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Molecular Chaperones in the Etiology and Therapy of Cancer’
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Molecular chaperones are ubiquitous, well-con-
served proteins that account for 2-5 % of all cellular
proteins in most cells. The present review summa-
rizes our current knowledge about their involve-
ment in the etiology and therapy of cancer with spe-
cial emphasis on the expression of chaperones in
malignant cells, their role in folding of (proto)onco-

gene products, cell cycle regulation, cell differentia-
tion and apoptosis, development of metastasis, and
their participation in the recognition of malignant
cells. We also overview the importance of chaper-
ones in hyperthermia, drug resistance, and recent
approaches in chaperone-immunotherapy. (Patho-
logy Oncology Research Vol 4, No 4, 316-321, 1998)
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Introduction

Molecular chaperones have been defined as “proteins
that bind to and stabilize an otherwise unstable conformer
of another protein — and, by controlled binding and
release, facilitate its correct fate in vivo: be it folding,
oligomeric assembly, transport to a particular subcellular
compartment, or disposal by degradation”.”’ Chaperones
are ubiquitous, highly conserved proteins which probably
played a major role in the evolution of modern enzymes.'®
Chaperones are vital for our cells during their whole life-
time. However, they are needed even more after environ-
mental stress, which induces protein damage. Stress (heat
shock, major changes in the cellular environment after the
activation of various pathogens or during the development
of disease, etc.) induces the synthesis of many chaperones
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which therefore are called heat-shock, or stress proteins.
Chaperones play an essential role in the etiology of nu-
merous diseases, with a rapidly increasing role in clinical
practice.’*®**? Lacking a settled view about their exact and
specific cellular functions, chaperones are still best classi-
fied by their molecular weights. The major chaperone
families are listed in Table 1.

Induction of molecular chaperones in malignant cells

Chaperones help damaged proteins to re-fold to their
native conformation, therefore it is not surprising that they
are expressed after the cell experiences various types of
environmental stress. Cancer cells have an especially
“stressful” life: lack of nutrients, oxygen, space limita-
tions, and hostile environment are all important factors
which acting by alone would induce a large number of
chaperone proteins. We have summarized some examples
of chaperone induction in Table 2. Generally, induced lev-
els of chaperones help tumor cell survival. Overexpressi-
on of Hsp90-a is usually associated with poor prognosis
in breast cancer.”> However, in some cases such as after
the overexpression of Hsp25, proliferation of malignant
cells slows down.*” Thus due to the pleiotropic effects of
molecular chaperones. It is often difficult to make simpli-
fied statements on their association with poor or better
prognosis in various types of cancer."

Molecular chaperones are induced by almost all treat-
ment protocols used to eliminate tumors. Hyperthermia
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Table 1. The major molecular chaperone families

Some common names of eukaryotic
chaperone family members

References for
recent reviews

Hsp25, Hsp27, crystallins, 10,30
Small heat-shock proteins
Hsp60, chaperonins 11,31
Hsp70, Grp78, BiP 11,31
Hsp90, Grp9%4 10,17,63,64
Hsp110 68,91

Neither the co-chaperones (chaperones which help the function
of other chaperones listed, such as Hsp10, dnaJ-homologues,
Hip, Hop, Hup, etc.), nor the so-called folding catalysts, the pep-
tidyl-prolyl isomerases (immunophilins) and protein disulfide
isomerases were included in this table, albeit almost all of these
proteins also possess a “traditional” chaperone activity in their
own right.

and various forms of chemotherapy are the classical
examples of treatment-induced chaperone expression, as
we will discuss in later sections of this review.
Chaperone induction has also been observed after radia-
tion therapy,” or addition photosensitizers and pho-
totherapy.”

Association of chaperones with (proto)oncogene
products: their role in regulation of the cell cycle,
cell differentiation and apoptosis

Chaperones participate in the folding of numerous pro-
tooncogene and oncogene products. These target-proteins
often form stable complexes with chaperones which keep
them in an “activation-competent” state. E.g.: Hsp90 is
necessary for the folding of several protooncogene/onco-
gene protein kinases, such as members of the src and raf
families.'” Chaperones also participate in the maintenance
of correct conformation of other proteins involved in sig-
nal transduction, such as receptors, G-proteins and tran-
scription factors.®® Chaperones are necessary for the fold-
ing of several proteins of oncogenic viruses, such as those
of the hepatitis B virus.*

The expression pattern of several chaperones is cell
cycle dependent. E.g.: Hsp90-oo mRNA is induced at the
G,/S transition of chicken hepatoma cells.” In eukaryotic
organisms folding of de novo synthesized proteins is usual-
ly mediated by the ribosome-complex itself. However, fold-
ing of several key members of cell cycle regulation requires
the help of specific molecular chaperones. E.g.: Hsp90 is
necessary for the folding of the cyclin-dependent kinase,
CDK4” and the cyclin dependent kinase regulator, Wee.'
Hsp70 participates in the activation of the tumor-suppressor
p53 protein.”’” The novel Hsp90 homologue, Hsp75/TRAP-
1, as well as the constitutively expressed isoform of Hsp70
associate with the tumor suppressor retinoblastoma protein,
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most probably stabilizing the conformation of its dephos-
phorylated, thus tumor suppressive form.'>*

Changes in chaperone expression are usually accompa-
nying the differentiation of various cell types. Differenti-
ation of embryonal carcinoma cells leads to elevated lev-
els of small heat shock proteins which may play an impor-
tant role in various signaling events leading to the differ-
entiated state.”>”® On the contrary, expression of 70 and 90
kDa chaperones is lowered when the cells leave vigorous
proliferation,>'”** which may reflect a decreased need for
help in conformational rearrangements.

Induction, or overexpression of various chaperones
generally protects host cells from apoptosis.®® Transgenic
mice expressing the inducible form of the 70 kDa molecu-
lar chaperone, develop T cell lymphoma due to the severe-
ly impaired apoptosis in T cell selection.” Similarly, ex-
pression of Hsp27 or Hsp70 protects tumor cells against
the apoptotic effects of tumor necrosis factor-c..*>*° On the
contrary, overexpression of Hsp90 enhances tumor necro-
sis factor-o induced apoptosis of U937 cells.”” This may
be related to the possible involvement of an Hsp90-homo-
logue in type-1 tumor necrosis factor receptor signaling as
reported by Song et al.” Thus the involvement of chaper-
ones in the diversion of the normal cell cycle towards

Table 2. Induction of molecular chaperones in malig-
nant human cells

Chaperone family member ~ Malignant cell type References

small heat shock proteins breast cancer 14,59
hepatoma 18
neuroectodermal tumor 39
Hsp60 breast cancer 7
lymphoma 21
Hsp70 endometrial carcinoma 58
lung carcinoma 22

melanoma 22,60
pancreatic carcinoma 29
renal carcinoma 66
Grp78 breast cancer 7

Hsp90 breast cancer  22,24,41,93

endometrial carcinoma 58
gastrointestinal cancer 20

hepatoma 22

leukemia 12,94
lung carcinoma ~22

melanoma 22,60
microcytoma 22
ovarian cancer 54
pancreatic carcinoma 29

Grp9%4 breast cancer 7,23,24,93

colon adenocarcinoma 53
Hsp 1107

“Induction of Hsp110 in tumors has not been reported (yet).
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apoptosis most probably depends on the type of apoptotic
signal. As is obvious from the above, our present knowl-
edge about the involvement of chaperones in the cell cycle
and apoptosis is rather fragmentary. However, these areas
may well provide significant major advances in the under-
standing of chaperone function in the near future.

Involvement of chaperones in metastasis development

Induction of various molecular chaperones, such as
Hsp27,%° Hsp70,% Hsp90,* and the collagen-specific
chaperone, Hsp47> was observed in several metastasis
models. The putative heparanase and protease (aminopep-
tidase) activities of the Hsp90-homologue, Grp94, togeth-
er with its frequent expression on the surface of tumor
cells,'**"7 may enable Grp94 to act as a mediator of
metastasis generation. However, the testing of the putative
role of Grp94 and other chaperones in promotion of metas-
tasis formation is a task for future research.

Surface expression of chaperones, their role
in antigen-presentation, and in immunorecognition
of malignant cells

In the end of the eighties Hsp70, Hsp90 and Grp94
(termed gp96) were identified as tumor-specific antigens
expressed on the surface of various tumor cells.*’*%
Expression of molecular chaperones on the surface of
malignant cells and their secretion to the extracellular fluid
has also been reported by numerous other laborato-
ries. #7225 Interestingly, extracellular Hsp90-o. had a
stimulatory effect on the growth of some lymphoid cell
lines* and Grp78 was identified as a potential intercellular
signal-transducing protein between pancreatic cancer
cells.” Presently neither the molecular details of the sur-
face attachment of molecular chaperones, nor the exact
mechanism of their secretion are known.

Though differences in protein structure of various
tumor-derived, surface-expressed chaperones were minor,
if anything, their immunogenicity showed major differ-
ences. This apparent discrepancy led Pramod Srivastava to
suggest that the chaperone-related immunogenicity resides
in a great variety of peptides, which are non-covalently
associated to, and “presented” by the chaperone.”*”
Endogenously synthesized antigenic determinants are gen-
erally presented on major histocompatibility complex
(MHC) class I molecules, whereas exogenous antigens are
presented by MHC class II molecules. Heat shock and glu-
cose-regulated proteins (Hsp70, Hsp90 and Grp94) may
present their bound peptides to MHC class I molecules.
Under normal (non-stressed) conditions this may be a
helper mechanism for loading of the MHC class I mole-
cules in the endoplasmic reticulum. However, stress pro-

teins may carry their immunogen peptides to MHC class T

molecules other than those of their original cells by lysis
of the original cell and subsequent phagocytosis by
macrophages or by direct macrophage-engulfment of the
whole original cell. Since heat shock proteins are highly
conserved, transfer of their peptide-load to MHC class I
molecules may also occur after the lysis or phagocytosis of
foreign cells with different haplotypes. Hence foreign
chaperones may “disguise” their bound foreign peptides as
self. Thus insertion of the nondiscriminating stress pro-
teins to the peptide/antigen-presenting “relay” may
explain the phenomenon of cross-priming, i.e. that not all
the processing of the antigens occurs via the haplotype-
restricted MHC class I molecules of the immunized
mouse, but at least some of peptide/antigens are salvaged
by the macrophages of the immunized mouse directly
from the chaperones of the immunizing cells (having a dif-
ferent haplotype). During the last years the above hypoth-
esis of Srivastava et al.”’ has been supported by several
pieces of experimental evidence.>**#°%

The involvement of chaperones in antigen-presentation
also means that, in an organism developing malignant
cells, the MHC non-restricted presentation of tumor anti-
gens becomes more dominant. This mechanism increases
the efficiency of immune surveillance. Tumor-derived
peptide-loaded chaperones (via the peptide-presenting
macrophage-MHC class I molecules) may prime cytotox-
ic lymphocytes even after the death and lysis of the origi-
nal malignant cells, which extends the cytotoxic response
and also makes it more efficient.”’

Hyperthermia and cancer treatment

Hyperthermia has been utilized in clinical practice as a
primary treatment or as an adjuvant to radio-/chemotherapy
of cancer for a long time.® Hyperthermal treatment proto-
cols are based on proper focusing of thermal damage to
cause the selective injury of tumor cells using computer-
assisted 3D targeting.®? The current review warrants for an
even sharper (theoretically: all-or-non) discrimination
between target and neighboring cells since improper (sub-
optimal) heating of tumor cells may induce an expression of
their molecular chaperones and thus may lead to an increase
in their survival and metastatic potential. Induction of
Hsp70 may be efficiently used to judge the extent of hyper-
thermia in the malignant tissue.”' On the other hand, mas-
sive induction of Hsp70 (and other heat shock proteins,
such as Hsp110) may indicate the development of tumor-
thermotolerance and stress-(drug)-resistance.

Chaperones and drug resistance
Heat treatment leads to increased drug resistance in

many tumor cells. In agreement with these early results, in
several malignant cell types the simultaneous induction of
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various heat shock proteins and multidrug resistance has
been observed.'**** Administration of chemotherapeutic
agents often leads to a further increase in the expression of
molecular chaperones, such as Hsp25° or Hsp70.%% As a
further evidence suggesting the chaperone-induced protec-
tion against chemotherapy high level of Hsp60 predicts
poor survival of patients treated with cisplatin-containing
chemotherapy protocols.® However, in some cases the
chaperone-induction correlates with the induction of P-
glycoprotein, e.g. in case of elevated Hsp90-B levels,
where the chaperone has also been shown to associate
directly with the multi-drug transporter.’ In other cases
elevated chaperone levels themselves seem to induce a
“cross-resistance” against various chemotherapeutic
agents irrespectively from the level of multidrug trans-
porter present.'**** To make the situation even more com-
plex, overexpression of P-glycoprotein has also been
observed in heat-resistant hepatoma cells, which are
defective in the induction of Hsp70.6"%

Molecular chaperones (the cytoplasmic “foldosome”,
containing Hsp70, Hsp90 and numerous co-chaperones)
are actively involved in the folding and activation of
steroid receptors.'”*** Thus it is not surprising that they
play a pivotal role in the development of steroid resistance
in various forms cancer, such as breast, endometrial and
prostate cancer. Since length limitatons of the present
review do not allow us to review this extensive field, the
interested reader is referred to other recent reviews pro-
viding an excellent summary of the subject.>*#

Molecular chaperones in cancer immunotherapy

A large part of tumor immunogenicity resides in the
great variety of chaperone-associated tumor-specific
peptides. Tumor-specific, chaperone-presented peptides
are taken up by macrophages and presented by the mac-
rophage MHC class I molecules. These macrophages are
able to prime cytotoxic T lymphocytes for an anti-tumor
attack.”””**% The chaperone-mediated “escape route” of
cytotoxic lymphocyte priming from the restrictive self-
MHC molecules has profound consequences in cancer
immunotherapy. The vaccination procedure does not
necessarily have to use autologous or HLA-matched
cells, but a preparation of chaperone-peptide complex
from the specific tumor may be used as an effective
immunogen to vaccinate the same patient. This vaccina-
tion protocol may be extended to shared tumor antigens
in the future which may alleviate the need for the costly
and time-consuming “personalized” vaccines.’?27785
As an approach of this type, if tumor cells are transfect-
ed with the mycobacterial heat shock protein, Hsp65
(which is a major common immunogen in almost all
organisms), they loose their tumorigenicity,*? or can be
used as cancer vaccines.%
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As an alternative chaperone-based immune-related
therapy, suppression of the synthesis of certain chaper-
ones, such as the Hsp70 homologue, Grp78, eliminates the
tumor resistance to cell mediated cytotoxicity.*>%!

Conclusions

Overexpression of chaperones in tumor cells is a rather
general phenomenon caused by the increased demand of
accelerated cell proliferation and the harmful environ-
ment. Chaperones protect malignant cells from many of
the environmental stresses and render them more resistant
against apoptosis, anticancer drugs and immune-attacks.
Chaperone-induction may also lead to an increase of the
metastatic potential. Tumor chaperones seem to be one of
the devils of tumor therapy, thus various selective methods
to impair their synthesis in tumor cells have high thera-
peutic potential. On the other hand, chaperone-peptide
vaccination may provide a unique, a very powerful tool in
cancer treatment.
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