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Abstract
Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. 
In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsi-
cally disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can 
be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate 
in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times 
(when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisa-
tion of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. 
These molecular processes are examples of anti-Hebbian learning and ‘forgetting’ of signalling networks. Stress can be 
perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects 
of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may 
be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might 
discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind 
the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as 
chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding 
drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel 
directions in drug design, e.g. helping to overcome drug resistance.
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Learning of signalling networks — 
at the level of their components

Molecular mechanisms of neuronal learning became well 
established [1]. However, much less is known about the 
regulation of learning at the individual, non-neuronal cells. 
Recent findings gave further evidence that learning, indeed 
occurs in unicellular organisms, as well as in individual cells 
of various tissues other than neurons, even in rather sophis-
ticated forms [2]. In our paper we define cellular learning 
as an adaptive response to a stimulus, when the stimulus 
is repeated in a short time. This leaves out many classical 
models of learning (such as Pavlovian conditional learning) 
from our discussion. However, such a simplification greatly 
helps the identification of molecular mechanisms, which 
become increasingly obscured when long-term, multistep 
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adaptation phenomena are examined, such as cell differentia-
tion or tumour development. Several experiments in budding 
yeast, Arabidopsis or rice cells, mouse fibroblasts or murine 
 CD8+ memory cells showed the formation of molecular 
memory resulting in a faster, larger, more sensitive and/or 
more robust response after the second signal than the first 
[3–9].

Various molecular mechanisms induce a faster and 
stronger response after a repeated signal in single cells. We 
mention the conformational memory of intrinsically disor-
dered proteins (IDPs) first, where the IDP transiently keeps 
its ordered conformation acquired after the first signal, and 
if the second signal arrives within the time window of the 
IDPs relaxation back to the disordered state, than the second 
signal finds the IDP in a ‘conformationally-primed’, ‘mem-
ory’-state [10, 11]. IDPs may act like molecular switches 
changing the direction of signal transmission [12]. Prions 
are an important class of IDPs. Prion proteins may transform 
themselves to a β-sheet enriched prion form, which forms 
aggregates. In budding yeast cells the prion form of Pin1 
maintained the molecular memory of a previous heat shock 
for many generations [4]. Oligomerizing proteins involved 
in cellular memory formation were called as mnemons [13, 
14]. In case of the Whi3 protein present in yeast mnemon 
and prion states were shown to be associated, which confines 
the memory of deceptive courtship to the mother cell [15]. 
Increased association of ‘conformationally-primed’ IDPs 
with their signalling partners can be regarded as an increased 
network edge weight of signalling networks [10, 16].

Signal-induced protein translocation (e.g. between the 
cytoplasm and the mitochondria or cell nucleus) is a wide-
spread phenomenon in the cell potentially involving thou-
sands of human proteins [17]. Nuclear residence time of the 
yeast cyclin Cln3 finely tunes Whi5 inactivation by phos-
phorylation. Whi5 is re-activated rapidly with a half-time 
of ~ 12 min. Thus the Cln3/Whi5 system provides a rapidly 
changing short-term memory of environmental nutrient 
levels for yeast cells [18]. Mitochondrial translocation of 
the adaptor protein p66SHC was associated with the for-
mation of hyperglycaemic cellular memory of human aor-
tic endothelial cells [19]. Conversely, inhibition of nuclear 
translocation of NK-κB p65 disrupted the formation of 
 CD8+ memory T and memory B cells [20, 21]. Translocat-
ing proteins build a number of new connections in signalling 
networks, which, again, shows a large increase of all signal-
ling network edge weights involved.

MicroRNAs are involved both in sensitisation- and habit-
uation-type cellular memory formation. MiRNA-156 partici-
pated in the molecular memory formation of previous heat 
shock in Arabidopsis cells lasting for several days [6]. As an 
additional example for sensitisation, miRNA-21 preserved 
the fibrotic mechanical memory of mesenchymal stem cells 
[22]. As an example of habituation, both miRNA-221 and 

miRNA-222 were involved in the memory development of 
lipopolysaccharide tolerance [23]. Long non-coding RNAs 
(lncRNAs) played an important role in the memory forma-
tion of rice cells after drought stress [7] and the formation of 
 CD8+ memory T cells after lymphocytic choriomeningitis 
virus infection [24]. Increased miRNA and lncRNA levels 
correspond to increased network edge weights of miRNA 
connections in signalling networks.

Learning of signalling networks — 
at the network level

After the contribution of single macromolecules (proteins 
and RNAs) to the formation of cellular memory, we give 
additional three examples of more complex, system-level, 
signalling network-type adaptation. The first example is that 
of epigenetic mechanisms and chromatin memory [25]. A 
large variety of histone modifications and DNA methyla-
tion constitute transcriptional memory. Histone H3 lysine 
methylation was shown to participate in the cellular mem-
ory development of yeast [26], Arabidopsis [5] (specifically 
mediated by heat shock factors HSFA2 and HSFA3; 27], 
mouse fibroblast and HeLa cell sensitisation to IFN-β and 
-γ, respectively [8, 28], as well as in  CD8+ memory T cell 
formation [9]. DNA methylation pattern of 132 genes were 
changed in the development of  CD4+ memory T cells [29]. 
CRISPRoff, a single dead Cas9 fusion protein establishes 
DNA methylation and repressive histone modifications pro-
viding a genome-wide transcriptional memory [30]. Sev-
eral studies showed the involvement of three-dimensional 
chromatin structure reorganization during cellular memory 
development in yeast [3, 31], as well as in the sensitisation 
to repeated IFN-γ treatment of HeLa cells [28] by the same, 
nuclear pore protein 100/98-mediated chromatin-reorgani-
zation process [32].

The second example of network-type cellular memory 
formation is that of signalling protein kinase cascades. 
Members of the Hog1 signalling pathway of osmotic stress 
in yeast remained phosphorylated even after minutes of the 
first stress, and ‘waited’ pre-activated for a faster response 
to a potential repeated stress [33]. Similarly, in the mito-
gen-activated protein kinase (MAPK) cascade different 
relaxation rates of individual components developed an 
‘activation-competent’ state inducing post-activation pro-
tein phosphorylation bursts [34]. MAPK pathway members 
are organized by pathway scaffold proteins from fungi (e.g. 
Far1- and Ste5-like proteins [35]) to humans (e.g. RACK1 
[36]). These proteins, once they became activated, maintain 
larger pathway segments pre-organized, ready to respond to 
the second stimulus faster, and stronger. We note that similar 
signalling cascade memories may be postulated in each sig-
nalling pathway. As examples the JNK and Hippo pathway 
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cascades are enhanced by the scaffolding proteins JIP1 and 
MOB1A, respectively [37, 38]. These scaffolds may prime 
these pathways giving a stronger second response after an 
initial stimulus.

The third example expands the above idea of pathway 
organization and consequent cellular memory formation to 
networks other than signalling networks, such as metabolic 
networks. Analysis of non-Markovian chemical reaction net-
works on gene expression showed that molecular memory 
of protein synthesis and degradation may induce feedback, 
bimodality and switch behaviour, and may fine tune gene 
expression noise, all components of molecular memory [39]. 
Even bacteria use their inner membrane as a scaffold [40], 
as well as bacterial microcompartments [41] to enhance the 
metabolic flux of their enzymes. Mitochondria and other 
intracellular compartments also function as eukaryotic 
organizers of metabolic processes [42]. Metabolons are 
multienzyme complexes that are held together by noncova-
lent interactions enhancing their cooperation and summative 
metabolic flux by substrate channelling in e.g. glycolysis, 
branched chain amino acid oxidation, purine biosynthesis, 
etc. [43–47]. All these bacterial, mitochondrial and cellular 
microcompartmental metabolic scaffolds, as well as metabo-
lons are potential organizers of cellular memory.

Hebbian learning of signalling networks

Practically all molecular mechanisms of cellular memory 
formation mentioned above are satisfying the basic concept 
of Hebbian learning, i.e.: the increase of the connection 

strength of those learning components (in the initial con-
cept: neurons) which are involved in the learning process 
[1, 48]. Stronger and faster binding of 'conformationally 
primed’ IDPs, prions and mnemons, protein translocation, 
overexpression of miRNAs and lncRNAs, chromatin mem-
ory, scaffolded protein kinase and metabolic pathways are 
all examples of connection strength increases after an initial 
signal — serving as potential learning mechanisms of non-
neuronal single cells (Fig. 1).

Obviously, single cells can not express the complexity 
of the learning process of multicellular networks. This is 
especially true to that of neuronal networks. One simple 
reason of this is the number of connections. While macro-
molecules may bind only handful of other macromolecules, 
neurons developed axons and dendrites, which (by their tre-
mendously increased surface areas) allow their connections 
to tens of thousands of other neurons. This by itself already 
magnifies the structural complexity which may be achieved 
by neuronal networks, and allows the development of incom-
parably more sophisticated learning processes than those of 
single, non-neuronal cells.

Anti‑Hebbian learning in non‑neuronal cells

Hebbian learning needs to be complemented by the reverse 
process, where connection strengths decrease, since only 
Hebbian-type ‘positive’ changes of the system would lead 
to the system’s over-excitation. This was first generally for-
malized by Oja’s rule, which keeps the total of connection 
strengths constant during a Hebbian learning process [49]. 

Fig. 1  Molecular mechanisms 
of connection strength increase 
by cellular Hebbian learning-
type processes. a Stronger and 
faster binding of ‘conformation-
ally primed’ IDPs (prions and 
mnemons) to their signalling 
partners. b New connection sets 
of translocating proteins. c New 
connections of overexpressed 
miRNAs and lncRNAs. d Chro-
matin memory. e Scaffolded 
protein kinase and metabolic 
pathways. This figure was cre-
ated with BioRender.com
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In cells connection strength decrease (decay) is generally 
introduced by cellular noise [50]. However, anti-Hebbian 
learning may also decrease the strength of specific con-
nections, such as the reduced expression of the STL1 sugar 
transporter gene in budding yeast cells after hyperosmotic 
stress [31], the diminished response of MYC-dependent 
genes after repeated dehydration stress in Arabidopsis [51] 
and the immune tolerance of macrophages after repeated 
lipopolysaccharide exposure [23]. Several of these direct, 
anti-Hebbian molecular mechanisms lead to habituation, 
where the cell displays a decreased response to repeated 
stimulation. Biological pathway network models were able 
to display both sensitisation (Hebbian) and habituation (anti-
Hebbian) behaviour [52].

Cellular memory and forgetting

As first suggested by François Jacob and Jacques Monod in 
1961 [53], individual cells also have a memory, i.e. the per-
sistence of a cellular state, which is acquired after a stimulus. 
Cellular memory allows the establishment and maintenance 
of the identity of individual cells in heterogeneous cellular 
populations. Memory of the cells is manifested by bistable 
feedback loops or epigenetic marks conferring hysteresis and 
simple cognitive functions to cellular behaviour [25, 54, 55]. 
Intertwined feedback loops reduce cellular noise [50] and 
induce hysteresis, since stabilization of the ‘signalling-on’ 
state creates a resistance to return to the initial, ‘signalling-
off’ state. While simple, hysteresis-type memory can be 
maintained by self-sustaining feedback loops, there seems 
to be a minimal network size requirement of at least 5 nodes 
to display richer memory functions [52].

Forgetting of organisms such as C. elegans is induced 
by cellular mechanisms, like the Musashi, MSI1-induced 
down-regulation of the ARP2/3 complex (playing a major 
role in the organization of the cytoskeleton) [56]. Increased 
cellular noise is a key factor of ‘forgetting’ in single, non-
neuronal cells [50]. As a more specific example for the effect 
of cellular noise, robustness of the MAPK pathway becomes 
reduced, if environmental fluctuations (extrinsic noise) or 
variances of inherent chemical reaction rates (intrinsic 
noise) grow beyond a certain threshold [57].

We list three examples, where individual molecular mech-
anisms are involved in cellular ‘forgetting’. First, erasure 
of DNA-methylation is meditated by ten-eleven transloca-
tion (TET) DNA-demethylases [58]. Second, the long non-
coding RNA, originating at –2700 upstream of the budding 
yeast HO endonuclease, erased previous molecular memory 
of nutrient deprivation- or pheromone-induced cell cycle 
arrest [59]. Third, molecular chaperones may help the disor-
ganization of protein sequences, thus they may act as facili-
tators of both molecular memory formation and cellular 

‘forgetting’ [60]. However, currently beyond these mecha-
nisms we do not know enough about the molecular systems 
regulating ‘forgetting’ in individual, non-neuronal cells.

We note that anti-Hebbian learning diminishes the 
strength of certain molecular connections, while cellular 
‘forgetting’ may also induce a more general decrease of 
connection strengths. However, there is an obvious overlap 
between the two phenomena.

Desensitisation of signalling networks

Desensitisation of signalling responses is a general, habit-
uation-type regulatory mechanism of signalling pathways. 
The most widespread way of desensitisation is receptor 
down-regulation by internalization (many times involving 
autophagy) and consequent degradation. We list here only 
a few examples of the many: the key plant stress signalling 
hormone, abscisic acid is desensitised by numerous steps of 
directed protein degradation [61]. An early example was the 
desensitisation of protein kinase C by its nonmetabolizable, 
long-term agonist, phorbol ester [62].

As an archetype of desensitisation G-protein-coupled 
receptor (GPCR) kinases (GRKs) induce arrestin binding to 
GPCRs, dissociating G proteins and leading to GPCR inter-
nalization [63, 64]. While short-term activation of GPCRs 
causes receptor desensitisation via β-arrestin-mediated 
decoupling from G proteins, long-term (hours to days) acti-
vation induces receptor down-regulation by internalization 
into vesicles, lysosomal degradation and decrease of recep-
tor mRNAs [65]. The GPCR cardiac β-adrenoreceptors 
became downregulated after prolonged in vivo infusion of 
catecholamines in rat [66]. GPCR α1-adrenoreceptors could 
be downregulated by the specific α1 agonist, R-(-)-N6-(2-
phenylisopropyl)adenosine in rat atria inducing their uncou-
pling from G proteins and loss of  Gi proteins [67]. Desen-
sitisation of rat heart contractility after sustained adenosine 
treatment seems to be mediated by the α1-adrenoreceptor 
and protein kinase C [68].

Continuous exposure of rat pancreatic islets to high glu-
cose (300 mg/dl) induced glucose hypersensitivity after 3 h 
which turned to glucose insensitivity after 6 h of exposure 
[69]. Insulin receptor auto-antibodies (as agents able to 
provoke a sustained activation) induced an insulin-resistant 
state of glucose metabolism in 3T3-L1 adipocyte-like fatty 
fibroblasts after 6 h of exposure blocking an early step in 
insulin signalling (but leaving insulin binding ability con-
stant) [70].

Signalling of human cells is not more complex than that 
of e.g. Caenorhabditis elegans or Drosophila melanogaster 
because of more human signalling pathways, but because 
of much more cross-talks between signalling pathways in 
humans [71]. Due to this complexity, desensitisation may 
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often act on different pathways than that of the provoking 
agent. Signalling pathways often act as ‘Darwinian com-
petitors’. If one of them becomes stronger (e.g. by a cel-
lular learning process), it induces molecular events (such as 
protein phosphorylation), which desensitise (inhibit, down-
regulate, etc.) of ‘competing’ pathways. An example for this 
from the many is the heterologous desensitisation of G-pro-
tein-coupled receptor (GPCR) and insulin-like growth factor 
pathways by insulin [72]. Conversely, chronic endothelin 
exposure desensitises the insulin pathway [73].

Stress‑induced desensitisation of signalling

Desensitisation of a wide range of signals is occurring, 
if the cell or the animal experiences stress, such as heat 
shock, UV light, immobilization, or endoplasmic reticu-
lum stress. Immobilization reduced the number of α1- and 
β-adrenoreceptors in rat hearts [74]. In agreement with the 
internalization → degradation sequence, immobilization 
stress first reduced the number of surface β-adrenoreceptors, 
and only then the total number of receptors [75]. Suppres-
sion of microRNA-16 gave a protection against acute myo-
cardial infarction reversing β2-adrenergic receptor down-
regulation in rats [76]. Epidermal growth factor (EGF) 
receptor down-regulation was observed in the colon cancer 
cell lines SW480, HT29, and DLD-1 after ultraviolet light-
C treatment inhibiting cell proliferation and survival [77]. 
UV light-induced EGF, tumour necrosis factor (TNF) and 
interleukin-1 receptor down-regulation in mammalian cells 
activating the Jun-kinase cascade [78].

Insulin signalling desensitisation potentially leads to 
diabetes. Insulin receptor tyrosine phosphorylation was 
reduced by tunicamycin-provoked endoplasmic reticulum 
stress, which was reversed by the overexpression of acti-
vating transcription factor 6 (ATF6), a key signal of endo-
plasmic reticulum stress [79]. Similar, autophagy (but not 
proteasome) dependent down-regulation of insulin signal-
ling was observed after endoplasmic reticulum stress in fat 
tissue of obese human subjects and 3T3-L1 adipocytes [80]. 
Heat stress downregulated insulin signalling in pig testicular 
cells [81].

Ageing‑induced signalling desensitisation

Ageing can be perceived as a cumulative result of the con-
tinuous stress by free radicals and other harmful effects 
inducing inflammation [82–86]. Ageing is downregulating 
the renin-angiotensin system in rat kidneys [87]. Klotho-
induced activation of the retinoic acid-inducible gene I/
nuclear factor-κB (RIG-I/NF-κB) signalling pathway, as well 
as the subsequent production of proinflammatory mediators 

(TNF α and interleukin-6) and inducible nitric oxide syn-
thase were reduced in the kidneys of aged senescence-accel-
erated mouse prone-8 (SAMP8) mice [88]. Downregulation 
of angiogenesis-related vascular endothelial growth factor 
(VEGF) signalling was reported in hearts of ageing rats liv-
ing a sedentary lifestyle, but was recovered in ageing rats 
with exercise training [89]. Endoplasmic reticulum stress 
was activated in fatty livers of old mice by inhibiting hepato-
cyte nuclear factor 1 alpha (HNF1α) and downregulating 
farnesoid X receptor (FXR) [90]. Desensitisation of insu-
lin receptor growth factor (in particular: downregulation of 
Irs1 and upregulation of Let-7 microRNA expression) was 
shown as a hallmark of the aged phenotype in developing B 
lymphocytes by a genome organization and chromatin study. 
These changes were associated with specific alterations in 
histone H3K27me3 occupancy, suggesting that Polycomb-
mediated repression plays a role in precursor B cell ageing 
[91].

Learning, desensitisation, stress and ageing 
in system‑level signalling: phases 
of the same response?

There are only a few reports of time-dependent changes in 
cellular signalling upon shorter versus longer extracellu-
lar signals. One of these was made on rat pancreatic islets, 
where 300 mg/dl, high concentrations of extracellular glu-
cose induced a stronger response after 3 h, which turned to 
glucose insensitivity after 6 h [69]. This is clearly a two-
step cellular response, where the pancreatic beta-cells first 
learned the presence of glucose and made a preconditioned, 
stronger response to them. However, after a longer time, 
an overload occurred and the cells turned to insensitive to 
glucose. Note that under natural conditions high glucose is 
only a temporary, postprandial event. A similar effect was 
observed, when 3T3-L1 cultured fat cells were exposed to 
insulin receptor auto-antibodies. Acute administration of 
anti-receptor antibodies induced a more efficient deoxyglu-
cose uptake, while prolonged exposure led to insulin insen-
sitivity [92]. Here again, high levels of the original agonist, 
insulin are also only transient, postprandial events.

If we take the examples of (1) cellular learning and devel-
opment of cellular memory after a few repeated stimuli 
[10, 25, 54, 55]; (2) the desensitisation of signalling after a 
prolonged exposure to the signal [61–70] and (3) the result 
of the above studies [69, 92] (where in an extended time-
scale first learning and then desensitisation was observed) 
together, the conclusion can be drawn that, in fact, cellular 
learning and desensitisation may be consequent phases of 
the same response. The cell first becomes more ‘alert’ and 
more ‘ready’ to respond to environmental changes. However, 
after a prolonged stimulus its signalling network becomes 
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‘saturated’ and starts to ‘protect itself’ (Fig. 2). We may 
also add stress [74–81] and ageing [82–91] to this spectrum, 
where ‘fatigue’ of the signalling network is induced by both 
as examples of overloading short-term (stress) and long-term 
(ageing) changes (Fig. 2). We note that comparative stud-
ies of agonist-, stress- and ageing-induced desensitisation 
are missing. Therefore their combination on Fig. 2 is only 
illustrative and hypothetical.

Discrimination between repeated 
and unexpected signals: perhaps 
as also a property of single cells?

Desensitisation protects the system from the overload of 
inputs. At a low level of complexity overload can be under-
stood that too many of the same signal within a certain time 
(where the system may adjust its thresholds defining the 
“too many” and the “within a certain time”). At a higher 
level of complexity overload also occurs, if the system is 
not able to make ‘groups’ of similar input patterns. In fact, 
our brain defines objects (features, categories, concepts, 
etc.) as groups of correlating ‘suspicious coincidences’. 
Moreover, recognition of (and reduced response to) similar 
input patterns helps to highlight unexpected signals, which 
is essential for survival. If a layer of Hebbian learning units 
becomes connected by modifiable anti-Hebbian feed-backs, 
the resulting system is able to learn this discrimination and 
to recognize other principal components of an incoming, 
complex signal than only its first principal component [93, 
94]. A well-known biological example is that of the mor-
myrid electric fish, which is able to eliminate predictable 
inputs produced by its own, regular motor output. How-
ever, this response is a general feature of cerebellum-like, 
laminar structures, where anti-Hebbian outputs of a deeper 

layer modulate outer layers (Fig. 3A) [95]. Thus using anti-
Hebbian learning prevents excessive noise (i.e. regular, 
correlating, expected input) from masking important (i.e. 
unexpected) sensory information. Most sensory systems 
work based on the principle of fold-change detection, which 
allows for a proportional response to the fold-change of a 
signal (the unexpected) relative to the background (the 
repeated, regular, expected) [96]. From the complexity of 
learning responses of non-neuronal single cells [2] and the 
presence of distributed decision making in cellular signal-
ling [97], we may expect that the widespread occurrence of 
anti-Hebbian learning in signalling networks (see examples 
above) is involved in the discrimination between repeated 
and unexpected signals in single, non-neuronal cells, too. 
Horizontal activation at a receptor-proximal level, as well as 
mutual inhibition at a receptor-distant level in signalling net-
works also point toward this expectation. For instance, in the 
TNF-induced NF-κB signalling, the well-studied upstream 
crosstalk conveyed by TNFR-associated factors (TRAFs) 
acts as horizontal activation at the receptor-proximal level 
[98]. While downstream, a network motif containing inhi-
bition has been described that can impart fold-change 
detection to cell signalling circuits: the incoherent type-1 
feed-forward loop (I1-FFL) (Fig. 3B) [96, 99, 100]. I1-FFL 
is one of the most frequently occurring network motifs in 
transcriptional networks [101]. Besides fold-change detec-
tion, I1-FFLs have a role in response acceleration even in 
yeast [102]. In an I1-FFL, X upregulates Y, while it also 
upregulates Z, a repressor of Y. This indirect repression of 
Y, coupled with the direct activation of Y, can be considered 
an anti-Hebbian learning mechanism. Besides NF-κB sig-
nalling, I1-FFLs were also suggested to enable fold-change 
detection in the nuclear levels of the transcription factors of 
transforming growth factor beta (TGF-β) signalling, explain-
ing how the cells are able to give the same proportional 

Fig. 2  Repeated signals induce 
cellular learning; persistent sig-
nals lead to cellular desensitisa-
tion; permanent signals (such 
as the accumulated signals and 
damage in ageing) overload the 
signalling network and provoke 
cellular stress. Note that on 
the contrary to the few studies 
showing a change from cellular 
learning to desensitisation in the 
same system [69, 92], compara-
tive studies of agonist-, stress- 
and ageing-induced desensiti-
sation are missing. Therefore, 
this figure is only hypothetical, 
illustrative and by no means 
quantitative
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response, even though the nuclear level of transcription 
factors can vary greatly from cell to cell [96]. The occur-
rence of I1-FFLs in major signalling pathways suggests that 
this learning mechanism may be a rather general feature of 
signalling networks. Even still, to decide whether discrimi-
nation between repeated and unexpected signals is also a 
property of single cells, future experiments are required.

Applications of cellular learning 
and ‘forgetting’ in pharmacology and drug 
design

Mimicking cellular learning (memory) became a recent 
hit in drug design. Chemically-induced proximity between 
two adjacent signalling proteins (a new drug design para-
digm [103, 104]) is actually copying Hebbian learning of 
the cell [10]. In this ‘cellular learning scenario’ chemical 
proximity-developing drugs induce targeted posttranslational 

modifications of key, otherwise undruggable proteins. In the 
reversed, anti-Hebbian learning model, chemically-induced 
proximity promotes the selective degradation of the target 
[105, 106].

Drug resistance can be conceptualised in a learning net-
work model as habituation. Biological networks may contain 
nodes, where stimulation breaks the habituation (drug resist-
ance) developed by the network [52]. Limited drug tolerance 
can be conceptualised as sensitisation in a learning network 
model, most simply by displaying a hysteresis-type response. 
Interestingly, breaking of sensitisation was much rarer phe-
nomenon in a model of 35 biological networks than that 
of habituation [52]. However, the break of allergy-induced 
sensitisation against drugs became a carefully manageable 
clinical modality in the last decades — as we will describe 
in the following paragraphs.

Signal desensitisation plays a major role in anti-cancer 
therapy, which can be regarded as ‘the archetype’ of thera-
peutic intervention consequences in a number of other 

Fig. 3  Hebbian and anti-Hebbian learning layers in neuronal and sig-
nalling networks. A Schematic representation of the combination of 
Hebbian- and anti-Hebbian learning layers, which result in the dis-
crimination between predictable and unexpected inputs. The cerebel-
lum-like laminar structure of the figure is widespread in various ani-
mal and human neuronal networks [95] and was also shown to work 
in computational neural networks [93, 94]. Note that self-inhibitory 
connections (‘autapses’) are not necessarily needed for the circuit. B 
Proposed Hebbian and anti-Hebbian learning layers in the NF-κB sig-
nalling. Receptor proximally, the signalling of multiple receptors can 
lead to the activation of the NF-κB pathway through TRAFs. Concur-
rently, some can lead to the activation of the adjacent AP-1 signalling 
pathway [98]. This constitutes a horizontal activation in the proposed 

Hebbian learning layer in the upstream signalling. In the downstream 
signalling, AP-1 and the non-canonical NF-κB pathway modulate 
NF-κB target genes (e.g. interleukin-8, interleukin-6). The canonical 
NF-κB (RelA-p52 heterodimer) has also been shown [100] to upregu-
late the formation of the transcriptionally inactive p50-p50/p52-p52 
homodimers that act as competitors to NF-κB for κB sites in the target 
genes’ promoters. These interactions, highlighted in red, constitute a 
Type-1 incoherent feed-forward loop (I1-FFL, see inset) that can be 
understood as an anti-Hebbian learning mechanism. This system ena-
bles fold-change detection of the incoming signal in NF-κB nuclear 
levels, that is analogous to discrimination between predictable and 
unexpected inputs. This figure was created with yEd Graph Editor
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diseases. As an example for the first modality of protocols, 
the anti-cancer agent, 90 kDa heat shock protein (Hsp90) 
inhibitors induce a desensitisation of the EGF receptor via 
p38 MAPK-mediated phosphorylation at Ser1046/1047 of 
the EGF receptor in human pancreatic cancer cells. Here 
drug-induced desensitisation of the cancer-promoting 
growth factor signal is a mode of action to avoid disease 
[105]. As an example for the second modality of conse-
quences, gastric cancer cells become desensitised to trastu-
zumab-treatment by upregulation of MUC4 expression and 
by catecholamine-induced β2-adrenoreceptor activation. 
Here desensitisation, i.e. the development of drug resist-
ance is an unwanted consequence of drug treatment [106]. 
As a third modality of therapeutic interventions, response-
desensitisation (i.e. breaking the sensitisation of unwanted 
side-reactions for the drug) is a general goal in cancer ther-
apy, where patients often develop sensitivity towards the 
administered drugs [107, 108].

Supporting the notion that cancer therapy experiences are 
‘pars pro toto’ for other conditions, increased hypersensitiv-
ity to drugs (e.g. for aspirin and non-steroid anti-inflamma-
tory drugs, NSAIDs in patients with heart disease or inflam-
matory diseases; for insulins, penicillin or other antibiotics) 
became a general phenomenon in the past 25 years due to 
the widespread and intensive drug use. Therefore, carefully 
administered drug-desensitisation protocols became more 
and more important in the clinical practice [109, 110]. Simi-
larly, drug-induced desensitisation of cellular mechanisms 
of action is also a general phenomenon in a number of non-
cancer treatment protocols, including that of β-adrenergic 
agonists in asthma [111], diabetes [112, 113] or heart failure 
[114].

Conclusion

In our previous work [10] we gave several examples for cel-
lular learning [3–9] (i.e. the formation of cellular memory 
[25, 52–55]), and showed that cellular learning can be per-
ceived as Hebbian learning [48] of signalling networks, 
where learning is accompanied by strengthening of those 
protein–protein, protein-microRNA and chromatin interac-
tions, which participate in the learning process [10]. In this 
review we give the first description of cellular forgetting, and 
we summarize our current knowledge on the other side of 
the coin: when signalling networks ‘refuse’ to learn more, 
and become desensitised by prolonged presence of the pro-
voking signal, by stress or ageing.

Cellular learning proceeds using several molecular mech-
anisms, such as conformational memory of (IDPs), prions 
and mnemons [10–16], protein translocation [18–21], as 
well as miRNAs and lncRNAs [6, 7, 22–24]. System level 
responses of cellular learning include chromatin memory [3, 

5, 8, 9, 25–32], signalling protein kinase cascades [33–38], 
as well as network responses other than those of signalling 
networks, such as metabolic reaction networks and metabo-
lons [40–47].

Besides Hebbian learning [10] by the molecular mecha-
nisms listed in the previous paragraph, non-neural cells also 
display anti-Hebbian learning, where connection strengths 
decrease between the signalling network components [23, 
31, 51, 52]. Cells are also able to ‘forget’ using TET DNA-
demethylases, lncRNAs or molecular chaperones [58–60] 
besides developing a cellular memory.

A cellular habituation-type of response is the develop-
ment of desensitisation. This often involves first decoupling 
of signalling network components from each other followed 
by receptor internalization and downregulation [61–70]. 
This may be displayed by cross-desensitisation, where pro-
longed exposure for a pathway agonist induces the desen-
sitisation of other pathway(s) [72, 73]. A specific condition 
of generally increased signal intensity and/or complexity is 
stress, which desensitises a wide range of signals [74–81]. 
Ageing can be perceived as a result of cumulative stress 
[82–86], which downregulates a large number of signalling 
pathways [87–91].

Here we propose that cellular learning, desensitisation, 
stress and ageing may be placed as responses along the same 
axis of more and more intensive (more and more prolonged, 
or more and more often repeated) signals (Fig. 2). We pose 
the question, whether single cells may also display discrimi-
nation between repeated and unexpected signals, a common 
property of neuronal and artificial neural networks (Fig. 3A) 
[93–95]. As a first step in answering this question, we pre-
sent fold-change detection enabling I1-FFLs as anti-Hebbian 
learning mechanisms that are potentially general features 
of signalling networks given their occurrence in prominent 
signalling pathways like NF-κB (Fig. 3B) and TGF-β signal-
ling [96, 98–101].

Finally, we summarize applications of signalling network 
learning and desensitisation in clinical treatments discrimi-
nating between five scenarios (Fig. 4): 1.) when cellular 
Hebbian learning is mimicked by chemically-induced prox-
imity between signalling network components [103, 104]; 
2.) when cellular anti-Hebbian learning is mimicked by 
chemically-induced proximity of protein degradation [104, 
105]; 3.) when desensitisation of unwanted signalling (such 
as that in cancer) is the mechanism of drug action [105]; 4.) 
when desensitisation of wanted signalling occurs, and should 
be avoided (in cancer, asthma, diabetes or heart failure [106, 
110–114]); and finally, 5.) when sensitisation against a drug 
occurs by allergic reaction, which also should be minimized 
(in cancer, inflammatory diseases, diabetes or infections 
[107, 109, 110]).

We hope that our summary will prompt further inves-
tigations of the phenomena, when cells learn (develop 
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cellular memory) by Hebbian learning-type processes, 
and when they ‘refuse’ to learn more, i.e. become desen-
sitised (display anti-Hebbian learning, i.e. cellular ‘for-
getting’) by prolonged exposure to environmental signals, 
by stress or by ageing. It is an interesting question, how 
much desensitisation remains specific for the given path-
way, and how much it is displayed as cross-desensitisation 
of other pathways, or as a general forgetting (desensitisa-
tion) of many (if not all) pathways. While agonist-induced 
desensitisation is mostly the former, directed type desen-
sitisation against the same pathway (or selected different 
pathways), stress- and ageing-induced desensitisation are 
usually more widespread phenomena involving a larger 
segment of the signalling network. We predict that net-
work methodologies will greatly help the discrimination 
between these scenarios.
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Fig. 4  Clinical treatments for and against Hebbian and anti-Hebbian 
learning of the signalling network. a Cellular Hebbian learning is 
mimicked by chemically-induced proximity between signalling net-
work components. b Anti-Hebbian learning is mimicked by chemi-
cally-induced proximity of protein degradation. c Desensitisation 
(drug-induced anti-Hebbian learning) of unwanted signalling (such as 

that in cancer). d Prevention of desensitisation of wanted signalling 
(cellular anti-Hebbian learning) in cancer, asthma, diabetes or heart 
failure. e Prevention of allergy-induced sensitisation (Hebbian learn-
ing) against the drug in cancer, inflammatory diseases, diabetes or 
infections. This figure was created with BioRender.com
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