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Abstract

Graph theoretical analyses of nervous systems usually omit the aspect of connection polar-

ity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is

a well-reconstructed directed network, but the signs of its connections are yet to be eluci-

dated. Here, we present the gene expression-based sign prediction of the ionotropic chemi-

cal synapse connectome of C. elegans (3,638 connections and 20,589 synapses total),

incorporating available presynaptic neurotransmitter and postsynaptic receptor gene

expression data for three major neurotransmitter systems. We made predictions for more

than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio

close to 4:1 which was found similar to that observed in many real-world networks. Our open

source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by

integrating neuronal connectome and gene expression data.

Author summary

The fundamental way neurons communicate is by activating or inhibiting each other via

synapses. The balance between the two is crucial for the optimal functioning of a nervous

system. However, whole-brain synaptic polarity information is unavailable for any species

and experimental validation is challenging. The roundworm Caenorhabditis elegans pos-

sesses a fully mapped connectome with an emerging gene expression profile of its 302

neurons. Based on the consideration that the polarity of a synapse can be determined by

the neurotransmitter(s) expressed in the presynaptic neuron and the receptors expressed

in the postsynaptic neuron, we conceptualized and created a tool that predicts synaptic

polarities based on connectivity and gene expression information. Using currently avail-

able datasets we propose for the first time that the ratio of excitatory and inhibitory synap-

ses in a partial connectome of C. elegans is around 4 to 1 which is in line with the balance

observed in many natural systems. Our method opens a way to include spatial and tempo-

ral dynamics of synaptic polarity that would add a new dimension of plasticity in the
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excitatory:inhibitory balance. Our tool is freely available to be used on any network

accompanied by any expression atlas.

Introduction

Chemical synapses of a neuronal network are both directed and signed, since a neuron is able

to excite or inhibit another neuron. The nervous system of the nematode Caenorhabditis ele-
gans has been fully mapped and reconstructed [1–3]. However, except for a few connections

there is no comprehensive chemical synapse polarity data available [1]. While the direction of

a synaptic connection can be inferred from its structure, the experimental determination of

its polarity requires delicate electrophysiological methods with limited system-level use (e.g.

patch-clamping) or more recent calcium-imaging or optogenetic techniques. Instead, in silico
approaches using reverse engineering and genetic algorithms have efficiently predicted synap-

tic signs for different subnetworks of the C. elegans connectome [4–8].

Many synaptic sign prediction models have relied on the widely accepted assumption that

the polarity of a chemical synapse is solely determined by the type of neurotransmitter released

by the presynaptic neuron [4,5]. Therefore, in C. elegans excitatory glutamatergic and choliner-

gic, as well as inhibitory ɣ-aminobutyric acid (GABA)-ergic ionotropic chemical connections

have been modeled. However, with this approach, approximately 6% of the connections turned

to be inhibitory [9,10]. A low proportion of inhibitory connections can result in an unbal-

anced, over-excited network, as has been shown by previous publications [11–13]. Moreover,

there is evidence of unconventional postsynaptic effects of neurotransmitters, such as choliner-

gic inhibition [14,15] or glutamatergic inhibition [16–18], meaning that a neuron can simulta-

neously excite and inhibit its postsynaptic partners with the same neurotransmitter due to

variable neurotransmitter receptor expression on the postsynaptic neuron membrane. For

example, the cholinergic AIY interneuron can activate RIB neurons and inhibit AIZ neurons

in an acetylcholine-mediated fashion [15].

We aimed to predict synaptic polarities in the C. elegans ionotropic chemical synapse con-

nectome (297 neurons and 20,589 synapses) relying on presynaptic neurotransmitter and

postsynaptic receptor gene expression data for the three main neurotransmitters glutamate,

acetylcholine and GABA. In this study of the C. elegans nervous system, we predicted the

polarity of more than 70% of ionotropic chemical synapses and predicted a sign-balance of

excitatory:inhibitory connections close to 4:1 that has been observed as functionally stable in

many real-world circumstances. Presenting a new dataset, we show that the concept of gene

expression-based polarity prediction can efficiently be applied to demonstrate a balanced E:I

ratio in a nervous system.

Results

Creating a prediction tool of the synaptic polarities of the C. elegans
connectome

Our primary goal was to infer synaptic polarity from combining connectivity and gene expres-

sion data. We created a simple, yet powerful algorithmic database (S1 Data) that takes as input

connectome and gene expression data to predict synaptic polarity of ionotropic glutamatergic,

cholinergic and GABA-ergic connections. We used the C. elegansWormWiring connectome

data primarily in the form of a weighted edge list representing 20,589 chemical synapses in

3,638 connections. Our prediction tool is available here: http://EleganSign.linkgroup.hu.
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Program, 2020-4.1.1.-TKP2020) of the Ministry for

Innovation and Technology in Hungary (Nemzeti

Kutatási, Fejlesztési és Innovációs Alap), within the
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Update of the previous neurotransmitter expression tables

We updated the C. elegans neuronal neurotransmitter tables previously published [19–22]

with recent evidence [10,23] (Methods). After this update, 256 neurons had a single neuro-

transmitter expressed, while 12 neurons had double neurotransmitter expression (Fig 1A).

There were 34 neurons which did not express any of the three neurotransmitters investigated.

Extraction of gene expression data

In parallel, we extracted gene expression data from Wormatlas [24], Wormbase (www.wormbase.

org), and a recent RNA-sequencing dataset [23] which we curated manually to assign ionotropic

Fig 1. Neurotransmitter and receptor expression patterns of C. elegans neurons. Expression data of the three major synaptic neurotransmitters and

their receptors of C. elegans were collected from multiple datasets and were manually curated (see Methods). (A) Distribution of neurons according to

their neurotransmitter expression: glutamate (red), acetylcholine (green), GABA (blue) or none (grey). (B) Number of receptor genes expressed by

neurons, grouped by neuron modality. (C) Distribution of neurons based on their neurotransmitter receptor gene expression (colors are the same as in

panel A). (D) Distribution of neurons according to the number of neurotransmitters for which anion and/or cation channel receptor genes are

expressed.

https://doi.org/10.1371/journal.pcbi.1007974.g001
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receptor expression pattern to each neuron (see Methods). To do this we first sorted the previ-

ously identified 62 ionotropic receptor genes into six functional classes based on their suggested

neurotransmitter ligand (glutamate, acetylcholine or GABA) and putative ion channel type (cat-

ionic or anionic, i.e. excitatory or inhibitory), as shown in Table 1. We found evidence for post-

synaptic neuronal expression of 42 out of the 62 receptor genes in the C. elegans nervous system

(genes marked bold in Table 1; also S1 Data). We also found an increasing average number of

receptor genes in sensory, inter- and motor neurons, respectively (Fig 1B).

Next, for all the 302 neurons of the C. elegans connectome we determined which receptor

classes were expressed. 166 neurons had an overlapping expression of receptors for two or

three different neurotransmitters (Fig 1C). The distribution of neurons according to their

expression of cationic and/or anionic glutamate, acetylcholine and/or GABA receptors sug-

gested functional diversity due to the high number of neurons expressing both excitatory and

inhibitory receptors (Fig 1D). Surprisingly, 85 neurons expressed both excitatory and inhibi-

tory receptor genes for the same neurotransmitter (S1 Data). Forty out of 302 neurons showed

no receptor expression, out of which 32 neurons were primarily sensory neurons (S1 Data).

The average number of receptor genes expressed was 3.7 per neuron (S2 Table).

Neurotransmitter and receptor gene expression-based polarity prediction

After assigning neurotransmitter and receptor expression patterns to each neuron, we pre-

dicted synaptic polarities by looking for matches between the neurotransmitter expression of

the presynaptic neuron and the receptor gene expression of the postsynaptic neuron (Fig 2A).

This way, we labeled synapses as one of the following: excitatory, inhibitory, complex, or

Table 1. Neurotransmitter receptor genes.

Glutamate Acetylcholine GABA

Cation channel receptor gene glr-1
glr-2
glr-3
glr-4
glr-5
glr-6
glr-7
glr-8
nmr-1
nmr-2

acr-1 acr-16
acr-2 acr-17
acr-3 acr-18
acr-4 acr-19
acr-5 acr-20
acr-6 acr-21
acr-7 acr-23
acr-8 acr-25
acr-9 deg-3
acr-10 des-2
acr-11 eat-2
acr-12 lev-8
acr-13 unc-29
acr-14 unc-38
acr-15 unc-63

exp-1
lgc-35

Anion channel receptor gene glc-1
glc-2
glc-3
glc-4
avr-14
avr-15

acc-1
acc-2
acc-3
lgc-47
lgc-48
lgc-49

gab-1
ggr-1
ggr-2
ggr-3
lgc-36
lgc-37
lgc-38
unc-49

The Caenorhabditis elegans genome contains 62 ionotropic postsynaptic receptor genes for glutamate, acetylcholine, and GABA. acc-4 and lgc-46 genes were excluded

from our database due to suggested presynaptic expression (S1 Table). In this table genes are grouped according to their neurotransmitter ligand and whether forming

cationic (+) or anionic (−) ion channels (based on [24] and other references listed in S1 Table). In C. elegans "unconventional signaling", namely, glutamate-mediated

inhibition, cholinergic inhibition and GABA-ergic excitation, is facilitated by 6, 6, and 2 receptor genes, respectively. In the gene expression database used in this work,

expression in at least one neuron was found in the case of 42 genes (marked bold), while for 20 genes no neuronal expression was found.

https://doi.org/10.1371/journal.pcbi.1007974.t001
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unpredicted (see Methods). “Excitatory” or “inhibitory” label were given when the neurotrans-

mitter-matched postsynaptic receptor genes were only cation or anion channel related, respec-

tively. A synapse was labeled as “complex” if data suggested both excitatory and inhibitory

function. With this approach, we predicted synaptic polarity for 73% of chemical synapses of

Fig 2. Prediction of synaptic polarities of the C. elegans ionotropic chemical synapse connectome. (A) Prediction

method. Connectome and gene expression data were manually curated (see Methods). Polarities of chemical synapses

were predicted based on the neurotransmitter expression of presynaptic neurons and the matching receptor gene

expression of the postsynaptic neurons. (B) Distribution of predicted and unpredicted synapses. We were able to

predict polarity for 73% of chemical synapses (green). The polarities of the rest of synapses were unpredicted due to

unknown neurotransmitter expression of the presynaptic neurons (dark grey) or non-matching receptor gene

expression of the postsynaptic neurons (light grey).

https://doi.org/10.1371/journal.pcbi.1007974.g002
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the C. elegans connectome (Fig 2B). We could not predict polarity for the remaining synapses

due to missing neurotransmitter data or mismatch in neurotransmitter/receptor expression

(Fig 2B). We predicted that 9,070 of the synapses are excitatory and 2,580 are inhibitory, while

3,413 synapses have complex function (Fig 3A and S1 Data). These findings suggest that the

overall ratio of excitatory and inhibitory synapses (E:I ratio) in the C. elegans ionotropic chem-

ical synapse network is close to 4:1 (Fig 3A, NT+R method).

Alternative polarity prediction methods

To put our results in context, we applied two alternative prediction methods for comparison

(NT-only and R-only; see Methods). The NT-onlymethod yielded a much higher E:I ratio

Fig 3. Predicted synaptic polarities. (A) Distributions of predicted polarities, using the method developed in this

paper (NT+R) and two alternative methods as comparison (NT-only and R-only). Polarities were predicted by

considering the neurotransmitter expression of the presynaptic neuron and/or the receptor gene expression of the

postsynaptic neuron (see Methods). (B) Distributions of predicted synaptic polarities (using theNT+R method)

according to the presynaptic neurotransmitter. Colors are the same as in panel A. Unpredicted synapses are not

shown.

https://doi.org/10.1371/journal.pcbi.1007974.g003
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(Fig 3A, NT-only method; S2 Data), which is in line with the dominance of purely glutama-

tergic or cholinergic (traditionally excitatory) neurons over GABA-ergic (traditionally inhib-

itory) neurons (Fig 1A). To explain the difference further, the NT+Rmethod predicted that

30% of cholinergic and 5% of glutamatergic synapses were inhibitory (Fig 3B) which is a sig-

nificant fraction of synapses otherwise predicted excitatory with the NT-onlymethod. A pair-

wise comparison of polarities predicted with the NT+R and NT-onlymethods is presented in

S2 Data. The other, R-onlymethod yielded a markedly smaller E:I ratio, however predicted

an excessive number of complex synapses (Fig 3A, R-only method, S3 Data). This is due to

the fact that many neurons express both cation and anion channel receptor genes (Fig 1D).

Feedback inhibition between neuron groups

Notably, in subsets of connections which connect neurons of different modalities of sensory

neurons, motor neurons, interneurons and polymodal neurons, the E:I ratios varied between

1:10 (motor–> sensory) and 14:1 (inter–> motor). Importantly, we observed dominant inhi-

bition in the motor–> sensory, motor–> inter, and inter–> sensory directions (Fig 4A),

exhibiting inhibitory backward signaling as discussed in the literature previously [25,26], as

opposed to a forward (sensory ->motor) excitatory excess. Besides, a significant presence of

inhibitory and complex connections was found in the locomotion circuit as well (Fig 4B and

S2 Fig).

Network representations of the signed C. elegans connectome

Network representations of synaptic polarities in the C. elegans ionotropic chemical synapse

connectome using the EntOptLayout plugin of Cytoscape [27] are in Fig 5. Fig 5A shows that

the modular structure of the C. elegans connectome visualized by the EntOptLayout method

nicely captures the anatomical locations of the anterior, ventral and lateral ganglions, as well as

the premotor interneurons of the worm. While the anterior and lateral ganglions show a large

glutamate expression, this is much less characteristic to the ventral ganglion (Fig 5A). Fig 5B

shows that the ventral ganglion has predominantly inhibitory connections, while connections

in the other locations are predominantly excitatory if predicted by our NT + R method. Fig 5C

demonstrates that the prediction of polarities by neurotransmitters only (NT-only method)

results in a large excitatory excess, mainly because the connections predicted as inhibitory or

complex with the NT+R method turn into excitatory. This difference can be observed amongst

head neurons and premotor interneurons, but less amongst motor neurons. Many connec-

tions of the polymodal neurons are predicted as complex only with the NT+R method. The

anatomical locations of neurons expressing various neurotransmitters (Fig 5D) correspond

well to the network representation shown in Fig 5A. Links between inhibitory function and

anatomical structures have been shown in the human brain [28,29], but have not been demon-

strated previously in the nematode.

Validation of our predictions

To validate our results, we contrasted our predictions to previously published in silico and

experimental work as well. Comparison to the computational findings of Rakowski & Karbow-

ski [30] in the C. elegans locomotion circuit of 7 neuron groups and 652 synapses showed a

70% consistency in predicted synaptic polarities (53% on the level of connections) (S3 Table),

albeit using a completely different concept. When testing our predictions against experimental

evidence based on the literature we found that the majority of predicted polarities using our

method were consistent with earlier findings in C. elegans: only 1 out of 12 interneuronal con-

nections (29 / 501 synapses) reviewed was predicted an opposing polarity to what has
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Fig 4. Excitatory:inhibitory balance of different neuron groups. (A) Excitatory:inhibitory balance between neuron

groups of different modalities. Nodes represent groups of neurons by modality. Edges are weighted according to the

excitatory:inhibitory (E:I) ratios (see numbers). Green and red colors represent excitatory (E:I>1) and inhibitory (E:

I<1) excess in sign-balances, respectively. (B) Network representation of the locomotion subnetwork. Edges represent

excitatory (blue), inhibitory (red), or complex (black) chemical connections. Edges are weighted according to synapse

number. The shape of vertices (Δ,�,�) represent the modality (sensory, inter, motor, respectively) of neurons. Separate

representations of the head circuit and the ventral nerve cord motor neurons are in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1007974.g004
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experimentally been confirmed (S4 Table). This ratio is 6 /12 when validating the NT-only pre-

diction method, supporting the importance of receptor expression.

To test the robustness of our NT+R prediction method to predict E:I balance, we applied

the same rules to predict polarities of connections regardless of synapse number data, and

after perturbations in the network like deletion of the 20 pharyngeal nervous system neurons

or deletion of potentially variable (i.e. single-synapse) connections (S4 Data). Furthermore, we

repeated our analyses in other published connectomes [2,3] of different sizes as well (S5 Table

and S5 Data). In all five cases, the excitatory:inhibitory ratios were in the range of 3.1 to 4.1 (S1

Fig). When predicting not using the yet preprint-published RNA-seq expression dataset [23],

this range was 3.7–4.1 (S6 Data). All together, these findings suggest that the observed sign-bal-

ance is a remarkably robust property of the C. elegans ionotropic chemical synapse network.

Discussion

Nervous systems are not only directed but signed networks as well since neurons either acti-

vate or inhibit other neurons [12]. The balance of excitatory and inhibitory connections (i.e.

the sign-balance) is a fundamental feature of brain networks, clearly marked by the variety of

disorders associated with its impairment [12,31,32]. However, direct evidence of single syn-

apse polarity is rather sporadic even in simple species. In this work we predicted that the sign-

balance in the C. elegans ligand-gated ionotropic chemical synapse network is approximately

4:1 (excitatory-inhibitory, E:I). This is consistent with previous in vitro and in vivo studies of

nervous systems [33–36], and also with observations of different social networks [37,38], as

shown in Table 2. However, this ratio can only be predicted if not only the neurotransmitter

expression of the presynaptic neuron but also the receptor gene expression of the postsynaptic

neuron is taken into consideration. Its significance is due to fourteen receptor genes that are

presumed to encode inhibitory glutamatergic/cholinergic or excitatory GABA-ergic postsyn-

aptic ion channel receptors. This concept of unconventional signaling is not new, but has

already been described in C. elegans [14,39,40] and other primitive species [41–43], and also in

Fig 5. Network representations of the C. elegans chemical synapse network. (A-C) Network representations using the EntOpt layout plugin in

Cytoscape [27]. (A) Color and shape of vertices represent neurotransmitter expression and modality of neurons, respectively (see inset for definitions).

(B) Edges represent excitatory (blue), inhibitory (red), or complex (black) chemical connections predicted by the NT+R method (see Methods),

weighted according to synapse numbers. (C) Colors of edges (see panel B) represent the polarities of chemical synapses predicted by the NT-only

method. (D) Layout of vertices is representing the anatomic position of neurons. Node and edge colors are as in panels A and B, respectively. High-

resolution representation is available in S1 File.

https://doi.org/10.1371/journal.pcbi.1007974.g005
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mammals in the postnatal period [44,45]. This concept has already motivated the prediction of

connection polarity instead of neuron polarity, yet on a subcircuit level [30]. Complementing

recent work that used gene expression data for structural and functional modelling of the ner-

vous system [46–48], our prediction model is a novel attempt to predict polarities of all ligand-

gated ionotropic chemical synapses of the C. elegans connectome.

A surprisingly high proportion of synapses were predicted to have a complex, i.e. both excit-

atory and inhibitory polarity. This is due to parallel expression of cationic and anionic receptor

genes–often for the same neurotransmitter–in half of the neurons. This suggests a highly com-

plex functioning of neuronal connections that extends beyond the permanently exclusive con-

cept of excitation-inhibition dichotomy. Since our work is mostly based on expression data of

subunits instead of functional receptors, predictions made are derived from genetic permissi-

bility rather than direct receptor complex presence. While ionotropic transmission in a single

synapse is typically either excitatory or inhibitory, the predicted "complexity" can be resolved

mainly in two physiologically well-established ways. One is that postsynaptic receptors are not

homogenously distributed across the plasma membrane but their subcellular localization is

regulated. This allows the receptors to act independently [50–55] and allows the same neuro-

transmitter to excite and inhibit at distinct postsynaptic sites. For example, such mechanisms

have been identified in the AIA [56–58] and AIB neuron groups [59].

Another explanation of "complexity" is the dynamic change of gene expression in time

which is observed all through the life-span of a worm e.g. during development, learning (syn-

aptic plasticity), and aging [60–68]. Ultimately, changes in gene expression can lead to neuro-

transmitter-switching and consequential up- and downregulation of receptors of opposing

polarity [69,70]. In its complexity, co-transmission by parallel expression of different neuro-

transmitters and receptors is one of the mechanisms of plasticity [71].

Currently, there is not enough data to address either the spatial or the temporal aspects of

receptor expression regulation on the worm-scale. As expression-profiling methods will pro-

vide whole-brain and dynamic proteomics data of subcellular resolution, complex synapses

might be further resolved.

There are several mechanisms of interneuronal communication acting in concert to transmit

signals while maintaining a responsive but balanced system. The balance of excitation and inhibi-

tion—crucial for network stability—is reached via a number of mechanisms. Both synaptic and

extrasynaptic, electrical and chemical, voltage-gated and ligand-gated, ion channel-mediated and

G-protein coupled neurotransmission have diverse but intertwining roles in promoting and

Table 2. Proportions of negative edges in signed networks.

Network Proportion of negative edges Reference

C. elegans chemical synapse network 20% this work

Rat hippocampus (in vivo) 5–30% [35]

Rat excitatory neocortical neurons 20% [36]

Cerebral cortex (in vivo; GAD expression) 10–20% [17]

Cerebral cortex (in vivo; GABA neurons) 20–25% [17]

Optimal network for synchronized bursting activity (in silico) 10–20% [6]

Primary visual cortex (V1; in silico) 25% [49]

Neuronal network (ex vivo) and neuronal network model (in silico) 20% [18]

Wikipedia (social network) 21% [37]

Epinions (social network) 15% [37]

Slashdot (social network) 23% [37]

University freshman network (social) 12–14% [38]

https://doi.org/10.1371/journal.pcbi.1007974.t002
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modulating excitation and inhibition. As there are significant mechanistic and functional differ-

ences (e.g. speed, modulatory role) between transmission modes, the neuronal connectome can

be comprehended as a multiplex network of partially independent layers with each layer repre-

senting a distinct type of signaling [47,72,73]. Two dedicated cases were monoamine and meta-

botropic transmission which were excluded from our workflow. Since monoamine transmission

via serotonin, dopamine and tyramine typically occurs extrasynaptically (i.e. 94% in case of tyra-

mine-responsive neurons), expression data of even ionotropic channels (e.g.mod-1, lgc-55)
would have been difficult to apply on the hard-wired connectome used in our study [47,74,75].

Additionally, in [47] the authors created a wireless (extrasynaptic) connectome of C. elegans
based on matching monoamine/neuropeptide expression with receptor gene expression showing

a network structurally different from the hard-wired connectome. Wireless networks possibly

exist for ionotropic receptors as well via mechanism of spillover transmission [10,76]. Likewise,

metabotropic neurotransmission typically acting via G-protein coupled receptors plays a rather

modulatory than direct excitatory/inhibitory role in the nervous system by inducing broad, long-

lasting, slow time-scale changes which is distinctive [71,73,77–80]. Our paper covers ligand-

gated ionotropic synaptic connections, which account for the fast-acting system of neurotrans-

mitter-mediated synaptic signaling. Additional layers of neural signaling can be targets of polar-

ity prediction in subsequent studies and potentially overlayed on this signed network.

There are a number of limitations of our study which limit its generalizability at the current

state: 1) although the most complete of any species, new connectivity data of the worm is still

emerging [3,60] as well as 2) gene expression data [23,81]; 3) although our assumption that cation

and anion channels are consistently excitatory and inhibitory, respectively, is generally valid

based on their ion selectivity, the direction of a channel-mediated ion current is ultimately deter-

mined by a set of additional biophysical conditions e.g. ion gradients and the membrane potential

[39,82,83] which were not considered in our work; 4) neurotransmission types other than ligand-

gated ionotropic chemical signaling (e.g. G-protein coupled, monamine or neuropeptide) were

excluded to avoid mixing different layers of neurotransmission (i.e. extrasynaptic, slow-scale,

neuromodulatory transmission) [47,74,75]; 5) even in the case of ionotropic receptors, there are

likely a number of additional ligand-gated ion channels that are still uncharacterized [84].

Although the strength of prediction of our work is generally acceptable (>70%), as new

data of connectivity and gene expression emerge, our method can be used to provide more

accurate predictions of synaptic polarity.

Within the scope of our aims and subject to the limitations discussed above we predicted

synaptic polarities in the ionotropic chemical synapse network of C. elegans using expression

data, for the first time. We developed and applied a novel method that combines connectivity

with presynaptic and postsynaptic gene expression data and made its tool available for users at

the website http://EleganSign.linkgroup.hu/. Amongst ionotropic chemical synaptic connec-

tions, balance of excitatory and inhibitory connections similar to other real-world networks

can be well approximated only if one considers both pre- and postsynaptic gene expression, a

concept that was lacking from previous work. Our method opens a way to include spatial and

temporal dynamics of synaptic polarity that would add a new dimension of plasticity in the

excitatory:inhibitory balance. When sufficient data is available, our polarity prediction method

can be applied to any neuronal (and as a concept non-neuronal) network.

Methods

Description of C. elegans connectome data

Connectome reconstruction of the adult hermaphrodite worm published by WormWiring

(http://wormwiring.org) consists of 3,638 chemical connections and 2,167 gap junctions,
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connecting 300 neurons (the two canal-associated neurons, CANL and CANR remained iso-

lated in this reconstruction, and therefore were omitted from the connectome-related analy-

ses). Each of the connections has 4 attributes: the presynaptic neuron, the postsynaptic

neuron, the type of the connection (chemical or electrical), and the number of synapses. The

chemical connections subset consisting of 20,589 synapses connecting 297 neurons was used

in our work (the sensory neuron pair PLML and PLMR, and the pharyngeal neuron M5 is iso-

lated in the chemical synapse network). Additionally, two other connectome reconstructions–

both covering a smaller number of neurons and synapses–were used for validation (S5 Table).

Description of gene expression data and processing

Initially, neuronal binary gene expression data was obtained from a previous publication based

on Wormbase [21]. This was extended with data of neuronal neurotransmitter [10,19,20,61]

and receptor [24] expression, and with expression data from the recently published CenGen

database [23] after transformation to binary information (S1 Text, S6 Table, and S7 Data). For

receptor expression scoring, only the genes coding postsynaptic ionotropic receptor subunits

were evaluated according to the six functional classes based on their suggested neurotransmit-

ter ligand (glutamate, acetylcholine or GABA) and putative ion channel type. Cation and

anion channel genes were categorized as excitatory and inhibitory, respectively. Expression of

one or more genes in a functional class was considered positive.

Prediction of synaptic polarities

Polarities were predicted for connections based on presynaptic neurotransmitter and postsynap-

tic receptor expression data, using nested logical and conditional formulas. In case of the

method referenced as theNT+Rmethod throughout the paper, synapses were predicted as excit-
atory or inhibitory if only cation channel or only anion channel receptor genes matched the pre-

synaptic neurotransmitter, respectively; complex if both types of receptor genes matched; and

unpredicted if no receptor gene matched. Alternative prediction methods were used according

to the following rules.NT-only method: synapses were predicted excitatory or inhibitory if the

presynaptic neurotransmitter was acetylcholine and/or glutamate or GABA, respectively; com-
plex if acetylcholine and/or glutamate and GABA; and unpredicted if the neurotransmitter was

none of these. R-only method: synapses were predicted excitatory or inhibitory if the postsynaptic

receptor genes expressed were only cation channel or anion channel coding, respectively; com-
plex if both types of ion channel receptor genes were expressed; and unpredicted if no receptor

gene was expressed. Exact formulas are available in Supplementary Data.

Software and data

Data were processed and predictions were made using Microsoft Excel (ver. 16.32) and R

(RStudio 1.1.456) using standard packages.

Supporting information

S1 Fig. Proportions of predicted synaptic polarities in alternative C. elegans neuronal net-

works. Predictions were made based on the neurotransmitter and receptor gene expression

patterns of the presynaptic and postsynaptic neurons, respectively (NT+R method, see Meth-

ods). Red, blue, and grey colors mark inhibitory, excitatory, and complex polarities, respec-

tively. (A) Excitatory-inhibitory balances in alternative networks of the WormWiring

connectome reconstruction. Bars from top to bottom: 1. synapse weighted network for com-

parative purpose (same as in Fig 3A); 2. weak links (defined by synapse number of 1) deleted
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[3]; 3. links connecting any of the pharyngeal nervous system neurons deleted. The rationale is

that many previous work analyzed the connectome without the pharyngeal nervous system

[2,85]; 4. unweighted network. (B) Predicted synaptic polarities for two connectome recon-

structions other than Wormwiring, covering a variable number of neurons and synapses [2,3]

(S5 Table). In summary, excitatory:inhibitory sign-balance ratios were similar in all cases,

ranging between 3.1–4.1. Source data are provided in S1, S4 and S5 Data.

(TIF)

S2 Fig. Separate representation of the locomotion subnetwork of C. elegans. Figure is a split

network representation of Fig 4B. Edges represent excitatory (blue), inhibitory (red), or com-

plex (black) chemical connections. Edges are weighted according to synapse number. The

shape of vertices (Δ,�,�) represent the modality (sensory, inter, motor, respectively) of neu-

rons. (A) Head circuit neurons. (B) Ventral nerve cord motor neurons. Colors as in Fig 4B.

(TIF)

S1 Data. Prediction of synaptic signs based on neurotransmitter and receptor expression

data.

(XLSX)

S2 Data. Prediction of synaptic signs based on neurotransmitter expression data.

(XLSX)

S3 Data. Prediction of synaptic signs based on neurotransmitter receptor expression data.

(XLSX)

S4 Data. Prediction of synaptic and edge signs based on neurotransmitter and receptor

expression data in different subnetworks.

(XLSX)

S5 Data. Prediction of synaptic signs based on neurotransmitter and receptor expression

data (alternative connectome reconstructions).

(XLSX)

S6 Data. Summary of predictions as in S1, S4, and S5 Data after exclusion of the RNA-seq

dataset.

(XLSX)

S7 Data. Utilization and curation of data sources.

(XLSX)

S1 File. High-resolution vector graphic version of Fig 5.

(PDF)

S1 Table. Channel type (cation or anion) of ionotropic neurotransmitter receptor genes of

C. elegans. The Caenorhabditis elegans genome contains 62 ionotropic postsynaptic receptor

genes for glutamate, acetylcholine, and GABA. In this table genes are listed in alphabetic

order, and the type of channel (+ for cation channel,–for anion channel) is presented with rele-

vant reference. The 42 genes that were expressed postsynaptically in at least one neuron in our

database (marked bold) have been validated for being cationic or anionic.

(DOCX)

S2 Table. Distribution of neurons according to the number of ionotropic neurotransmitter

receptor genes expressed. Neuronal gene expression database was compiled from available

datasets and manually curated (Methods). Genes encoding ionotropic receptors for glutamate,
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acetylcholine or GABA were grouped according to the type of ion channel (cation or anion),

i.e. whether being excitatory or inhibitory. Bold numbers represent number of neurons

expressing certain numbers of excitatory and/or inhibitory receptor genes. 63 neurons express

only cation-channel receptor genes (green), while 48 neurons express only anion-channel

receptor genes (red). 151 neurons express a mixture of cation- and anion-channel receptor

genes (grey). Source data is in S1 Data.

(DOCX)

S3 Table. Validation of results with a previous synaptic polarity prediction paper. Pre-

dicted polarities from our results (S1 Data) were compared to the polarities predicted by

Rakowski and Karbowski, 2017, for the locomotion circuit of the C. elegans connectome. Each

cell represents a connection between the named source and target neuron. Green colored cell

means that the predicted polarity was the same in both cases. Orange colored cell means that

the predicted polarity was different with the two methods. 456 of the 652 synapses (70%) were

predicted the same.

(DOCX)

S4 Table. Validation of predictions with previously published experimental results. Pre-

dicted polarities from our results (S1 Data) were individually compared to previously pub-

lished experimental data. Each row represents a single connection. If validated (“Yes” in

column “Validated?”), the NT+R predicted polarity equals the reference polarity. Partial

validation means that the predicted and/or reference polarity was complex or uncertain.

(DOCX)

S5 Table. Comparison of three chemical synapse connectome reconstructions. The three

most complete connectome reconstructions of C. elegans, namely the WormWiring (http://

wormwiring.org), as well as published by Varshney et al., 2011, and Cook et al., 2019, have

fundamental differences in their coverage of chemical connections and synapse numbers.

(DOCX)

S6 Table. Manual curation and edits. Bulk gene expression data was updated manually

according to literature data. Green and red text shows receptor gene additions and deletions,

respectively, to (from) specified neuron groups. Blue text shows neurotransmitter expression

additions. acc-4 and lgc-46 genes were excluded to avoid false predictions because of literature

evidence supporting a presynaptic localization rather than postsynaptic. All neurons of a neu-

ron group were updated unless specified otherwise.

(DOCX)

S1 Text. Gene expression.

(DOCX)

Acknowledgments

We thank members of the LINK network science group (http://linkgroup.hu) for their helpful

comments.

Author Contributions

Conceptualization: Bánk G. Fenyves, Peter Csermely.

Data curation: Bánk G. Fenyves, Gábor S. Szilágyi.
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