subcompartment of the six major 
localizations, if mentioned in the reference article. If there is any, comments are added to the 
“comments" section. 

 Localization B: see at “Localization A” 
 Localization C: see at “Localization A” 
 Translocation mechanism A-B: Briefly summarizes data how the translocation occurs 

between localizations A and B. 
 Translocation mechanism B-C: Briefly summarizes data how the translocation occurs 

between localizations B and C. 
 Structural information: Briefly summarizes the structural properties of a given protein that 

are relevant for its translocation. 
 Biological process A: List of the biological processes in localization A related to the protein 

stored according to the Gene Ontology naming convention (8,9), separated with the pipe 
symbol. 

 Biological process B: see “Biological process A” 
 Biological process C: see “Biological process A” 
 Interactions A: The interacting protein names of corresponding entry in Localization A, 

specifically mentioned in the scientific paper cited in "Reference". If more than one, separated 
with the pipe symbol. 

 Interactions B: The same as "Interactions A", but in Localization B. 
 Interactions C: The same as "Interactions A", but in Localization C. 
 Signalling pathway: The KEGG-based (17) naming convention of the signalling pathway 

associated with the protein. The following roles of the protein (often after posttranslational 
modification) are possible: inhibiting/blocking, enhancing, modifying, etc. 
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 Pathological role: If the cited scientific paper in "Reference" mentions anything about a 
pathological situation the translocation playing role in or leading to, it is to be marked here in 
as a pathophysiological factor (such as: tumorigenesis, angiogenesis, etc.). 

 Disease group: Broad and general group of pathological states where the translocation was 
observed or occurs frequently (such as cancer). 

 Exact disease: Exact disease, where the translocation was observed or occurs frequently. 
 Localization detection method: The name of the biochemical method for observing the 

translocation (usually in a broader, general manner). 

If any item of data is not available for the protein, the “N/A” marker is used. 
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Supplementary Figure S6. Data structure of pre-defined download option files 
Pre-defined download options are in comma separated format (.csv), which can be opened using a 
spreadsheet. The figure shows the representative view of the following files: “High-confidence 
translocating proteins”, “Low-confidence translocating proteins”, “Non-translocating proteins predicted 
by machine learning”, “Whole dataset of the Translocatome”. Note that “Manually curated non-
translocating proteins” file differs from the above mentioned ones, because columns G and H are 
excluded. Please note that the high-confidence, low-confidence and non-translocating datasets do not 
contain the manually curated proteins, since the extensive data structure of the latter is available in 
different download formats (see Supplementary Figure S5). Each row represents a protein, with its 
data next to it. Each column contains the type of information marked in the upper top row. These 
explanations of the abbreviations of data types are: 

 UniProt AC: To identify every protein we use their UniProt accession number (6). You can 
find this number on the UniProt website (https://www.uniprot.org). 

 Gene name: Here we use the UniProt (6) Gene name. As a default we use the primary gene 
name. Some of the entries has more than one gene names separated with a pipe symbol. 

 Protein name: This is the full name of a protein from the UniProt database (6). 
 Degree: Number of interacting partners of the given protein, based on the human protein-

protein interaction network constructed from the data of the ComPPI database (1). The 
measure was calculated using the CytoScape program (13). 

 Betweenness centrality: the score represents the number of the shortest paths that pass 
through the protein. Higher betweenness centrality represents a higher ability to control the 
network, since more information passes through the protein. This centrality measure was not 
used in the machine learning process, since it did not characterize well the positive and 
negative training sets (data not shown). The measure was calculated using the CytoScape 
program (13). 

 Bridgeness: Bridges are nodes which connect different network modules, i.e. large protein 
complexes in protein-protein interaction networks (18). Since translocating proteins often have 
different associating partners in their different locations they are often forming bridges in the 
protein-protein interaction network. The measure was calculated using the ModuLand 
CytoScape plug-in (14). 

 Localizations with localization score from ComPPI database (excuded from “Manually 
curated non-translocating proteins”): The score gives the probability of a given protein to be 
found in a certain compartment, the number is imported from the ComPPI database (1). 

 Translocation evidence score (excluded from “Manually curated non-translocating 
proteins”): The TES scores gives the likelihood of the protein to translocate as defined and 
discussed in detail in the main text. 

 



  25

 

Supplementary Figure S7. Data structure of the protein-protein interaction 
network downloadable file Pre-defined download options are in comma separated format 
(.csv), which can be opened using a spreadsheet. The figure shows the representative view of the 
following file: “Protein-protein interaction network of the Translocatome”. The following data columns 
(the entries are separated by |) can be seen: 

 Protein A: UniProt (6) accession of interactor protein A. 
 Naming Convention A: naming convention for the interactor protein A. Only Swiss-Prot 

entries were used, so the value is “UniProtKB/Swiss-Prot/P” for every entry. 
 Synonyms A: list of the protein name synonyms for the interactor protein A 
 Taxonomy ID A: the taxonomy ID of the interactor protein A, since all the protein are human, 

the ID is 9606 for every entry. 
 Protein B: UniProt (6) accession of the interactor protein B 
 Naming Convention B: naming convention for the interactor protein B. Only Swiss-Prot 

entries were used, so the value is “UniProtKB/Swiss-Prot/P” for every entry. 
 Synonyms B: list of the protein name synonyms for the interactor protein B 
 Taxonomy ID B: the taxonomy ID of the interactor protein B, since all the protein are human, 

the ID is 9606 for every entry. 
 Interaction Score: the interaction score is defined as described in Ref. 1 and gives the 

probability of the interaction in a compartment dependent manner (Note that the interaction 
score is 0, if there was no localization information for one, or both of the interactors.) 

 Interaction Experimental System Type: list of the experimental system types for the given 
interaction 

 Interaction Source Database: list of the source databases for the given interaction as 
defined in the ComPPI (1) database. 

 Interaction PubMed ID: list of the PubMed IDs for the sources of the given interaction. 
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