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Information explosion
• data explosion
• connection explosion

„we are drowning in a sea of data
and starving for knowledge”

Sydney Brenner, Nobel Lecture



Left right hemisphere dominance + 
the role of the unconsciousness

visual image
right hemisphere
emotions

subconsciousness

Gutenberg-galaxy
Enlightment
left hemishpere



New synthesis: networks
 both visual and
 logical
Newest synthesis: subconscious + emotions…



Traditional view

cause effect

(Paul Ehrlich’s magic bullet)



Recently changed view

100 causes 100 effects



Networks may help!

major causes major effects



Occam’s razorOccam’s razor

” ... plurality is not to be 
posited without necessity…”

William of Occam (1285-1349)



Einstein’s razorEinstein’s razor
” ... the supreme goal of all 
theory is to make the 
irreducible basic elements as 
simple and as few as possible 
without having to surrender the 
adequate representation of a 
single datum of experience”

The Herbert Spencer Lecture
(1933)



Warren Weaver (1948)
American Scientist
36:536‐544 

1. problems of simplicity
Leibnitz, Newton

2. disorganized complexity
Boltzmann, Maxwell, Gibbs

3. organized complexity
natural
sciences
point,
node,
exact

social
sciences
identity,
context,
fuzzy

physician



DefinitionDefinition of of networksnetworks

• nodes: parts of the system
which have common properties

• edges: connections of nodes
(weighted, directed, signed, coloured)

Caution: Extreme data reduction!
– based on background knowledge



EmergentEmergent propertiesproperties of of 
complexcomplex systemssystems

emergent property: a property
which can not be predicted from
the properties of the parts
(e.g. life, consciousness, God)

Novikoff, Science 101:209-215 (1945)



Networks can break conceptual barriers

Watts/Strogatz
1998

Networks have general properties
• small-worldness (6 degrees of separation)
• hubs (scale-free degree distribution)
• nested hierarchy
• stabilization by weak links

Karinthy
1929

Generality of network properties offers
• judgment of importance
• innovation-transfer across different layers of complexity

Albert & Barabasi, 1999

Csermely, 2004



Crisis-prevention in different systems:
example to break conceptual barriers

ecosystem, market, climate
• slower recovery from perturbations
• increased self-similarity of behaviour
• increased variance of fluctuation-patterns
Nature 461:53

Aging is an early warning signal
of a critical transition: 

Prevention: elements
with less predictable behaviour
• omnivores, top-predators
• market gurus 
• stem cells

Farkas et al., Science Signaling 4:pt3

death



Creative nodes
(as possible targets of anti-aging therapies)

Problem solver:
specialized to a task,
predictablechange of roles

Creative: few links to
hubs, unexpected re-routing, 
flexible, unpredictable

Distributor: hub, 
specialized to signal
distribution, predictable

Csermely, 
Nature 454:5
TiBS 33:569
TiBS 35:539

Why is such
a behavior
creative?



Robert: broker
James: looser

Structural holes

Ron Burt, 
Structural holes, 
Harvard Univ. Press 1992

Netocracy: continuous
networking Obama
Bard-Söderquist

Why?



Complementary networking strategies
• safety seeking (optimization)
• novelty seeking (exploration) 

(seek the opinion leader, 
seek the strange, seek openness, 
jump to the next group)

The art 
of networking



Useful information comes
from a long distance

Mark Granovetter (1973)
• You may get useful hints for your
jobs from distant acquaintances much
better than your relatives
• Why is this suprising?
• Why is this true?

Am. J. Sociology 78:1360



Creative amino acids
• centre of residue-network
• in structural holes

Cyt-P450
(CYP2B4)

drug-binding oxidation

Csermely, 
Nature 454:5
TiBS 33:569
TiBS 35:539

Creative proteins
• stress proteins
• signaling switches

Creative cells
• stem cells
• our brain

Creative persons
• firms
• societies

Creative nodes are central and…

mobile



” ... To create consists in not 
making useless combinations.
Among chosen combinations 
the most fertile will often be 
those formed of elements drawn 
from domains which are far 
apart.”

Henry Poincaré: Foundations of Science (1908)

Originality: 
the highest level of creativity
Originality: 
the highest level of creativity



NetworksNetworks areare embeddedembedded

N.J.

M.Z.



cell-net

protein-net

NetworksNetworks areare embeddedembedded



atomic-net

NetworksNetworks areare embeddedembedded



Major Major classesclasses of of networknetwork topologytopology

regular random small-world scale-free

Sporns et al. Trends Cogn Sci. 8, 418



The The MilgramMilgram--experimentexperiment

Frigyes Karinthy 
(1929) Five degrees

96 participants from Nebraska, 
1 target in Boston, 
18 letter chains via friends
(first-name-basis) 
Psych. Today 1, 62; 1967

Six degrees of separation

1006 = >100 x 
the total population
of the Earth



RepeatedRepeated
MilgramMilgram--

experimentsexperiments

60,000 participants, 
166 countries, 
18 targets, 
384 email chains
4 (5-7) degrees
Science 301, 827; 2003

www.livejournal.com
500,000 US participants, 
500,000 trials
PNAS 102, 11623; 2005

www.msn.com
18 million participants, 
50 billion messages
6,6 degrees
PNAS 105, 4633; 2008



ExpansionExpansion of of thethe
smallsmall--worldworld conceptconcept

Duncan Watts Steve Strogatz

Nature 393, 440; 1998

general model
examples: 
• C. elegans neurons
• US power grid
• film actor collaboration net

high clustering coefficient
AND small characteristic path length
[grows ~logarithm of N (number of elements)]



WeightedWeighted & & directeddirected smallsmall worldsworlds

Network efficiency (cost):
a weighted world can be small
even if the non-weighted is not

(non-weighted, directed network)
Latora and Marchiori PRL 87, 198701
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Major Major classesclasses of of networknetwork topologytopology

regular random small-world scale-free

Sporns et al. Trends Cogn Sci. 8, 418

the small world network gives
low cost global connections ?



ScaleScale--freefree
degreedegree
distributiondistribution

degree-distribution

Science 286, 509; 1999

László Barabási Réka Albert

network model:
preferential attachment
(Matthew-effect, Pareto-law)
generality for actors, power grid, www

P = a k-α (P probability, a constant, k degree, α exponent)

lgP = lga – α lgk



GeneralityGenerality of of scalescale--freefree distributionsdistributions
link-strength

probability, Noe-effect
Nature 427, 839; 2004

PNAS 92, 6689; 1995
Kohlrausch, 1854
Leiden-jars
cumulative wins
Bernoulli, 1738

music

town size Zipf-law
rain, lightning, tic
sexual contacts
earthquakes,
Gutenberg-Richter law
science papers
Lotka-law

fractals, architecture

www.iemar.tuwien.ac.at/modul23/Fractals

Levy-flights

Can J. Zool. 80, 436; 2002
Nature 258, 317; 1975 



ExpansionExpansion andand dangersdangers ofof
scalescale--freefree distributionsdistributions

• must span many scales
(network must be large enough)

• a line can be fitted to many curves…
(log-normal, gamma, stretched exponential)

• cumulative plots are much better
• sampling bias
• unspecific data may cover real data
• distinct parts of networks are different

PNAS 102, 4221; 2005



ReasonsReasons behindbehind
thethe generalitygenerality ofof

scalescale--freefree distributionsdistributions

• preferential attachment
• cumulative success of consecutive tasks
• self-organization of matter in the Universe
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DifficultDifficult questionsquestions of of networknetwork studiesstudies

• Which are the important segments?
• How can I define groups within networks?
• How can I judge, if two networks are similar?

How can I compare two evolving networks?
• How can I measure complexity?
• How can I influence the attractor occupancy

of dynamic networks in their state space?



„„ImportantImportant”” networknetwork segmentssegments

• hubs
• central elements
• network skeleton
• modular structure
• core/periphery structure

local

global



DateDate hubshubs andand
partyparty hubshubs

Han et al. Nature 430, 88

–party
hubs

–date
hubs

yeast
protein
network



TypesTypes of of networknetwork centralitiescentralities

• hubs (degree)

• closeness (sum of shortests paths to other nodes)

• community centrality (influence of all other nodes)

• betweenness (number of shortests paths through the node)

local

global
• h-index: node has x neighbors with degree x
• node + neighbors adjacency matrix eigenvector
• PageRank: damped random walk (eigenvector
of the transition matrix, Google) 

• subgraph centrality: closed walks starting and
ending on the same node

• information centrality: drop of graph performance
if removing the node

• ecosystems



Network Network skeletonskeleton (local, fractal nets)

www renormalization
(unbranched ends)

Song et al., Nature 433,392Garlaschelli et al., Nature 423,165

food-chain renorm.
(energy-flow)

hierarchy: e.g.
transcription factors



Network Network skeletonskeleton (mesoscopic, global)

Guimera et al., PRE 68, 065103
Kim et al., PRE 70, 046126
Arenas et al, EPJ B38, 373

email-net renorm.
(betwenness)

Kovacs et al., PLoS ONE 5, e12528
www.linkgroup.hu/modules.php

network scientists
(modules)



ModulesModules

modular nets
intermodular contacts

are suppressed

hierarchical net 
intermodular contacts are
preferentially suppressed

Newman, SIAM Rev. 45, 167



ModulesModules havehave a a scalescale--freefree
sizesize and and degreedegree distributiondistribution

www.arxiv.org/cond-mat
word-associations

yeast DIP protein network

Palla et al., Nature 435, 814
For size: Arenas et al.,

EPJ B38, 373

Pollner et al., Europhys. Lett 73:478

preferential attachment
model of modules



ModulesModules needneed optimaloptimal overlapoverlap
(brain default-network)

PNAS 106:1279
PNAS 106:1942

overlap of active neuronal modules

child

adult:
usual
task

adult:
rest, 

novel task

depression

epilepsyschizophrenia
PRL 104:118701

overlap

PNAS 104:13507
PNAS 105:4028

Science 315:393



Szalay et al, FEBS Lett. 581:3675; Palotai et al, IUBMB Life 60:10; 
Mihalik & Csermely, PLoS Comput Biology 7:e1002187

stress
• focus on vital functions
• noise and damage localization
• modular independence: larger
response-space and better conflict
management

novel
contacts

reorganization

Modular overlaps
as keys of adaptation processes



Csermely et al, Pharmacology & Therapeutics 183:333-408

Intermodular bridges
are key nodes of regulation



Modular overlaps
are key determinants of regulation

Mitchell, Brooklyn Law Rev. 70:1313



WhyWhy is is itit goodgood ifif
a a networknetwork has has modulesmodules??

modules
• stop noise, damage and sync
• can evolve independently
• separate functions (induce diversity)
• allow sophisticated regulation by fringe areas



a.) a.) extensivelyextensively overlappingoverlapping,,
softsoft modulesmodules: : random random routesroutes

b.) b.) moderatelymoderately overlappingoverlapping
modulesmodules: : convergingconverging routesroutes

c.) c.) nonnon--overlappingoverlapping, , rigidrigid
modulesmodules: : saltatoricsaltatoric transductiontransduction

Csermely et al, Pharmacology & Therapeutics 183:333-408



HowHow areare modulesmodules formedformed??

integration
(symbiosis)

parcellation

Zachary’s charate club 
administrator: circles
instructor: squares

Girvan-Newman, PNAS 99,7821



ModulesModules and and nestednessnestedness

membrane-
-organelle
network



ModulesModules versus versus bottombottom--networksnetworks

A module becomes a bottom-network, if
• we have many
• it is small
• it is structured
• it is separated
• it can live independently
• it has only a few constant links



coreperiphery periphery
high variability/

evolvability, fewer
constraints, 
more plastic

low variability/
evolvability, more
constraints, more 
rigid, cooperates

efficient

high variability/
evolvability, fewer

constraints, 
more plastic

figure represents the „bow-tie” structure of directed networks
„in” and „out” are combined in undirected networks

size: regulator (flexibility/control)

+ can be multiplied
in modular networks

Dense group in network center:
core-periphery networks

Csermely et al., J. Complex Networks 1:93-123 



Major types of core-periphery networks I.

• protein structure networks
• interactomes
• metabolic, signaling, gene-regulatory networks
• immune system, brain
• ecosystems
• animal and human social networks
• World-Wide-Web, Wikipedia
• Internet, power-grids, transportation networks

Yellow: association-type networks, less core
White: flow-type networks, more core



rich-club nested network onion network
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Major types of core-periphery networks II.

Null-models (comparison to random networks) are important!



hubs associate with hubs
(assortativity: social nets)

Zhou and Mondragon
IEEE Comm. Lett. 8:180 Colizza et al.

Nature Physics 2:110

Rich Rich clubsclubs
a disassortative rich club



TalentedTalented(VIP)(VIP)--clubclub
isolated top rank associates with hubs

Masuda and Konno
Social Networks 28, 297

Radicchi
arxiv.org:1101.4028



onion-networks:
most robust scale-free networks
against node removal
Schneider et al. PNAS 108:3838

OnionOnion and and wheelwheel typetype networksnetworks

wheel-networks:
core + periphery
terrorist + drug traffic networks

Kenney 2008
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noise, stress

noise-filter –
hubs and
modules

signal

signal – small world

Csermely: Weak Links, Springer

The usefulness of networks



Network Network taskstasks: : dissipationdissipation of of noisenoise and and 
responseresponse toto signalssignals

noise is bad:
• diseases, tumors (PNAS 99, 13783)
• error catastrophe (Eigen, PNAS 99. 13374)

Seminal review: Rao et al: Nature 420, 231



NoiseNoise is is goodgood: : 
stochasticstochastic resonanceresonance

• rain calms rough seas (Reynolds, 1900)
• stochastic resonance: mechanoreceptors, hearing
• bone-growth, fish food finding is better

stochastic resonance: extrinsic noise
stochastic focusing: intrinsic noise



StochasticStochastic resonanceresonance::
memorymemory retrievalretrieval, pink , pink noisenoise, , musicmusic

difficult task

easy task

response time

Usher & Feingold, Biol. Cybern. 83, L11-L16

1/t pink noise

white noise

Soma et al, PRL 91, 078101

music is 
pink noise



SelfSelf--organizedorganized criticalitycriticality::
ourour everyevery--dayday avalanchesavalanches
Bak-Paczuski, PNAS 92, 6689

sand-pile avalanches
 scale-free size +

event distribution

• magnetization
(Barkhauser-effect)

• protein quakes
• earthquakes
• vulcano-eruptions
• forest-fires
• cracks
• crackling noise
• dipping faucets
• breath
• rain
• solar flares
• quazar emissions
• cultural changes
• innovations

• continuously increasing tension
• partially restricted relaxation
 avalanche



CascadingCascading failuresfailures

March 13, 1989



WeakWeak pointspoints inin networksnetworks

scale-free networks
are resistant against failure
but are vulnerable to attacks

Albert et al Nature 406, 378



TopologicalTopological phasephase transitionstransitions

resources
stress

co
m

pl
ex

ity

random
graph

scale-free
network

subgraphs

star network

Physica A 334, 583; PRE 69, 046117



TopologicalTopological phasephase transitionstransitions
–– otherother examplesexamples

• cells scale-free star apoptosis
• animals: random  scale-free [ star]

J. Theor. Biol. 215, 481
• firm consortia random  scale-free star

Santa Fe Working Papers No. 200112081
• scientific quotations random  scale-free

J. Arch. Meth. Theor. 8, 35
• communistic equality social classes

dictatorships war, anarchy



SyncSync

Huygens, 1665

longitude determination
pendulum clock
synchrony



SyncSync: : otherother examplesexamples

bird-migration

Nature 431, 646

cricket

www.buzz.ifas.ufl.edu/a00samples.htm

firefly

clapping

yawning, laugh
Nature 403, 849

menstruation
Nature 229, 244; 392, 177

syphilis

Nature 433, 417



SyncSync conditionsconditions

• small-world ↑
• modules ↓
• scale-free ↓
• weights ↑
• weak links ↑

time

fr
eq

ue
nc

y
di

ffe
re

nc
e

threshold

syntalansisfrequency
difference

sync



DifferencesDifferences betweenbetween engineeringengineering and and evolutionevolution

not isolated, but many
times independent, 

complex

isolated (?), have low
complexity

elements

manyfewoptimized parameters

high, „overspending”low, „thrifty”degeneracy

need to be stablemany times virtualintermediates

non-additive
(complex)

additive
(complicated)

parts & whole
self-organization, growsneeds designer inputdevelopment

high survivallow survivalunexpected changes

high (many
configurations)

lowdesignability

continuous
the whole only

one-time, parts
piece by piece

optimization

EvolutionEngineeringProperty
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Protein structure networks

Böde et al, FEBS Letters 581:2776 

• protein structure networks
• residue interaction network
• amino acid networks

How do we construct
a network from a 3D
image?



Protein structure networks

Vendruscolo et al: 
Phys. Rev. E. 65:061910 

hot hot spotsspots, , keykey residuesresidues
forfor protein protein foldingfolding::
hubshubs of of transitiontransition statestate

It is a small world
but not scale-free.
Why?



Csermely, TiBS 33:569

Key segments of protein structures
Cyt-P450
(CYP2B4)

Where do you
find key segments
besides hubs?

• anchor and latch residues
• bridges, central residues, hinges, 
discrete-breathers:
independent dynamic regions



Modules of Met-tRNA-synthase network
correspond to protein domains

Szalay-Bekő et al. Bioinformatics 28:2202
www.linkgroup.hu/modules.php



Szalay-Bekő et al. Bioinformatics 28:2202

Bridges of Met-tRNA-synthase network
identify signaling amino acids

Ghosh et al. PNAS 104:15711

signaling amino acids
(identified from MD cross-correlations)
other amino acids system dynamics

predicted from topology



Folding networks
in the ‘reality’

JMB 342, 299

20 AA 20 AA peptidepeptide
nodesnodes: : conformationsconformations
linkslinks: : transitionstransitions

Why is it good
that it is a small world?



CellularCellular networksnetworks

gene transcription
network

signaling
networks

membrane,
organelle
network

nucleus

cytoskeletal
network

metabolic
network protein-protein

interaction network



Protein Protein interactioninteraction networksnetworks

Science 302, 449

yeastyeast
C. elegans
Drosophila
humanhuman

• small-world, scale-free
(sampling, core)
• lethality: hubs, high
betweenness
• modules, herpes, etc.



DefinitionDefinition of proteinof protein--
protein protein interactioninteraction
networksnetworks

• nodes: proteins
• edges: physical interactions
• probability networks



Main Main databasesdatabases of proteinof protein--
protein protein interactioninteraction networksnetworks

best data are from yeast, C. elegans, Drosophila (see
Science cover photo) and humans

http://string-db.org/ genetic, high-throughput, coexpression
and text-mining data: v9, 5,214,234 proteins from 1133 organisms

http://thebiogrid.org/ curated data from literature: v3.1.82, 
288,588 edges



Main Main methodsmethods toto identifyidentify
proteinprotein--protein protein interactionsinteractions I.I.

binary methods (e.g. yeast
2-hybrid sytem, bait/prey + 
reporter gene expression
biased to nuclear proteins, 
false negatives due to
posttransl.modifications, etc.)



Main Main methodsmethods toto identifyidentify
proteinprotein--protein protein interactionsinteractions II.II.

co-complex methods
(e.g. affinity purification
+ mass spectrometry, 
other associating
proteins/washes, lost
weakly binding
preys/cross-links, etc.)



Main Main methodsmethods toto identifyidentify
proteinprotein--protein protein interactionsinteractions III.III.

• genetic interactions (may be indirect)
• co-expression data (may be indirect)
• text-mining (if well-curated, can be very
accurate)



AssessmentAssessment of of 
proteinprotein--protein protein interactioninteraction datadata

gold
standard

true
negativesresults

coverage false positives

new interactions
+ false positives



The low confidence
versus low affinity problem

results

Those results which are not confirmed by many
experiments, are not all low confidence, false

positives but may be true, but low affinity interactions



MetabolicMetabolic networksnetworks

Science 311, 1764

+ oxygen

- oxygen

• metabolites (nodes) 
+ enzymes (links)

• small-world (?), scale-free (?)
• lethality: depends on reaction, 
high betweenness
• symbionts



GeneGene transcriptiontranscription networksnetworks

E. coli and S. cerevisiae networks
Agoston et al. Phys Rev. E 71, 051909

• genes (nodes) 
+ transcription factors (links)

• derived from expression
profile sets
• similar expression profile: 
interacting proteins

yeastyeast 4% 4% trfactortrfactor
C. elegans 5
humanhuman 88



SignalSignal transductiontransduction networksnetworks

• signaling proteins (nodes) 
+ regulation (links)

• partial maps: kinome (kinases)

Bioinformatics 26:2042
BMC Syst. Biol. 7:7
www.SignaLink.org



CellCell organelleorganelle networksnetworks

• mitochondrial net (cardiomyocyte)
• chaperone-coupling (decoupling in stress)

BBA 1762, 232

Actin-net, PNAS 101, 9636



CellCell organelleorganelle networksnetworks inin stressstress
Science 337, 1052 & 1062

Why is this good?

stress
stress



NeuralNeural networksnetworks

Trends Cogn. Sci. 8, 418

• cat brain net: neurons
• human brain billion neurons
• sync

small world scale-free

modular



Networks of human neurons:
methods of network construction

10 billion neurons with
50-100 thousand contacts each

How many nodes &
links are in the human brain?

Reverse engineering:
figuring out the parts
from the whole

Nature Neuroscience 10:186



Memory-net:
Effect of context to

the accuracy of memory
• if you learn detoxicated, you should

drink before the exam
• alcoholics remember to hidden

liquor or money only
when detoxicated again
(Science, 163, 1358 –1969 –)

• divers, medical students etc.



GreaterGreater selfself--complexitycomplexity
buffersbuffers stressstress

More social dimensions + 
high stress result in

• less flu, backaches, headaches,
menstrual cramps

• less depression, mood-swings
Linville, J. Pers. Soc. Psych. 52, 663



WoodWood--widewide webweb
danger signals elicit
stress conditioning

Science 311, 812
mycorrhiza
100 m/g soil

roots

fungi



DolphinDolphin networksnetworks

Lusseau & Newman Proc. Roy. Soc 271:S477 -04-

small worlds, bridges, VIP-s



The ErdThe Erdőőss--netnet

509 co-authors of Pál Erdős 
(having an Erdős number of 1)
(Erdős number 2: >6984 persons)

Where is Erdős?



ErdErdőős is s is alreadyalready inin
anotheranother dimensiondimension......

Pál Erdős
1913-1996



TrafficTraffic networksnetworks

optimal US-traffic net with
increasing costs of flight changes

PRE 74:016117



DramaDrama--scenesscenes
Shakespeare: Shakespeare: TroilusTroilus and and CressidaCressida

weak links connect and 
stabilize the scenes
Stiller and Hudson, 
J. Cult. Evol. Psychol. 3, 57

social dimensions
social circles
catharsis – relaxation
congitive dimensions –
masterpieces



ImportantImportant
predictionspredictions

areare hubshubs

Raymond L. Johnson
Futures 36, 1095

„Some predictions are more interesting than others.”
„...not because they differ boldly from a consensus view
but because they relate to a number of other predictions
to form a web of interlinked expectations.”



ScientificScientific judgementsjudgements
areare notnot independentindependent

PNAS 103, 4940

optimistic universe: <5% false results
pessimistic universe: >90% false results



The The powerpower of of judgementsjudgements::
US US electionselections

competent:
winner

70% of cases
Science 308, 1623

not competent:
looser
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TopologicalTopological phasephase transitionstransitions::
The The importanceimportance of of resourceresource poorpoor
and and resourceresource richrich environmentsenvironments

resources
stress

co
m

pl
ex

ity

random
graph

scale-free
network

subgraphs

star network

Physica A 334, 583; PRE 69, 046117



Plasticity‐rigidity cycles
form a general

adaptation mechanism

Plasticity Rigidity

Csermely arxiv.org/abs/1511.01238

Example 2:
Adaptation of complex systems

resource
rich

resource
poor



learning
competent
(exploration)

memory
competent

(optimization)

rigid balanced plastic

effect of adaptation++

possibility of adaptation++

Gáspár & Csermely, Brief. Funct. Genom. 11:443
Gyurkó et al. Curr. Prot. Pept. Sci. 15:171
Csermely arxiv.org/abs/1511.01238

Example 2:
Adaptation of complex systems

rigid and plastic properties



ExampleExample 22:: MMolecularolecular mechanismsmechanisms
of protein of protein structurestructure optimizationoptimization

Todd et al, PNAS 93:4030
Csermely BioEssays 21:959
Lin & Rye, Mol. Cell 16:23

iterative annealing: 
pull/release of folding protein

Hsp60 chaperone

chaperone
cycle substrate

expansion
(rigid)

folded
substrate

(rigid)

push/release of 
extended peptide bonds
Bukau & Horwich
Cell 92:351

Hsp70 
chaperone

extended
peptide
bonds

unfolded
substrate
(plastic)

substrate
release
(plastic)

plastic: many
responses

rigid: few
responses



ExampleExample 3: 3: 
cellcell differentiationdifferentiation

Rajapakse et al., PNAS 108:17257

more rigid
rigid

plastic

progenitor
cells

differentiated
cells

plastic: many
responses

rigid: few
responses



rigid

plastic

rigid

Scientific
Reports
2:342; 813

phosgene inhalation-induced lung injury,
chronic hepatitis B/C, liver cancer

ExampleExample 4: 4: 
diseasedisease progressionprogression

plastic: many
responses

rigid: few
responses



ExampleExample 5: 5: 
cancercancer stemstem cellscells

Csermely et al., Seminars in Cancer Biology
doi: 10.1016/j.semcancer.2013.12.004

plastic: many
responses

rigid: few
responses



ExampleExample 66::
AnimalAnimal and human and human llearningearning

modular position of 
nodes in brain neuronal
network becomes more 
plastic than more rigid
during learning

Bassett et al. PNAS 108:7641

plasticity in previous
learning session
predicts the success of 
later learning session

plastic: many
responses

rigid: few
responses



Deregnaucourt et al Nature 433:710

Male bird synaptic plasticity alternates
(same kinetics of infant word learning) Lipkind et al Nature 498:104

Day et al Dev. Neurobiol. 69:796

song Wiener
entropy variance

Example 2:
Adaptation of complex systems

learning processes

Csermely arxiv.org/abs/1511.01238



blind
variation

selective
retention

Donald T. Campbell Dean Keith Simonton

brainstorming PDCA‐cycle OODA‐loop

Example 2:
Adaptation of complex systems

creativity

Csermely arxiv.org/abs/1511.01238



Rothaermel & Deeds, Strat. Mgmt. J. 25:201

in firm and product development
exploitationexploration

Example 2:
Adaptation of complex systems

learning organizations

Csermely arxiv.org/abs/1511.01238



Network-independent mechanisms
of plasticity-rigidy cycles

1. noise: reaching hidden attractors
coloured noise, node-plasticity

2. medium-effects: water, chaperones
membrane-fluidity, volume transmission
as neuromodulation, money

Socialism: shortage
economy rigid
Capitalism: surplus
economy plastic



• extended, fuzzy core
• fuzzy modules
• no hierarchy
• source-dominated

soft spots
lattice errors, where melting

starts creative nodes

rigidity seeds
rigidity promoting

nodes

• small, dense core
• disjunct, dense modules
• strong hierarchy
• sink-dominated

Ruths & Ruths, Science 343:1373; Csermely et al., Seminars in Cancer
Biology 30:42; Csermely, arxiv.org/abs/1511.01238

Example 4:
System resources determine network structure

properties of plastic/rigid networks



ApplicationsApplications 1: 1: AgingAging asas a a rigidityrigidity--shiftshift

• cognitive functions become more rigid
• fluid intelligence decreases
• practiced performance increases
• personality rigidity increases

Psychol. Aging 4:136
Intelligence 30:485

Handb. Phys. Aging 3:310

Gen. Soc. Gen. Psych. Monogr. 128:165

• epigenetic modifications genetic regulatory networks more rigid
(via system constraint increase)

• age of human cells is 99% predictable by their DNA methylation
Horvath, Genome. Biol. 14:R115

Sui Huang’s group arxiv.org/abs/1407.6117

Mendelsohn & Larrick, Rejuv. Res. 15:98

age-induced cognitive decline is
associated with epigenetic

decrease in synaptic plasticity



ApplicationsApplications 2: 2: EvolutionEvolution

variaton selection

"evolutionary adaptation proceeds by cycles of
exploration of a neutral network, and
dramatic diversity reduction as beneficial mutations
discover new phenotypes residing on new neutral networks"
Wagner, Nature Rev. Genet. 9:965

• in vitro tRNA evolution
• 3000 E. coli generations
• in vivo evolution of HIV-1 and H3N2 influenza viruses

Science 280:1451
Science 272:1802

J. Virol. 73:10489; Science 305:371; Science 314:1898



Csermely et al, Pharmacol & Therap 138: 333-408

Applications 3: Drug design strategies
for plastic and rigid cells

e.g.: antibiotics e.g.: rapamycin



ApplicationsApplications 3: 3: InterventionIntervention designdesign
1. plasticity-rigidity cycle boosting or freezing

Science 344:1392

2. targeting during cycle-induced attractor-change

Nature 461:53

‘windows of opportunity’
for successful intervention
close to bifurcation points

age-change: plasticity-personalized therapies



Plasticity Rigidity

Csermely arxiv.org/abs/1511.01238

Adaptation to gross changes of environment
need a transient, plastic phase triggering
the emergence of unpredictable nodes

Rigidity

Gross emergence of 
independent, unpredictable,

creative nodes: unrest



Gross changes of environment
trigger the emergence of unpredictable nodes

When a system becomes
jeopardized, its nodes (actors)
gain more ‘independence’



Gross changes of environment
trigger the emergence of unpredictable nodes

When our body becomes jeopardized, 
our 10 billion bacteria gain more independence



Plastic behaviour (unrest) is characterized by
exploration + unstability of the inner self



resource rich
expansion, plastic

AlternatingAlternating resourceresource poorpoor and and resourceresource richrich
periodsperiods buildbuild multimulti--layerlayer complexitycomplexity

resource-poor, 
survival, rigid

stability
isolation

specialization, long-
term cooperation

Self-
organization, 
environment
stabilzation

New
resources

Resource rich, 
expansion, 
plastic at a 

higher layer of 
hierarchy



NetworksNetworks and and stabilitystability

Part 6. Part 6. –– LearningLearning and and decisiondecision makingmaking
of of complexcomplex systemssystems, a , a hypothesishypothesis

http://linkgroup.hu
http://turbine.ai

csermelynet@gmail.com

Péter Csermely and
the Turbine team



Decision‐making of complex systems
key initial statements, I.

2. Learning develops
(or deepens) attractors

John Hopfield
PNAS 79:2554

• attractors of state space are developed
by a Hebbian process

• Hopfield-like attractor networks are used
as artificial intelligence – this needs
backpropagation to avoid flat attractors
Toulouse G et al PNAS 83:1695; Amit, D. J. (1989) 
Modeling brain function: The world of attractor neural 
networks. New York, NY: Cambridge University Press

Willam A. Little
Math. Biosci 19:101

1. Learning increases the
weight of edges involved

Hebb/Oja-rule (co-firing and weight increase
+ normalization; conformational memory of

unstructured proteins + signaling hysteresis)

Alexander 
Bain, 1874

Santiago 
Ramon y 

Cajal, 1894

Donald O. 
Hebb,1949

Erkki
Oja, 1982

Jerzy Konorski, 
1948

Carillo-Reid
et al, Science 

353:691



3. A few central nodes
make a network core

• most of nodes form the
network periphery

• core is evolutionary
conserved and shielded
from the environment

Csermely et al
J. Compl. Networks 1:93-123

4. Responses of complex systems
form a few attractors

Stuart Kauffman
Nature 224:177-8

attractors of T-LGL cancer cell
http://turbine.ai

• attractors of state space represent the
most important responses of complex systems

• attractors are determined by nodes of the
strongly connected component (core)
SIAM J Appl Dyn Syst 12:1997
PLoS Comp Biol 11:1004193; arxiv.1605.08415
J Dyn Diff Eq 25:563; J Theor Biol 335:130

Réka Albert

Decision‐making of complex systems
key initial statements, II.



We know a lot on complex networks.

We know a lot on their attractors.

We know surprisingly little, how
a complex system develops + encodes

a new attractor, when it needs
a new response in a new situation.

This lecture tries to give a generally
applicable answer to this question.

Decision‐making of complex systems
THE open question



fast and
strong
response

slow response requiring
the contribution of the whole
community (slow democracy)

Opinion leaders
have consensus

Opinion leaders
disagree

usual
information

new
information

Decision‐making of complex systems
fast and slow thinking of networks

Csermely arxiv.org/abs/1511.01239



PSD95 PDZ-domain protein; His76-Phe29 channel
core fast, anisotropic heat transfer
periphery (Tyr96)  slow heat diffusion

Ota and 
Agard
JMB 350:345

• other methods: anisotropic thermal diffusion; pump-probe molecular dynamics
(Proteins 65:347); evolutionary conserved sequences (Science 286:295)
• agrees well with experimental proofs
• valid in other proteins too (sequence analysis, NMR, molecular dynamics)

Adaptation is
encoded by

evolutionary selection!

Decision‐making of complex systems
Example 1A: protein heat transfer



a. Stiffest parts of subtilyzin have
‘discrete breathers’, which transfer energy between them

Piazza and Sanejouand
nonlinear elastic network model
EPL 88, 68001

femtosecond infrared laser pulses + ultrafast time-resolved IR spectroscopy
Nature Communications 5:3100

b. ‘ballistic’ heat transfer between albumin binding
sites without heating connecting amino acids

Decision‐making of complex systems
Example 1B: protein energy transfer



Allostery: direct response not evolutionary selection
a. allosteric activator of Pin1 increased microdomain
connectedness
b. ‘ballistic’ heat-transfer between albumin binding
sites is enhanced by its allosteric activator
Nat Commun 5:3100

Biophys J 108:2771

c. „allokairy”: higher substrate affinity after catalytic
cycle completion – relaxing later
PNAS 112:11430/11553; Sci. Rep. 6:21696

d. conformational memory: neuronal + evolutionary memory

Cell 157:163
Cell 167:369

Decision‐making of complex systems
Example 1C: allostery, conformational memory



a. metabolic networks can be divided to core-metabolism
+ environment-dependent periphery

Mar & Quackenbush
PLoS Comp. Biol. 5:e1000626

b. cell differentiation can be described by attractor change +
numerous environment-dependent trajectories

c. general and specific resilience (memory) of ecosystems
shows the same core/periphery duality

Decision‐making of complex systems
Example 1D: cellular networks, ecosystems



a. learning of Tritonia escape response
shifts periphery neurons to the core
Curr Biol 25:1

b. space learning of rat/mice hippocampus cells:
plastic (periphery) cells become rigid (core)
Science 351:1440; Science 354:459

c. memory retrieval activates core neurons, which were
preferentially connected in the learning process
Science 353:691; Nature 526:653

Decision‐making of complex systems
Example 2: brain



a. whole ant colonies solve complex tasks better than individuals
however, individuals solve simple tasks better than the colony
PNAS 110:13769

b. the elite of social networks forms a tightly connected, rigid core
whose mistakes are repaired by the social periphery
providing novel, creative solutions
Science 337:337; PRE 81:057103; Phys A 343:725; Nature 461:879

Decision‐making of complex systems
Example 3: social networks



Decision‐making of complex systems
A more detailed mechanism



a. nodes defining major attractors are part of the network core
(attractor-preserving network reduction deletes peripheral nodes; 
system controlling stable motifs and „minimal feedback vertex sets”
are parts of the strongly connected component)
SIAM J Appl Dyn Syst 12:1997; PLoS Comp Biol 11:1004193
J Dyn Diff Eq 25:563; J Theor Biol 335:130; arxiv.1605.08415

b. attractors are defined by different and overlapping core node sets
not all core nodes participate in the definition of attractors
(e.g. mediating nodes may not define attractors)

d. Hebbian learning may form/re-shape attractors by reconfiguring
the periphery and deepen attractors by reconfiguring the core

c. peripheral nodes define the size and shape of attractor
basins, but not their number and occupancy

Decision‐making of complex systems
hypothetical links to the initial comments



a. ‘creative nodes’ birdge distant network regions
Trends Biochem Sci
33:569

b. ” ... To create consists in not making useless 
combinations. Among chosen combinations the 
most fertile will often be those formed of 
elements drawn from domains which are far 
apart (Poincare, 1908)”

c. re-connection of social groups leads to more creative solutions
+ combination of topics mentioned seldom together brings more attention
PNAS 113:2982; PNAS 113:11823

Decision‐making of complex systems
Mechanisms 1: bridging distant network regions



Changing the direction of only one edge may be 
enough to change the controllability of networks
from centralized to distributed control (source sink,
positive negative, energy giving energy vampire)

Jia et al, Nat. Comm. 4:2002

rigid
plastic

1 plastic
rigid

3

2 energy is concentrated in rigid regions,
‘melts’ them, making them more plastic

Decision‐making of complex systems
Mechanisms 2: edge reversal



a. conflicts of network core are mediated by inter-hub bridges in
Twitter, telephone networks and fish schools
PNAS 112:4690; Nature 524:65

b. innovators are often the bridges connecting ‘early adopter’ hubs
(bridges are not bound by social norms + hubs are afraid to
change the status quo losing their priviledges no innovation) 
Science 337:49; Rogers: The Diffusion of Innovations

c. the new response is encoded by a new segment of the core,
which encodes a new system attractor
this may lead to the deletion of some of the old attractors (forgetting)

Decision‐making of complex systems
Mechanisms 3: core remodeling



a. [optimal response of simple systems (e.g. proteins) may be encoded by evolution]
b. [nodes of core and periphery may overlap]
c. the initial fast core response is often refined by the better/slow periphery
d. many complex systems may not find the best response to a new situation

(may become extinct and give way to successful members of the population)
e. the ‘wisdom of crowds’ may become the ‘madness of crowds’, this is

diminished by creative nodes
f.  the core may be super-rigid and super-slow bureaucracies
g. the core may consist of multiple parts (modular-cores)
h. learning and response-encoding may require multiple cycles

Decision‐making of complex systems
Possible limitations



Potential possible proofs
a. core and periphery of signaling networks is not clear yet
b. we do not have enough data on the periphery of neuronal nets
c. reconfiguration mechanisms of social network cores are not known

Possible applications
a. artificial intelligence, neural networks, deep-learning
(neuromorphic computing, layer-specific learning rates, etc.)
b. Internet (adaptable core, flexible periphery)
c. drug design (central hit/network influence methods)

PNAS 113:11441; Science 351:32; Pharm. Therap. 138:333

Decision‐making of complex systems
Possible proofs + applications



2. the core gives fast and efficient/reliable
responses to known situations

attractors of previously learned responses
are encoded by the network core1.

3. creative solutions of novel situations need
the experience of the network periphery too

4. democracy is NOT only a moral stance or
one decision making technique of the many
but our evolutionarily encoded ‘survival
recipe’ amidst unexpected challenges

Decision‐making of complex systems
Take home messages





NetworksNetworks and and stabilitystability

Part 7. Part 7. –– DrugDrug designdesign

http://linkgroup.hu
http://turbine.ai

csermelynet@gmail.com

Péter Csermely and
the Turbine team



Drug-related networks

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330



Disease network

1,284 diseases & 1,777 related genes
link between two diseases: if they have a common gene

Goh et al., PNAS 104:8685

deafness

blindnessparalysis

anemia

diabetes

cancer

epilepsy
+ mental

retardation obesity

stroke
Alzheimer’s

high blood pressure
atherosclerosis

asthma
Parkinson’s



Drug targets on the disease network

Yildirim et al., Nat. Biotech. 25:1119 



Diseasome network 1.

Menche et al., Science 347:841

disease-related proteins form overlapping
modules in the human interactome



Diseasome network 2.

Menche et al., Science 347:841

disease-related proteins form overlapping
modules in the human interactome



Placebome

Wang et al., JCI Insight 2:e93911

Placebo effects in various diseases



Drug network

Yildirim et al., Nat. Biotech. 25:1119 

1,178 drugs and 394 target-proteins
link between two drugs: 
if they have a common target

Small giant component:
follow-on drugs
(experimental drugs:
bigger giant. comp.
 diversity)



The reverse: drug target network

Yildirim et al., Nat. Biotech. 25:1119 

1,178 drugs and 394 target-proteins
Link between two target proteins:
if they have a common drug



Therapy-network

Nacher & Schwartz, BMC Pharmacol. 8, 5 

5 levels: 3rd level: 106 therapies & their 338 drugs
if a drug is used in 2 therapies (21%): the 2 therapies are linked
The top level is shown, circle size – number of therapies
Link-weight – number of common drugs



Prediction of drug binding sites in
protein structure networks

Nayal & Honig, Proteins 63:892

large but
shallow cavity

drug binding

18 cavity size & shape attributes:
machine learning (neural network)

Csermely, TiBS 33:569

Cyt-P450
(CYP2B4) How would you identify

here cavities?

structural holes:
missing links and nodes



Drug target crisis

New, active drug ingredients as expenditure increased

Drug targets

Human genome: ~30,000 genes
~100,000 proteins

Modifying ligands: 836 proteins
From this drug-like: 529
Approved: 394

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330



Drug target crisis

reverse Moore law



Classic and network
views of drug action

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330



Drug design strategies I.

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330



+ hit of intra-
cellular paths

Drug design strategies II.



Network-based drug target options

hubs hub-connections

overlapping elements bridges

Korcsmáros et al., Exp. Op. Drug Discov. 2:799



Overlapping nodes
as drug targets

Guimera et al., Bioinformatics 23:1616

E. coli metabolic network
(links: enzymes)
known drug targets:
• glmS (cell wall synthesis)
• pfs (quorum sensing blocker)
• ptsI (sugar uptake-metabolism) 



Drug design strategies I.

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330



AlloAllo--networknetwork drdruugsgs: : atomatom--levellevel
interactomeinteractome revealsreveals hiddenhidden targetstargets

Nussinov et al, Trends Pharmacol Sci 32:686 + hit of intra-
cellular paths



Distance of human disease
genes and drug targets

Yildirim et al, Nature Biotechnol. 25:1119

most drugs act via network-perturbation



Csermely et al, Trends Pharmacol Sci 26:178 + hit of intra-
cellular paths

Multi-target drugs



Multitarget drugs:
a non-negligible segment

Yildirim et al., Nat. Biotech. 25:1119 

Ma’ayan et al.,
Mt. Sinai J. Med. 74:27 



Multitarget drugs: 
more prevalent than thought

Csermely et al., Trends in Pharmacol. Sci. 26:178

• single target drugs: back-ups, robustness
• most drugs are multi-target drugs
• combinational therapies
• venoms, natural medicines: mixtures



Multitarget drug-types

conjugate
overlapping

pharmacofores

integrated
multi-target

drug

Korcsmáros et al., Exp. Op. Drug Discov. 2:799



Multitarget drugs: low affinity drugs

• smaller dose and toxicity
• smaller blockade of alternative pathways

• [more weak links: more stable cell]
Csermely et al., Trends in Pharmacol. Sci. 26:178

Csermely, Weak Links, Springer 2009

• proteins in overlapping modules with different functions
• single protein inhibition blocks multiple functions
• partial inhibition of many proteins blocks module/function



HowHow manymany partialpartial attacksattacks
cancan substitutesubstitute a a singlesingle fullfull attackattack??

Ágoston et al.,
Phys. Rev. E 71:051909

Model: E. coli and S. cerevisiae
gene transcription networks

5 3

4
2

19

6
7

8

10

E =  0,181
Exx =  0,104 
(57,5%)

Efficiency
)1(

1

,






NN
d

E ji ji  1 2 3 4 5 6 7 8 9 10  
1 - 1 3 2 3 3 2 3 2 1 1 
2 - - - - - - - - - - 2 
3 - - - - - - - - - - 3 
4 - 1 1 - 1 - - - - - 4 
5 - - - - - - - - - - 5 
6 - - - - - - - - - - 6 
7 - - - - - 1 - 1 - - 7 
8 - - - - - - - - - - 8 
9 - - - - - - - 1 - - 9 
10 - 2 2 1 2 2 1 2 1 - 10 

Latora and Marchiori
Phys. Rev. Lett. 87:198701

Attack measure:
network efficiency



Partial attack
types

Ágoston et al.,
Phys. Rev. E 71:051909

nodes links



PartialPartial knockknock--out of out of nodesnodes
substitutingsubstituting thethe most most neededneeded nodenode

partial KO   50% attenuation
E. coli (1) 4.2 5
S. Cerevisiae (1) 2.8 3
Ágoston et al., Phys. Rev. E 71:051909



distributed KO  distributed attn.
E. coli (72) 15 38
S. cerevisiae (18) 6 10

Partial knock-out of links
substituting the most needed node

Ágoston et al., Phys. Rev. E 71:051909



Multitarget drugs =
= target multiplicators

multi-target
drugs

drug targets today
(~500)

proteome
(25 to 100 thousand

proteins)

druggable
proteins
(3000)

potential
disease
targets
(1700)

novel drug target families

proteome

low
affinity

Korcsmáros et al, Exp. Op. Drug Discov. 2:799



Effects are specific

PNAS 104:13655

yeast interactome:
at least 20% changes

two-fold increase
(blue neighbors: decrease
green 2nd neighbors: increase)

yeast interactome

long-range
effects



Multitarget drug search by modular
analysis and multi-perturbation

originaloriginal targettarget--setset
‘‘perturbationperturbation centrescentres’’

interference regions: 
alternative target-set

www.linkgroup.hu/modules.php
Antal et al, Curr. Pept. Prot. Sci. 10:161



Drug development phases

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330


