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Translocating proteins compartment-specifically alter the fate
of epithelial-mesenchymal transition in a compartmentalized
Boolean network model
Péter Mendik 1,3, Márk Kerestély 1,3, Sebestyén Kamp2, Dávid Deritei1, Nina Kunšič 1, Zsolt Vassy1, Péter Csermely1 and
Daniel V. Veres 1,2✉

Regulation of translocating proteins is crucial in defining cellular behaviour. Epithelial-mesenchymal transition (EMT) is important in
cellular processes, such as cancer progression. Several orchestrators of EMT, such as key transcription factors, are known to
translocate. We show that translocating proteins become enriched in EMT-signalling. To simulate the compartment-specific
functions of translocating proteins we created a compartmentalized Boolean network model. This model successfully reproduced
known biological traits of EMT and as a novel feature it also captured organelle-specific functions of proteins. Our results predicted
that glycogen synthase kinase-3 beta (GSK3B) compartment-specifically alters the fate of EMT, amongst others the activation of
nuclear GSK3B halts transforming growth factor beta-1 (TGFB) induced EMT. Moreover, our results recapitulated that the nuclear
activation of glioma associated oncogene transcription factors (GLI) is needed to achieve a complete EMT. Compartmentalized
network models will be useful to uncover novel control mechanisms of biological processes. Our algorithmic procedures can be
automatically rerun on the https://translocaboole.linkgroup.hu website, which provides a framework for similar future studies.
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INTRODUCTION
The spatial and temporal organization of intracellular proteins is
well regulated and it often defines the cellular fate1. Proteins must
function specifically at given times with certain functions, thus the
eukaryotic cell is organized into different compartments, called
organelles2. These subcellular organelles must provide a specific
chemical environment and a specific set of interaction partners, so
that proteins can function physiologically3. The physiological
distribution of proteins is essential for the life of a cell and it plays
an inevitable role in biological processes such as cellular learning4.
Protein translocation refers to the regulated change of a

protein’s subcellular localization between subcellular compart-
ments5. This results in altered interactors and functions of the
translocated protein. Disturbances in the regulation of protein
translocation lead to altered cellular localization of proteins which
may contribute to cellular dysfunction and different patholo-
gies6,7. Pathological alterations in the localization of proteins also
function as biomarkers for disease progression8. Moreover,
pharmaceutical targeting of protein translocation is a promising
therapeutic strategy9.
We have recently assembled the Translocatome database,

which is a comprehensive dataset of human translocating
proteins5. It contains 13,066 human proteins, each characterized
with a translocation probability. 34% of the proteins in the
Translocatome database were predicted as translocating proteins.
This ratio is supported by the experimental results of Thul et al.,
which shows that approximately 50% of the human proteome is
multi-localized10. These large datasets provide available data that
can be utilized to create in silico models of cellular processes
designed in a way that they can represent subcellular dynamics.
Epithelial-mesenchymal transition (EMT) is a biological process

which physiologically accompanies early embryonic development

but may also be activated pathologically during cancer progres-
sion or tissue fibrosis. The reversion of EMT is called mesenchymal-
epithelial transition (MET). Thus there is a dynamic transition
between the epithelial and mesenchymal phenotypes, and cells
may reside in a spectrum of intermediary phases, so-called hybrid
states11. EMT is triggered through signals that cells receive from
their environment, like the TGFB signal which is a potent driver of
EMT12. As EMT is a diverse process, research that focuses on EMT
must take this into consideration and must understand EMT on a
more diverse palette. Monitoring EMT-induced changes on
different levels, such as those of gene expression, phenotypical
(microscopically observable) changes and functional disturbances,
has become increasingly important13.
EMT is a spatial process, where several key factors change their

localization. The most obvious examples of these EMT-induced
localization changes include EMT-related transcription factors,
which translocate from the cytoplasm to the nucleus to exert their
transcriptional activity14. One specific regulatory protein of EMT is
beta-catenin (CTNNB), which translocates between the plasma
membrane and the nucleus15. Although the role of protein
translocations during EMT is evident, yet there is no work that
evaluates how the compartmentalization of a network model may
create better model predictions and how to systematically create
models that incorporate data on subcellular dynamics.
Representing intracellular signalling pathways as signalling

networks has become a standard for the evaluation of cellular
signalling processes in the last decades16–18. These networks can
be easily translated to Boolean models and these models offer a
quick and effective option to examine dynamic biological
processes. Boolean models define a node’s state as active
(TRUE/ON/one) or inactive (FALSE/OFF/zero) and convert biologi-
cal rules into Boolean rules using the logical operators AND, OR
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and NOT. These models are simplified but are still very useful to
qualitatively evaluate dynamic biological processes19.
EMT was previously characterized by several computational

models20, but these often focus on very specific aspects of the
transition21 or just on some core regulatory proteins22. An
extensive attempt that incorporated a large number of proteins
and characterized EMT on a system level was published by ref. 23.
That model revealed the joint Sonic Hedgehog and Wnt pathway
activation during TGFB-mediated EMT. This model consisted of 70
nodes and 135 edges, but using an attractor-preserving network
simplification method it was reduced to a 19 node core network. In
the current work, we present how the addition of compartment-
specific information enriches the usefulness of a Boolean network
model. For this purpose, we used the 19-node EMT model
published in the paper of Steinway et al. as a benchmark and
we compared our compartment-extended model to it. We refer to
this 19-node EMT model of ref. 23 as the “original EMT model”.
Our work systematically incorporates protein translocation into

a Boolean dynamic signalling model, thus it catalyses the
understanding of protein translocation as a general and important
aspect of cellular regulation. In the future, similar works will be
useful to understand how protein translocations govern different
cellular mechanisms and this will increase the understanding of
how subcellular dynamics affect cellular behaviours. Extended
models that use this compartmentalized approach will be useful
to uncover novel biomarkers and to create more complex
therapeutic targeting strategies.
In this work, we show the enrichment of translocating proteins

in EMT and create a compartmentalized dynamic network model
of EMT. Utilizing the potential of our compartmentalized model,
we successfully prove that the addition of translocating proteins
can result in a more concise decision-making system, by reducing
the number of ambiguous attractors. More importantly, our model
enables the analysis of compartment-specific protein functions,
thus we were able to predict and validate (based on published

experimental data) that both GSK3B and GLI compartment-
specifically influence EMT.

RESULTS
Enrichment of translocating proteins between signalling
proteins
The Translocatome database contains the translocation probabil-
ity (stored as Translocation Evidence Score) of approximately 13
thousand human proteins5. Based on the literature, translocating
proteins are playing a pivotal role in cellular signalling and also in
the EMT14,24. To prove this, we assessed the enrichment of
translocating proteins between human signalling and EMT
proteins. There are 13,066 human proteins in the Translocatome
database, out of which 66% are non-translocating proteins, 25%
are low-confidence and 9% are high-confidence translocating
proteins. We assessed if the same distribution is observed
between human signalling and EMT proteins. Signalling and
EMT proteins were defined using specific Gene Ontology (GO)25

terms (see Methods for details).
We show that the observed distribution of translocating

proteins differs in the case of signalling and EMT proteins, from
what we would expect based on the Translocatome database (Fig.
1). Between signalling proteins, we found a higher percentage of
translocating proteins (31% are low-confidence and 15% are high-
confidence translocating proteins) and fewer non-translocating
proteins (54%). Similarly, in the case of the proteins in connection
with EMT, we also found a higher percentage of translocating
proteins between the EMT proteins (39% are low-confidence and
33% are high-confidence translocating proteins) and the number
of non-translocating proteins decreased (28%).
These observed discrepancies are significant (p < 0.0001), so we

can conclude that translocating proteins become enriched in human
signalling processes and in EMT (see details of this enrichment
analysis in the Methods section). This observation also underlines

Fig. 1 Translocating proteins are enriched between signalling and EMT proteins. On this figure, we can see the distribution of proteins
according to their translocation probability in different datasets (Translocatome proteins, Signalling proteins and EMT proteins, see Methods
for details). There were significantly more high-confidence translocating proteins between the Signalling (15%) and EMT (33%) proteins than
between the Translocatome proteins (9%). We can observe the same significant difference in the case of low-confidence translocating
proteins. The percentage of low-confidence translocating proteins is higher between Signalling (31%) and EMT proteins (39%) than between
Translocatome proteins (25%). Oppositely in the case of non-translocating proteins there is a lower percentage of non-translocating proteins
between signalling (54%) and EMT (28%) proteins than between Translocatome proteins (66%). For further details about the calculation of
protein enrichment refer to the Methods section, and to understand the details of the Translocatome data please refer to its original
publication5. ****p < 0.0001, Chi-square test.
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the value of creating a compartmentalized model, enabling the
possibility to represent protein translocation in a dynamic model.

Creation of a compartmentalized EMT network
After demonstrating the enrichment of translocating proteins in
EMT we became interested in creating a network model of EMT
where we can assess protein translocations from a network biology
perspective. To model protein translocation, we created a
compartmentalized network where we can represent each protein
according to its subcellular localization. In this model, if a protein
can translocate between 2 subcellular localizations, then it is
divided into 2 nodes and each node has only the edges
corresponding to that localization (Fig. 2). We call this process
the compartmentalization of a network because during this
process each protein’s regulation will be represented according
to their subcellular locations. Since there is no universal solution to
split one node into two compartmentalized nodes and there are
several possible combinatorial scenarios it is important to capture
the functionality of proteins. We always implemented the Boolean
rules that best capture the biological behaviour of certain proteins,
with a special focus on functionality and less on a universal
methodology. This compartmentalization is crucial as many
translocating proteins can have very different roles in different
subcellular locations, e.g., there are translocating moonlighting
proteins26,27.

In this work, our aim was to show the applicability and
usefulness of the addition of compartment-specific information to
a Boolean network model. To prove this, we used the 19-node
EMT model published by ref. 23 as a benchmark and we compared
our model to it. As mentioned earlier we refer to this model as the
“original EMT model”.
The original EMT model had 19 nodes and 70 edges. The

Translocatome database provided sufficient data to examine the
translocation probability of these nodes. Out of the 19 nodes 14
nodes were predicted as high-confidence translocating proteins.
After this initial signal that there are several important proteins
that translocate during EMT, we carried out a thorough manual
curation (see details in the Methods section), to validate these
translocations, and to see if these translocations could be
observed during EMT (summary of the manually curated
information in Supplementary Data 1). If we could both validate
the translocation itself, and its involvement in EMT, then we could
create compartmentalized Boolean logic for that given protein.
In the compartmentalization phase, we created Boolean rules

based on the literature, which was collected by manual curation.
During this process, we reviewed 64 publications and created 10
compartmentalized nodes (see the list of these nodes and their
Boolean rules in Supplementary Data 2) and thus by node-
duplications extended the 19-node network into a 30 node-
network (the NOTCH node was divided into 3 subcellular nodes,
since it has validated localization and activity in the plasma

Fig. 2 Creation of compartmentalized Boolean rules. Conventionally in the network representation of signalling processes nodes are
individual proteins and edges (either inhibitory or activatory) are interactions between them, but their localization specificity is not
considered. We take into consideration the compartment-specific functions of proteins so we can systematically add this information to
Boolean models. After the careful revision of available literature data (manual curation) we created a compartmentalized Boolean network. In
this hypothetical explanatory example we highlighted a “translocating protein” with green. a One possibility is that after e.g., phosphorylation
by B the protein translocates to the nucleus and this does not directly affect the cytoplasmic pool of that protein. b Another possibility was
already contained in the original EMTmodel (in the case of CTNNB), where the nodes mutually inhibit each other. c Some transcription factors
can upregulate their own expression which can act as a positive feedback, d but it is also possible that both the cytoplasmic and the nuclear
pools of a protein have their own regulatory interactions but they don’t affect each other directly. There are also other potential combinatorial
possibilities (see Supplementary Fig. 7). During compartmentalization we always followed the logic of the available experimental data and
tried to interpret into Boolean rules. As the nodes represent the functionality not the mass of proteins the simultaneous activation of both
nodes does not negate the law of mass conservation (more on this topic in Supplementary Note 5).
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membrane, in the cytosol and in the nucleus as well). After this, we
had a model which was ready for further dynamic network
analysis to understand the changes caused by the compartmen-
talization and to validate the model with the comparison to
experimental results published earlier or after our predictions. The
final model is defined in Supplementary Data 3 and we will refer
to the node names defined in this Supplementary Data 3.
This work can be generalized to a workflow shown in Fig. 3,

where first the predicted translocations are identified in a
previously published dynamic signalling network model, then
these are manually validated and a compartmentalized network
model is created according to the considerations shown in Fig. 2.
Finally, computational simulations can be implemented on the
compartmentalized network model and different outputs can be
evaluated. The https://translocaboole.linkgroup.hu website pro-
vides a surface to edit compartmentalized Boolean rules and to
rerun computational analysis (the simulation runs with the default
settings of 25 iterations and 20,000 steps, every node is
perturbed). Starting from the Boolean rules of our model users
are able to change them. Once this is done, the server supporting
the website automatically generates the required inputs needed
for the dynamic simulations in the background, and users can
download the final output files of these analyses (Fig. 3).
Users who need more features and modifications can also opt

to download the input files and with those files, they can use the
relevant codes available in our GitHub repository (https://github.
com/deriteidavid/compartmentalized_EMT_Boolean_model_
Mendik_et_al_2021) to rerun the analyses (for details see
Supplementary Fig. 1). The website and GitHub tools make it
possible to also use our workflow as a framework for similar future
studies.

Characteristics and dynamical repertoire of the
compartmentalized EMT model
In the previous steps of our work, we created a compartmenta-
lized signalling network that could easily be translated to a

dynamic model based on the work of ref. 23. The resulting model is
a discrete dynamic Boolean model that characterizes every node
by a state variable (ON or OFF) corresponding to the node’s
activity and a Boolean function that represents the node’s
regulation. During the dynamic simulations, an asynchronous
updating algorithm randomly selects a node and updates its state
according to its Boolean function (more details in Methods). The
arguments of the Boolean functions represent the transcriptional,
post-transcriptional, translational, post-translational or localiza-
tional regulation of a certain node. The main predictive power of
Boolean models of biological systems lies in their long-term
convergent behaviour into stable states, which qualitatively
correspond to real biological phenotypes28,29. The attractors of a
Boolean model are such terminal stable states. The predictive
value of a Boolean model of a biological system can be assessed
by evaluating its attractors from a biological viewpoint. Moreover,
it is also crucial to understand how the attractor states emerge
from the dynamical landscape of the model. This understanding
can enhance further validation of the model and give insight into
control and finding potential therapeutic targets30,31.
Using a state-of-the-art method32 we mapped out the

dynamical repertoire of our new model in the form of a succession
of stable motif stabilizations. Stable motifs are generalized positive
feedback loops (also known as maximal trap spaces) which
represent sets of self-sustaining node-states, which once activated
permanently lock into those node-states33. Different successive
combinations of stable motifs determine the steady state
attractors of the system. The new compartmentalized EMT model
has seven attractors summarized in Supplementary Table 1. The
two attractors most relevant in our case are the ones correspond-
ing to the epithelial (E) and mesenchymal (M) states (Fig. 4a). The E
and M attractors are polar opposite states, differing in every node
state (with the exception of SOS_GRB2 which is 0 in both
attractors). The remaining 5 attractors are intermediary states,
which we call hybrid attractors. Hybrid states can emerge during
incomplete or partial EMT processes24. The emergence of the
hybrid attractors of our model can be explained with three specific

Fig. 3 Workflow for the creation and evaluation of a compartmentalized Boolean model. Starting from previously published Boolean
models of the EMT with the help of the Translocatome database5 it is possible to uncover translocating nodes that need to be
compartmentalized. The careful revision of available literature i.e., manual curation, through the creation of new Boolean functions (based on
the collected experimental data) enables the creation of a compartmentalized model. This is followed by dynamic simulation which could be
analysed as different outputs on different levels, such as node or pathway activities or the identification of stable attractors of a system. Other
analyses can identify the stable motifs and control sets of a model or calculate attractor stability measures. The website (https://
translocaboole.linkgroup.hu/) enables users to modify our model and to automatically run simulations with our standard settings (25
iterations and 20,000 steps, every node is perturbed) and download the results.
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Fig. 4 Attractors of the compartmentalized model showing localization-specific functions of GSK3B and GLI. a The attractors
corresponding to the epithelial and mesenchymal state can be seen on the left and right respectively. During the dynamic simulations,
perturbations were introduced to the initial epithelial state. b In case of the TGFBR OFF simulations the cytoplasmic KO of GSK3B resulted in
EMT, while the nuclear perturbation had no effect. The signal from GSK3B_cyto KO propagated through the loss of the Dest_compl and the
activation of AKT and MEK. c During TGFBR ON simulations both the KI of the cytoplasmic and nuclear node of GSK3B inhibited the TGFB
mediated EMT. The nuclear perturbation had a greater inhibitory effect by preventing the loss of miR200 and consequently the activation of
ZEB1 and ZEB2. The nuclear perturbation also led to the inhibition of SNAI2_nuc and Bcatenin_nuc, despite the loss of the Dest_compl and
the activation of SNAI2_cyto compared to the cytoplasmic perturbation. GSK3B_cyto functions both to stabilize the epithelial state and to
inhibit TGFB mediated EMT, whereas GSK3B_nuc functions specifically to inhibit TGFB mediated EMT d TGFBR OFF simulations show that the
nuclear perturbation of GLI led to EMT, while the cytoplasmic perturbation alone was insufficient to destabilize the epithelial state. As part of a
transcription factor family, the GLI proteins exert their main function in the nucleus and if sequestered in the cytoplasm, GLI2 gets truncated
into a repressor form that further decreases transcriptional activity. The compartmentalized model reproduced these localization-specific
functions.
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stable motifs, made up of only 5 nodes in total, as discussed in
Supplementary Note 1 (see also Supplementary Fig. 2 and
Supplementary Table 2).
Furthermore, based on the method of refs. 32,34 we compared

the control sets of our model with the original EMT model. A
control set of an attractor is a given group of nodes, which, when
forced to the corresponding state, drive the whole system into a
specific attractor35. As the data in Supplementary Data 4 show the
simplest control set of the epithelial state is a smaller set of nodes
(5 nodes, see Supplementary Data 4, Epithelial control sets of the
Compartmentalized model No. 1) compared to the original EMT
model (6 nodes, see Supplementary Data 4, Epithelial control sets
of the Original model No. 1), thus our model reveals that forcing
the network into the epithelial state is more feasible if we use
compartment-specific perturbations.
We also found that in the presence of noise (introduced to our

model as update errors) the mesenchymal attractor is by far the
most stable and thus has the highest stationary probability from
all states (for details see Supplementary Note 2). This results from
the fact that this original EMT model focuses on the transition
from epithelial to mesenchymal state and thus nodes and
interactions driving towards the mesenchymal states are
overrepresented.
It is also worth mentioning that although the overall stability

profile of attractors still overwhelmingly favours the mesenchymal
state, the balance is somewhat improved towards epithelial state
as compared to the original EMT model of ref. 23 (see Supple-
mentary Table 3).

Comparison of the original and compartmentalized model
As mentioned above our simulations showed that the compart-
mentalized model has both a stable epithelial and mesenchymal
state. Our compartmentalized model was validated by showing
that it could reproduce key experimental outcomes (detailed in
Supplementary Table 4) that had been used for the validation of
the original EMT model.
For additional comparison and analysis of the two models, we

used two simulation setups: one we call single node TGFBR node
OFF (simply referred to as TGFBR ON or OFF), the other TGFBR ON
simulations. In both setups the network started from the epithelial
state and was perturbed by permanently setting a node’s state to
ON or OFF, thus overriding its Boolean rule. These perturbations
were similar to wet-lab knock-out (KO) or knock-in (KI) experi-
ments, but importantly, our perturbations were always
compartment-specific. This resulted in scenarios when a protein’s
functionality was maintained in one subcellular compartment and
inhibited in another. During the TGFBR ON simulations the
epithelial initial state was altered by setting the TGFBR node’s
state to ON and an additional KI/KO perturbation was also
introduced to the network. This represented the biological
scenario of an active TGFB signal which is a potent driver of
EMT. In the latter case, we observed if a node’s perturbation can
block TGFB driven EMT.
Comparison of TGFBR OFF simulations showed differences

between the original and our model in two cases: NOTCH or MEK
KI led to EMT in the original but not in the compartmentalized
model. In the case of NOTCH activation, our model better
simulated the experimental results showing that Neurogenic
locus notch homolog protein 1 (NOTCH) activation alone without
the induction of TGFB was not sufficient to induce EMT36,37

(Supplementary Figs. 3 and 4). This result stemmed from the fact
that in our model the activation of Zinc finger protein SNAI1
(SNAI1) is captured more complexly, and NOTCH alone could not
activate this key transcription factor of EMT.
In the case of MEK activation, there was a more

complex situation. The activation of the MEK node did not lead
to a mesenchymal phenotype in the compartmentalized model,

whereas it did in the original EMT network (Supplementary Figs. 3
and 4). There is available experimental validation for both
outcomes, as experiments have shown that MEK/ERK pathway
activation alone did not, while a combined TGFB and MEK/ERK
pathway activation did lead to a perfect EMT phenotype in a lung
adenocarcinoma cell line38. However, in intestinal epithelial cells
overexpression of a constitutively active form of MEK1 activation
was sufficient to induce EMT39. Moreover, in the case of TGFBR ON
simulations only the compartmentalized model showed correctly
that MEK inhibition could prevent TGFB induced EMT40 (Supple-
mentary Fig. 5).

Compartmentalized functions of GSK3B and GLI
The division of translocating nodes by compartments allows for
the exploration of compartment-specific functions, providing the
major advantage of our method. In TGFBR OFF simulations GSK3B
KO in the original EMT model led to a mesenchymal phenotype,
which matched the outcome of GSK3B_cyto KO in the compart-
mentalized model. Experimental evidence underlines this out-
come as the inhibition of cytoplasmic GSK3B by LiCl led to EMT in
ovarian adenocarcinoma41. The compartmentalized model uncov-
ered that GSK3B_nuc KO did not lead to EMT (Fig. 4b). Because
GSK3B localizes mainly to the cytoplasm41,42 and translocates to
the nucleus during EMT43, it is expected that in the epithelial state
GSK3B_nuc KO does not have an effect.
Furthermore, in the case of TGFBR ON simulations, we could

predict other compartment-specific functions of the GSK3B
kinase. Our results showed that the KI of GSK3B both in the
cytoplasm (GSK3B_cyto) and in the nucleus (GSK3B_nuc) acted as
a repressor of EMT, but this inhibitory effect was stronger in the
nucleus (Fig. 4c). In accordance with that, experimental results
proved that the inhibition of the PI3K/AKT pathway suppressed
EMT through the induction of GSK3B in hepatocellular carcinoma
(HCC)43. The more robust inhibition in the nucleus is a
consequence of the fact, that nuclear translocation of GSK3B
prevents EMT through the downregulation of SNAIL transcription
factor43 and that nuclear GSK3B is highly active relative to its
cytoplasmic counterpart44.
Another node that showed compartment-specific functions is

the GLI node. GLI KI resulted in EMT in the original model just as
GLI_nuc KI led to EMT in the compartmentalized model.
Importantly, it has been reported in the literature that indepen-
dent GLI activation can induce EMT45. Additionally, the compart-
mentalized model shows that GLI_cyto KI did not result in EMT
(Fig. 4d). This is due to the fact that in the absence of an upstream
signal cytoplasmic GLI2 gets truncated into a transcriptional
repressor form which inhibits GLI-induced gene transcription46

and there is a simultaneous cytoplasmic sequestration of GLI147.
Overall, we have shown that our compartmentalized model
compared to the original could provide justifiable results on the
subcellular regulation and compartmentalized functions of
different kinds of proteins like the GSK3B kinase and the
transcription factor family GLI.

Signalling pathway analysis uncovers pathway crosstalk
To understand how different signalling pathways activate during
the EMT we created a method to assess not only node level but
signalling pathway activities as well (see the details of this in the
methods section). We monitored the activity of the most
significant signalling pathways that lead EMT14. These pathways
are:

● TGF-β SMAD-dependent signalling
● TGF-β SMAD-independent signalling
● receptor tyrosine kinase (RTK) signalling
● Wnt signalling
● Notch signalling
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● Hedgehog signalling
● Hypoxia signalling.

This signalling pathway-level analysis confirmed that WNT and
Hedgehog pathways are jointly activated during EMT as it was

highlighted in the case of the original publication23,48 (Fig. 5a), but
also captured the activation of other important pathways (RTK,
Notch and Hypoxia signalling). Moreover, the activatory perturba-
tion of SMAD proteins resulted in a quicker activation of the

Fig. 5 Signalling pathway activities during EMT. a We plotted the activity of the main pathways during EMT on this panel. There are
11 single node perturbations that led to EMT, here we show the average of the pathway activities that can be observed during these 11
perturbations. We can see that there was a difference in the kinetics of the activation of different pathways. Importantly, we could still observe
that TGFB activation is accompanied by the activation of the Hedgehog and Wnt pathways as captured by the original EMTmodel23. b On this
panel we show the activation of the Hedgehog signalling pathway for different perturbations. Each line symbolizes one specific perturbation
which led to EMT and thus the activation of the Hedgehog pathway. We note here that the perturbation of the TGFB pathway member SMAD
proteins (yellow and green) resulted in a quicker and more robust activation of the Hedgehog pathway. The most robust activation could be
observed when we activated the nuclear pool of GLI proteins, with the perturbation of the GLI_nuc node (brown). c Here, we represent the
activation of the Notch signalling pathway for different perturbations similarly as we showed it in the case of Hedgehog signalling on panel b.
Here the activation of SMAD proteins resulted in a quick and robust activation of the Notch pathway which underlines the crosstalk between
these pathways.
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Hedgehog signalling pathway highlighting validated cross-
talks49,50 between the TGFB and Hedgehog signalling pathways
(Fig. 5b). Further analysis also captured the synergic functions
between TGFB and Notch signalling51,52, as the activation of TGFB
pathway-member SMAD proteins led to quicker activation of the
Notch pathway (Fig. 5c).

DISCUSSION
In this work, we presented the importance of translocating
proteins in the signalling of the EMT and created a framework of
how to create a compartmentalized Boolean model using a
previously published reference work23. Using this model, we
simulated the EMT and presented key outcomes which can be
considered as emerging properties of this new model. These new
outcomes described experimental results better than the original
EMT model due to our model’s capability of better capturing
compartment-specific functions of proteins.
It is known that a large proportion of proteins may localize to

multiple compartments inside a cell10. This subcellular organiza-
tion and the underlying dynamics are essential for physiological
functions of human cells53. We have numerically proven that
translocating proteins are overrepresented between human
proteins in the subset of human signalling and human EMT
associated proteins (Fig. 1). We then created a framework which
enables the incorporation of translocating proteins into cellular
signalling models. We believe that the addition of translocating
proteins to other models will greatly enhance in silico models and
future studies.
First, we have presented that our model is able to recapitulate

the results of the original EMT model. Our model maintains a
stable epithelial and mesenchymal steady state (Fig. 4a), and
certain perturbations (e.g.,: TGFB signal) can lead to a mesench-
ymal phenotype. It is important to note that this model simulates
the transition from the epithelial state to the mesenchymal state
so the mesenchymal state is the most robust attractor (Supple-
mentary Table 1), and the inverse process of MET cannot be
studied in this model (due to the fact that the regulations of this
latter process are not involved in our model). With the above in
mind, we can still conclude that our model produces biologically
valid stable attractors with a slight enhancement in the stability of
the epithelial attractor (which was very vulnerable to perturba-
tions in the original model. See Supplementary Note 2 for details).
Based on the control sets of our model (Supplementary Data 4)

we can also see, that the compartmentalization of a model reveals
new control possibilities as expected. This is recapitulated by the
fact, that our model reveals nontrivial compartmentalized node
interventions. Hypothetically based on our model the control of
the epithelial state can be reached by knocking out nuclear and
cytoplasmic pools of GLI and AXIN2 proteins, respectively. In case
of these compartment-specific perturbations there is no need to
additionally knock out SNAI2 as in the case of the original EMT
model (see Supplementary Data 4 Epithelial control sets No. 1 of
the Compartmentalized and the Original model). Perturbations
based on control methods may signal only in vitro intervention
points, thus the control sets identified in compartmentalized
models should be later validated through wet-lab experiments.
In comparison with other models, we must emphasize that

there are not many system level models of the EMT20. Kinetic and
ordinary differential equation (ODE) models were shown to be
useful in deciphering certain aspects of EMT, but they focus on a
very limited number of nodes. To highlight some of such available
models, one focused on a general minimal dynamic model and
numerically described EMT based on among others the analysis of
the phase diagram22. Another specific model addressed the
shuttling of CTNNB and its antagonists21, and a third one focused
on the bistable switches underlying EMT54. Although these
models are useful in the quantification of dynamics but have a

high computational demand. Thus, these models cannot be scaled
up to model processes on a system level and they cannot be used
to understand system level complexity and to plan system level
interventions. The model of ref. 55 also builds on the Boolean
model of ref. 23 but uses a slightly modified modelling approach
and incorporates the LIF/KLF4 pathway to the model. Their model
showed a more symmetric and more diverse representation of the
attractor states involving a multitude of metastable hybrid
phenotypic states. To test the robustness of our results we
included the LIF/KLF4 pathway to our model. In this modified
model we still observed the same compartment-specific functions
(Supplementary Note 3), and no notable difference in the attractor
landscape. This gives an important additional proof for the
robustness of our method. Throughout this paper, we extensively
compared our model with the Boolean model of ref. 23, which
models EMT systematically, and our model succeeded the original
EMT model in predicting compartment-specific functions.
The most important aspects of this study are those which

highlight the compartment-specific functions of proteins. One of
our most significant results is that GSK3B compartment-
specifically inhibited EMT. We’ve predicted that nuclear activation
of GSK3B can interfere with EMT and it prevents the activation of
key factors of the mesenchymal state (Fig. 4c). In their paper. Lee
et al.43 created an experimental constellation in which exactly this
phenomenon was examined. It is important to note that their
paper was published after our initial results, so our results could be
considered as computational predictions that are validated by this
very recent experimental study. Lee et al.43 claimed that
enhancing the nuclear translocation of GSK3B i.e., the activation
of GSK3B in the nucleus suppresses EMT in HCC cells43.
Another result showed that GLI transcription family members

compartment-specifically induced EMT (Fig. 4d). Our findings
coincide with other studies showing that GLI1 aberrantly activates
in DNA damage and carcinogenesis56 and it activates EMT due to
its transcriptional activity mainly through SNAI156. There are
promising therapeutic targets among the SHH pathway members.
Both GLI antagonists (GANTs) and Arsenic trioxide (ATO) (which
also inhibits GLI functions) have been shown effective57. Our
simulations correctly identified GLI as an important factor during
EMT, which is highlighted by the above examples. Further
simulations that incorporate the actors of the SHH pathway
complexly, could shed light on more impactful interventions that
target GLI proteins.
Lately EMT is described as a multifaceted and often reversible

process. To define EMT in its enormous complexity and plasticity
in diverse developmental and pathological settings, studies must
focus on complex molecular markers and changes in cellular
properties simultaneously13. With this mindset we focused on
multiple aspects of EMT during this study. We analysed attractors
in their entirety and did not rely solely on some specific markers
(e.g., loss of E-cadherin (CDH1) alone, or a dedicated EMT node).
We also analysed signalling pathway activities (Fig. 5) which
represented EMT more on a spectrum rather than just a binary
outcome. Furthermore, we aimed to create a functional readout
based on GO25 terms, but this has limited usability as GO terms
currently cannot capture the compartment-specific traits of
proteins (see Supplementary Note 4 and Supplementary Fig. 6
for more on this matter).
In summary, we presented the enrichment of translocating

proteins in EMT and to model their role we created a
compartmentalized Boolean dynamic model of the EMT. This
model was used to prove that translocating proteins, namely
GSK3B and GLI proteins, can alter the fate of EMT in a
compartment-specific manner. Our study also serves as a frame-
work for future studies thanks to the algorithmic procedures
available on the https://translocaboole.linkgroup.hu website and
in the GitHub repository of this project. The results of our model
underline that proteins should be modelled in their specific
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location with compartment-specific functionality in order to
maintain their physiological cellular behaviours. Also, the under-
standing of subcellular dynamics and the utilization of similar
frameworks as ours in more complex networks will help uncover
new biomarkers and therapeutic targeting strategies.

METHODS
Enrichment analysis of translocating proteins
To validate the enrichment of translocating proteins in human signalling
and specifically in EMT we assessed the enrichment of translocating
proteins as detailed below. The only available proteome level database of
human translocating proteins is the Translocatome database, containing
13,066 human proteins. The database characterizes each protein with a
Translocation Evidence Score (reflecting the translocation probability of
that given protein). We found that in the Translocatome database 66.28%
of the proteins are non-translocating proteins, 25.04% are low-confidence
translocating proteins and 8.68% are high-confidence translocating
proteins.
We used the Gene Ontology (GO)25 database to identify the proteins,

which take part in human signalling processes. To achieve this, we
downloaded the list of proteins annotated with the GO term “signalling
(GO:0023052)”. There were 6867 proteins annotated with this GO term and
the translocation probability data (from the Translocatome database) was
available in the case of 4991 proteins.
Similarly, we used the GO database to identify the proteins in

connection with EMT. To achieve this, we downloaded the list of proteins
annotated with the GO term “epithelial to mesenchymal transition
(GO:0001837)”. There were 156 proteins annotated with this GO term
and the translocation probability data (from the Translocatome database)
was available in the case of 133 proteins.
In order to validate that the observed distribution of translocating

proteins—in the case of signalling and EMT proteins – indeed significantly
differs from the expected, we conducted Chi-square tests where we
validated the observed datasets against the Translocatome database. In
both cases, we found that the observed distributions significantly differ
from the Translocatome database with a P value of smaller than 0.0001.

Manual curation
We conducted manual curation of translocating EMT proteins guided by
translocation probability predictions of the Translocatome database5 that
classified 13,066 human proteins into three groups: high- and low-
confidence translocating and non-translocating proteins. We utilized the
PubMed and Google Scholar search engines to find the relevant scientific
publications for protein-translocation in EMT. It consisted of two phases:
the selection of translocating proteins of the 19-node network and the
exploration of the regulatory relations of these proteins.
In the selection-phase, we searched for the evidence of proteins

translocating during the signalling of EMT to assess how extensive the
literature was on the translocation of these proteins. In the exploration-
phase, we gathered the necessary information for the system-level
incorporation and Boolean rule creation of validated translocations into
the model. Similarly to the methodology that was used in the manual
curation of the Translocatome database5 the following preferences/
conditions were set for the refined keyword searches:

● selection-phase:

○ Word combinations in quotation marks and “title” or “title/abstract”
field-restrictions were used to refine keyword searches.

○ The publication had to be peer-reviewed and had to connect the
translocation of a human protein to EMT.

○ The described translocation had to meet the requirements of the
definition established in ref. 5.

○ Recent publications (last 5 years) were preferred.
● exploration-phase:

○ Experimental evidence from hepatocellular carcinoma (HCC) cell
lines were preferred otherwise other human carcinoma cell lines
were preferred.

○ Publications exploring TGFB mediated EMT were preferred
○ Some publications were tracked down from the references or the

“cited by” page of review publications or relevant experimental
publications not quite congruous with our conditions.

○ Conditions/preferences of the selection-phase were also
applied here.

In the selection-phase, we focused on finding evidence in the literature
for the fact of a protein of the 19-node network translocating during EMT.
Based on 64 publications we collected data about 21 proteins (see
Supplementary Data 1) in the following topics:

1. name set, gene name and UniProt58 accession number and link,
2. PubMed ID(s) and link(s) to peer-reviewed article(s) describing the

experimental evidence of translocation,
3. initial and target localizations of the translocating protein,
4. interacting partners and biological functions (both in the initial and

target compartments),
5. translocation mechanism,
6. the used detection method,
7. protein structural information on translocation mechanism,
8. disease group, exact disease involved and pathological role,
9. signalling pathways affected.

In the exploration-phase, we first searched for a review article of the
molecular signalling mechanisms of EMT14 that could show us the well-
established translocation events in the signalling of EMT. We then
gathered information on the mechanism of the translocations (e.g., its
regulation or dynamics) and the compartmentalized protein-protein
interactions of the validated translocating proteins. We prioritized the
review of publications that described interactions of a translocating
protein with other proteins that were in the original network. For a detailed
transcript of the manually curated information please refer to Supple-
mentary Data 1.

Boolean network modelling and dynamic simulations
For the modelling of the compartmentalized EMT network inferred from
the manually curated information, we utilized the Boolean framework
described by ref. 23. In this every node is characterised by one of two
qualitative states: ON (also referred to as TRUE or 1) or OFF (FALSE or 0)
meaning above or below threshold activity/abundance, respectively. The
state of a node is determined by its Boolean rule, which is a Boolean
function that expresses the upstream regulatory relationships of the node.
The Boolean rules of the compartmentalized model can be seen in
Supplementary Data 2.
We updated the BooleanNet software package19 for the dynamic

simulations of the model (see Data/Code availability section for the GitHub
repository). The initial state of the simulations was the epithelial state. If
perturbed by setting a node’s state to a fixed OFF or ON state, the system
may have converged into an altered attractor (corresponding to the steady
mesenchymal state or a partial epithelial/mesenchymal state). Due to the
stochastic nature of the unranked asynchronous update mode the
outcome of a perturbation and the order of node-state updates could
differ between simulations, so we performed 100 iterations of TGFBR OFF
and 25 iterations of TGFBR ON simulations to assess these differences
(there was no difference in the outcome of TGFBR simulations with 25 or
100 iterations). For validation, we compared the results of the perturbation
analysis to experimental evidence found in the literature.

Signalling pathway analysis
In order to observe the activation of different signalling pathways during
the course of our simulation we created a method to observe signalling
pathway activity. Based on the work of Gonzalez et al.14 we mapped each
node in our model to one of six major pathways contributing to EMT and
identified the node’s Boolean state which corresponds to signalling
activity. This data is summarized in Supplementary Table 5. With this data,
we were able to compute the activity of each of the six tracked signalling
pathways in each timestep during a simulation. The activity of a signalling
pathway is the average activity of the nodes which belong to that
pathway.

Gene Ontology based functional analysis
Similarly, to the signalling pathway analysis, we aimed to create a
functional analysis of our model as well. The Gene Ontology (GO)
database25 annotates all the human proteins with the biological processes
connected to them. We monitored the activity changes of nodes during
EMT and with the simultaneous utilization of the GO data we were able to
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translate this node activity into the activity of biological processes. These
mapped biological processes correspond to the core changes of the EMT:13

● cytoskeleton organization (GO:0007010)
● establishment or maintenance of epithelial cell apical/basal polarity

(GO:0045197)
● epithelial cell-cell adhesion (GO:0090136)
● cell-matrix adhesion (GO:0007160)
● cell motility (GO:0048870).

Besides these, we also monitored the activity of the GO term “epithelial
to mesenchymal transition (GO:0001837)”.
In order to translate node activities to process activities we identified

which nodes’ activity represent which process’ activity, then the activity of
a process is the average activity of the underlying nodes’ activity.

Attractor stability analysis
We were interested in how the stability of attractors in our compartmen-
talized EMT model compares to the 19 node Steinway et al.23 model. To
measure this, we conducted a numerical experiment on both models: we
introduced an update noise, which returned the wrong state for every
update with probability p_error= 0.001. This made it possible for the
system to leave any attractors. Next, we simulated the long-term time-
evolution (106 general asynchronous update steps) of the model initialized
from one of the attractors and monitored how much time it spends in each
visited state. We did this for every attractor and summarized the visitation
probabilities for each attractor.

DATA AVAILABILITY
We made all relevant data available in the Supplementary Information, the Boolean
model is defined in Supplementary Data 3 which is the most minimal dataset to
reproduce our results. The codes used during the project are available in the GitHub
repository: https://github.com/deriteidavid/compartmentalized_EMT_Boolean_mod
el_Mendik_et_al_2021. In case of any further inquiry please contact the correspond-
ing author.

CODE AVAILABILITY
The relevant codes used for data analysis and simulations are available in the GitHub
repository: https://github.com/deriteidavid/compartmentalized_EMT_Boolean_mod
el_Mendik_et_al_2021.
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