Networks and stability

Part 1 — Network topology

http://linkgroup.hu Péter Csermely and

http:/lturbine.ai the Turbine team
csermelynet@gmail.com




www.weaklink.sote.hu/halozat.html

WEAK LINKS

o, =
& | Springer

Hungarian English
Vince Publisher, Budapest, 2005-2007 Springer, 2006-2009

www.weaklink.sote.hu/weakbook.html + Google




Information explosion
* data explosion
e connection explosion

,wWe are drowning in a sea of data
# and starving for knowledge”

Sydney Brenner, Nobel Lecture




Left - right hemisphere dominance +
the role of the unconsciousness

v'visual image
Gutenberg-galaxy right hemisphere
Enlightment v'emotions

left henmishpere subconsciousness




New synthesis: networks
v’ both visual and

v logical
Newest synthesis: subconscious + emotions...




Traditional view

(Paul Ehrlich’s magic bullet)




Recently changed view

100 effects




Networks may help!

major causes major effects




Occam’s razor
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”” ... plurality Is not to be
posited without necessity...”

William of Occam (1285-1349)
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Einstein’s razor

”” ... the supreme goal of all
theory Is to make the
Irreducible basic elements as
simple and as few as possible
without having to surrender the
adeguate representation of a
single datum of experience”

The Herbert Spencer Lecture
(1933)




1. problems of simplicity
Leibnitz, Newton

2. disorganized complexity
Boltzmann, Maxwell, Gibbs

3. organized complexity

g

Warren Weaver (1948)

natural social
sciences sciences

point, ﬁ identity,

node, context,
exact fuzzy




Definition of networks

* nodes: parts of the system
which have common properties
 edges: connections of nodes
(weighted, directed, signed, coloured)
Caution: Extreme data reduction!
— based on background knowledge




Emergent properties of
complex systems

emergent property: a property
which can not be predicted from
the properties of the parts

(e.g. life, consciousness, God)




Networks can break conceptual barriers

Networks have general properties
 small-worldness (6 degrees of separation)

* hubs (scale-free degree d1str1but10n)
Karinthy Watts/Strogatz
1998

* nested hierarchy | e
« stabilization by weak links 7

ool A [bert & Barabasi, 1999

w  Csermely, 2004

Generality of network properties offers
* judgment of importance
e innovation-transfer across different layers of complexity




Crisis-prevention in different systems:
example to break conceptual barriers

Early-warning signals for critical transitions

Marten Scheffer', Jordi Bascompte®, William A. Br_ock", Victor Brovkin®, Stephen R. Carpenter’, Vasilis Dakos',
Hermann Held®, Egbert H. van Nes', Max Rietkerk” & George Sugihara®

ecosystem, market, climate

* slower recovery from perturbations

* increased self-similarity of behaviour

* increased variance of fluctuation-patterns

Aging is an early warning signal
of a critical transition:

Prevention: elements

with less predictable behaviour
* omnivores, top-predators

» market gurus

* stem cells

Farkas et al., Science Signaling 4:pt3




Creative nodes
(as possible targets of anti-aging therapies)

Creative: few links to Why is such
hubs, unexpected re-routing, WE:RIEVI[]g
flexible, unpredictable creative?

Distributor: hub,
specialized to signal
distribution, predictable
Problem solver:
specialized to a task,
change of roles predictable
Csermely,
Nature 454:5
TiBS 33:569
TiBS 35:539




Structural holes

Robert: broker
James: looser

Ron Burt,
Structural holes,
Harvard Univ. Press 1992

Netocracy: continuous

networking - Obama
Bard-Soderquist




|
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Complementary networking strategies
* safety seeking (optimization)
 novelty seeking (exploration)

(seek the opinion leader,

seek the strange, seek openness,
jump to the next group)




Useful information comes
from a long distance

Mark Granovetter (1973)

Am. J. Sociology 78:1360  ® Y ou may get useful hints for your
jobs from distant acquaintances much
better than your relatives
* Why 1s this suprising?

* Why 1s this true?




Creative nodes are central and...

Cyt-P450
(CYP2B4)

drug-binding

Csermely,

Nature 454:5
TiBS 33:569
TiBS 35:539

Creative amino acids
* centre of residue-network
* in structural holes

Creative proteins
» stress proteins
* signaling switches

Creative cells
» stem cells
e OUr brain

Creative persons
* firms .
* societies mobile




Originality:
the highest level of creativity

> ... To create consists In not
making useless combinations.
Among chosen combinations
the most fertile will often be
those formed of elements drawn
from domains which are far

apart.”




Networks are embedded




Networks are embedded

protein-net




Networks are embedded

atomic-ne




Major classes of network topology

regular small-world scale-free




The Milgram-experiment

96 participants from Nebraska,
| target in Boston,

18 letter chains via friends
(first-name-basis)

MASKEPPEN
VAN

Psych. Today 1, 62; 1967 TS

Six degrees of separation

100°=>100 x

the total population Frigyes Karinthy
of the Earth (1929) Five degrees




60,000 participants,
166 countries, Rep eated

18 targets, .
384 email chains Milgram-

M experiments
www.livejournal.com

500,000 US participants,
500,000 trials

0.03
I
0.02
I

0.01 8
o

0 20 40 60 80

5 10 15 20
path length k

WWW.msn.com
18 million participants,
50 billion messages
6,6 degrees

p(l) (Probability)

0 5 10 15 20 25 30
|, (Path length in hops)




Expansion of the
small-world concept

Duncan Watts Steve Strogatz

high clustering coefficient
AND small characteristic path length
[grows ~logarithm of N (number of elements)]

general model

examples:
» C. elegans neurons
» US power grid

Nature 393, 440: 1998 e film actor collaboration net




Weighted & directed small worlds

Network efficiency (cost):
a weighted world can be small
even 1f the non-weighted 1s not

1
2,

Efficiency E=-—"1 "
N(N —

22122121 -
E= 0.181




Major classes of network topology

regular random small-world scale-free

/

the small world network gives
low cost global connections

Sporns et al. Trends Cogn Sci. 8, 418




Scale-free
degree
distribution

Laszlo Barabasi Réka Albert

degree-distribution
network model:
preferential attachment
' (Matthew-effect, Pareto-law)

MR ccncrality for actors, power grid, www
il Science 286, 509; 1999

P=ak (P probability, a constant, k degree, o exponent)

IgP =1ga — a Igk




Generality of scale-free distributions

link-strength Levy-flights

Nature 258, 317; 1975

fractals, architecture
town Size Zipf-law
rain, lightning, tic
sexual contacts

earthquakes,
Gutenberg-Richter law

science papers
Lotka-law

PNAS 92, 6689; 1995
Kohlrausch, 1854
Leiden-jars
cumulative wins
Bernoulli, 1738

www.lemar.tuwien.ac.at/modul23/Fractals




Expansion and dangers of
scale-free distributions

e must span many scales
(network must be large enough)

* a line can be fitted to many curves...
(log-normal, gamma, stretched exponential)

e cumulative plots are much better

» sampling bias

* unspecific data may cover real data

e distinct parts of networks are different

PNAS 102, 4221; 2005




Reasons behind
the generality of
scale-free distributions

e preferential attachment
 cumulative success of consecutive tasks
e self-organization of matter in the Universe
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Difficult questions of network studies

* Which are the important segments?

How can

How can I define groups within networks?
How can I judge, if two networks are similar?
I compare two evolving networks?
How can |
How can |

measure complexity?
influence the attractor occupancy

of dynamic networks 1n their state space?




wlmportant” network segments

local

* hubs

 central elements

* network skeleton

* modular structure

e core/periphery structure

global




P BT Wl o yeast
Date hubs and ¥ B
party hubs il iy

network

Han et al. Nature 430, &




Types of network centralities

local

* hubs (degree)

 closeness (sum of shortests paths to other nodes)

e community centrality (influence of all other nodes)

* betweenness (number of shortests paths through the node)

* h-index: node has x neighbors with degree x
global * node + neighbors adjacency matrix eigenvector
» PageRank: damped random walk (eigenvector
of the transition matrix, Google)
» subgraph centrality: closed walks starting and
ending on the same node
 information centrality: drop of graph performance
if removing the node
* ecosystems




Network skeleton (local, fractal nets)

food-chain renorm. WwWwWw renormalization
(energy-flow) (unbranched ends)

hierarchy: e.g.
transcription factors

Q)
)
]
@
A
]
®

Garlaschelli et al., Nature 423,165 Song et al., Nature 433,392




Network skeleton (mesoscopic, global)

network scientists email-net renorm.
(modules) (betwenness)

Kovacs et al., PLoS ONE 5, 12528 Guimera et al., PRE 68, 065103

www.linkgroup.hu/modules.php Kim et al., PRE 70, 046126
Arenas et al, EPJ B38, 373




Modules

Newman, SIAM Rev. 45, 167

modular nets
intermodular contacts
are suppressed

hierarchical net

intermodular contacts are
preferentially suppressed




Modules have a scale-free
size and degree distribution

www.arxiv.org/cond-mat
word-associations preferential attachment

yeast DIP protein network model of modules

Pollner et al., Europhys. Lett 73:478
Palla et al., Nature 435, 814

For size: Arenas et al.,
EPJ B38, 373




Modules need optimal overlap
(brain default-network)

overlap of active neuronal modules

child

adult:

usual
task

adult:

rest,
novel task

depression

schizophrenia

epilepsy

PNAS 104:13507
PNAS 105:4028

Science 315:393

PNAS 106:1279
PNAS 106:1942

PRL 104:118701




Modular overlaps
as keys of adaptation processes

novel
contacts

* focus on vital functions

 noise and damage localization

* modular independence: larger
response-space and better conflict
management

Szalay et al, FEBS Lett. 581:3675; Palotai et al, [IUBMB Life 60:10;
Mihalik & Csermely, PLoS Comput Biology 7:¢1002187




Intermodular bridges
are key nodes of regulation

inter-
modular
hub

/|

bottleneck

Csermely et al, Pharmacology & Therapeutics 183:333-408




Modular overlaps
are key determinants of regulation

Figure8: Corporations that have independent boards will @Figure 7@ Corporations that have inside boards will have
have strong CEOs weak CEOs

Mitchell, Brooklyn Law Rev. 70:1313




Why is it good if
a network has modules?

modules

e stop noise, damage and sync

e can evolve independently

* separate functions (induce diversity)

* allow sophisticated regulation by fringe areas




a.) extensively overlapping,
soft modules: random routes

b.) moderately overlapping
modules: converging routes

c.) non-overlapping, rigid
modules: saltatoric transduction

Csermely et al, Pharmacology & Therapeutics 183:333-408




How are modules formed?

integration parcellation
(symbiosis)

. host cell
a-proteobacterium /7 host Mitochondrion

.. 2
cyanobacterium chloroplast

Zachary’s charate club
administrator: circles

Instructor: squares
Girvan-Newman, PNAS 99,7821




Modules and nestedness

membrane-
-organelle
network




Modules versus bottom-networks

A module becomes a bottom-network, 1f
* we have many

* it 1s small

* it 1s structured

* it 1s separated

e it can live independently

* it has only a few constant links




Dense group in network center:
core-periphery networks

- core periphery
perlphery low variabilityl high variability/

high variability/ evolvability, more  evolvability, fewer
evolvability, fewer constraints, more constraints, 4

constraints, rigid, cooperates more plastic §
more plastic efficient » o

size: regulator (iexibviiity/control)
+ can be multiplied
in modular networks

H_/

figure represents the ,,bow-tie” structure of directed networks
»in” and ,,out” are combined in undirected networks

Csermely et al., J. Complex Networks 1:93-123




Major types of core-periphery networks I.

* protein structure networks

* interactomes

* metabolic, signaling, gene-regulatory networks
* Immune system, brain

* ecosystems

« animal and human social networks

* World-Wide-Web, Wikipedia

* Internet, power-grids, transportation networks

Yellow:
White:




Major types of core-periphery networks Il.

rich-club nested network onion network

Null-models (comparison to random networks) are important!




Rich clubs

hubs associate with hubs
(assortativity: social nets)

Zhou and Mondragon
IEEE Comm. Lett. 8:180

Scentific Loliaboration Network
LTS R L

Colizza et al.
Nature Physics 2:110




Talented(VIP)-club

1solated top rank associates with hubs

Masuda and Konno
Social Networks 28, 297
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Onion and wheel type networks

onion-networks: wheel-networks:

most robust scale-free networks core + periphery

against node removal terrorist + drug traffic networks
Schneider et al. PNAS 108:3838 Kenney 2008
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The usefulness of networks

signal — small world

noise-filter —
hubs and
modules noise, stress

Csermely: Weak Links, Springer




Network tasks: dissipation of noise and
response to signals

noise 1s bad:
* diseases, tumors
e error catastrophe




Noise is good:

stochastic resonance: extrinsic noise

StO ChaStiC resonance stochastic focusing: intrinsic noise

detection
threshold

high
noise

e rain calms rough seas (Reynolds, 1900)
* stochastic resonance: mechanoreceptors, hearing
 bone-growth, fish food finding 1s better




Stochastic resonance:
memory retrieval, pink noise, music

response time

difficult task 1/t pink noise

white noise
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s s

50 60 70 80 90 Soma et al, PRL 91, 078101

noiselevel (dB)

Usher & Feingold, Biol. Cybern. 83, L11-L16




Self-organized criticality: |- magnciization
(Barkhauser-effect)
our every-day avalanches ks

» ecarthquakes

* vulcano-eruptions
* forest-fires

» cracks

e crackling noise

* dipping faucets

* breath

* rain

e solar flares

* quazar emissions
e cultural changes

* innovations

Bak-Paczuski, PNAS 92, 6689

sand-pile avalanches |« continuously increasing tension

—> scale-free size + e partially restricted relaxation
event distribution | = gvalanche




Cascading failures

= Equipment damage
) = Tripping of equipment

March 13, 1989




Weak points in networks

scale-free networks
are resistant against failure
but are vulnerable to attacks

Albert et al Nature 406, 378




Topological phase transitions

scale-free

network
random

aranh
5 0
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Physica A 334, 583; PRE 69, 046117




Topological phase transitions
— other examples

* cells scale-free = star = apoptosis
e animals: random -2 scale-free [ star]

e firm consortia random -2 scale-free = star
» scientific quotations random > scale-free

» communistic equality = social classes =2
dictatorships = war, anarchy




Sync

longitude determination *
pendulum clock
synchrony

Huygens, 1665




Sync: other examples

cricket
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Nature 431, 646

clapping
Nature 403, 849

yawning, laugh

menstruation
Nature 229, 244: 392, 177

syphilis

Nature 433,417
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Sync conditions

syntalansis

sync

 small-world 1
e modules |

e scale-free |

* weights 1

» weak links 1




Differences between engineering and evolution

Property

Engineering

Evolution

development

needs designer input

self-organization, grows

parts & whole

additive
(complicated)

non-additive

(complex)

optimization

one-time, parts

piece by piece

continuous
the whole only

optimized parameters

few

many

many times virtual

need to be stable

low

high (many
configurations)

1solated (?), have low
complexity

not isolated, but many
times independent,
complex

low, ,,thrifty”

high, ,,overspending”

low survival

high survival
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Protein structure networks

e protein structure networks
e residue interaction network
e amino acid networks

How do we construct
a network from a 3D
image”?

Bode et al, FEBS Letters 581:2776




Protein structure networks

It is a small world
but not scale-free.
Why?

hot spots, key residues
for protein folding:
hubs of transition state




Key segments of protein structures

Cyt-P450
(CYP2B4)

Where do you
find key segments
besides hubs?

Csermely, TiBS 33:569 « anchor and latch residues
* bridges, central residues, hinges,
discrete-breathers:
iIndependent dynamic regions




Modules of Met-tRNA-synthase network
correspond to protein domains

AZ: Lys282-5er265
. A1l: Leu519-GIn517
influence

Al: Serl25-llel12d
ones

N

R T

' MettRMA-synthase

B

c
3
E
E

ntralit

. - ., |I
.
= |
Ce rminal.- ) -:-::|1|1_E-:ti|1_F| peptide
anticodon-binding domain (CF} domain

Wet-tRNA

first hierarchical lewel second hiemrchical level

Szalay-Beko et al. Bioinformatics 28:2202
www.linkgroup.hu/modules.php




Bridges of Met-tRNA-synthase network
identify signaling amino acids

Ghosh et al. PNAS 104:15711

(identified from MD cross-correlations)

other amino acids .
system dynamics

Szalay-Bekd et al. Bioinformatics 28:2202 predicted from topology




Folding networks
in the ‘reality’

Why is it good
that it is a small world?

20 AA peptide
nodes: conformations
links: transitions

JMB 342,299




Cellular networks

membrane,
organelle
network

gene transcription
network

interaction network




Protein interaction networks

yeast
iy o 8 C. elegans

wa® @ Drosophila

iy

o oume s human

(large subunif) _
W Cylo. ribosome

o : - (large subunit)
(smal subund®) _ymapp - » small-world, scale-free
TFIH g fi+ommporibe (sampling, COre)
e lethality: hubs, high
betweenness

Science 302, 449 » modules, herpes, etc.




Definition of protein-
protein interaction
networks

 nodes: proteins
* edges: physical interactions
e probability networks




Scienice

Main databases of protein-
protein interaction networks

best data are from yeast, C. elegans, Drosophila (see
Science cover photo) and humans

http://string-db.org/ genetic, high-throughput, coexpression
and text-mining data: v9, 5,214,234 proteins from 1133 organisms

http://thebiogrid.org/ curated data from literature: v3.1.82,
288,588 edges




Main methods to identify
protein-protein interactions lI.

binary methods (e.g. yeast
2-hybrid sytem, bait/prey +
reporter gene expression
biased to nuclear proteins,
false negatives due to
posttransl.modifications, etc.)




Main methods to identify
protein-protein interactions lIl.

co-complex methods
(e.g. affinity purification
+ mass spectrometry,
other associating
proteins/washes, lost
weakly binding
preys/cross-links, etc.)




Main methods to identify
protein-protein interactions lll.

* genetic interactions (may be indirect)
 co-expression data (may be indirect)

* text-mining (if well-curated, can be very
accurate)




Assessment of
protein-protein interaction data

new interactions
+ false positives

gold
standard

coverage false positives




The low confidence
versus low affinity problem

Those results which are not confirmed by many
experiments, are not all low confidence, false
positives but may be true, but low affinity interactions




Metabolic networks

Science 311, 1764

» metabolites (nodes)

+ enzymes (links)
» small-world (?), scale-free (?)
» lethality: depends on reaction,
high betweenness
 symbionts




Gene transcription networks

* genes (nodes)

+ transcription factors (links)
* derived from expression
profile sets
* similar expression profile:
interacting proteins

yeast 4% trfactor
C. elegans )
human 8




C. elegans

D. melanogaster

Signal transduction networks

pathways

Cross-talk between

pathway sections

* signaling proteins (nodes)
+ regulation (links)
» partial maps: kinome (kinases)

Bioinformatics 26:2042
BMC Syst. Biol. 7:7
www.Signalink.org




Cell organelle networks

» mitochondrial net (cardiomyocyte)
* chaperone-coupling (decoupling in stress)

— — Actin-net, PNAS 101, 9636




Cell organelle networks in stress

Complementation of mitochondrial function by fusion

Science 337, 1052 & 1062

Fusion is stimulated oY . "
ooy emers (R Why is this good?

-+

e
Fission generates
new organelles
and facilitates
quality control

=DRP1
*MFN2
@ Bax oligomers
sytc

Mitachondria |

_— stress

Parkin-induced ER mitochondrial contact
mitophagy

miDNA mutation
tROS
Ay

Debris . S ) Mitophagy I v 10
segregation _y Pink 1 ]

~—) f‘ = Vil accumulation R domain

Parkin f/ ER-mediated
recruitment mitachondrial constriction

~3

Sov
af p Mitochondrial

maintenance
Damage
accumulation Autophagosoma

Autophagosome

UPS =-— p37-<+—  Min-Ub

MOMP (cell death)




Neural networks

small world scale-free

Trends Cogn. Sci. 8, 418

e cat brain net: neurons
* human brain billion neurons
i

modular




Networks of human neurons:
methods of network construction

How many nodes &
links are in the human brain?

Histological or T . 2 Time series data
imaging data | i g \

Ty ﬂ”“rﬂ.'lﬂ‘-'lldluﬂrlll"‘l[‘ o ]I_I-J'll‘-..“\

10 billion neurons with
50-100 thousand contacts each

'\||i"'\ _\""“x-‘UlIiir\.-‘"\‘l'xll!l"ll.-_.f'hIWW LA

Reverse engineering:

figuring out the parts
from the whole

-y
vy ¥
o3 :
b e Cie

Graph theoretical analysis

Nature Neuroscience 10:186




Memory-net:
Effect of context to
the accuracy of memory

* if you learn detoxicated, you should
drink before the exam

* alcoholics remember to hidden
liquor or money only

when detoxicated again
(Science, 163, 1358 —1969 -)

 divers, medical students etc.




Greater self-complexity
buffers stress

More social dimensions +
high stress result in

e less flu, backaches, headaches,
menstrual cramps

* less depression, mood-swings

Linville, J. Pers. Soc. Psych. 52, 663




Wood-wide web

danger signals elicit
stress conditioning

mycorrhiza
100 m/g soil Science 311, 812




Dolphin networks

Lusseau & Newman Proc. Roy. Soc 271:S477 -04-
small worlds, bridges, VIP-s




The Erdos-net

509 co-authors of Pal Erdds
(having an Erdds number of 1)




Erdos is already in
another dimension...

Pal Erdos
1913-1996




Traffic networks

5=08

Kansas City. MO

PRE 74:016117 . .
optimal US-traffic net with

increasing costs of flight changes




Drama-scenes
Shakespeare: Troilus and Cressida

weak links connect and
stabilize the scenes

social dimensions
social circles

o catharsis — relaxation
congitive dimensions —
masterpieces




Important
predictions
are hubs

Raymond L. Johnson
Futures 36, 1095

,,Some predictions are more interesting than others.”
,,...not because they differ boldly from a consensus view
but because they relate to a number of other predictions
to form a web of interlinked expectations.”




Scientific judgements
are not independent

Interpretations

Publications (
1
{
d

Experiments

( B G
Researchers 45:- ’ i’\* > o
A

optimistic universe: <5% false results
pessimistic universe: >90% false results




The power of judgements:
US elections

competent:
winner

not competent: k8
looser
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Topological phase transitions:
The importance of resource poor
and resource rich environments

star network
&

scale-free

network
random subgraphs

aranh
&

>

e
X

<
o
£
o
(3]

&
P e

b

Physica A 334, 583; PRE 69, 046117




Example 2:
Adaptation of complex systems

-
resource ‘ N resource
rich @ X Rigidity poor

Plasticity-rigidity cycles
form a general
adaptation mechanism

Csermely arxiv.org/abs/1511.01238




Example 2:

Adaptation of complex systems
rigid and plastic properties

”‘ iN ”" ) ‘ .,

rigid balanced plastic

Gaspar & Csermely, Brief. Funct. Genom. 11:443

Gyurko et al. Curr. Prot. Pept. Sci. 15:171

learning .
competent Csermely arxiv.org/abs/1511.01238

(exploration)

memory

G competent

(optimization)




Example 2: Molecular mechanisms
of protein structure optimization

Hsp60 chaperone

folded
substrate o’ substr.ate
(rigid) & : (plastic)
#% | 5 chaperone »
k. cycle

unfolded

substrate
substrate expansion
release [ADP-SP-ESTy 4 3’ E f‘—ATPAs (rlgld)
(pIaStiC) i B Atp.spes FPLR

242

chaperone
iterative annealing:

JRWIGIEEREY plastic: many
pull/release of folding protein DACH e NeZToly Fesponses
Csermely BioEssays 21:959 rigid: few
responses




Example 3:
cell differentiation

more rigid
progenitor e Lo differentiated

.-':"___

Al oy

——

P lastic

Time

Fig. 3. Dynamics of order during cell specialization.YWhen a progenitor com-
mits to either the erythroid {black) or the neutrophil lineage {blue), thereisa
concomitant increase in order, eventually stabilizing at a level greater than
that of the original multipotent progenitor {7).

plastic: many
responses

rigid: few
responses




Example 4.
disease progression

Detecting early-warning signals for
sudden deterioration of complex
diseases by dynamical network
biomarkers

Luonan Chen'?, Rui Liv?, Zhi-Ping Liv', Meiyi Li' & Kazuyuki Aihara®

/ \
Normal
State

Pre-disease
State

Disease
State

Potential

mmm High correlation
Medium correlation

Disease state
Low correlation

High deviation Low deviation

phosgene inhalation-induced lung injury,
chronic hepatitis B/C, liver cancer

plastic: many
responses

rigid: few
responses




Example 5:
cancer stem cells

cancer stem cell
plastic network

stressors
hypoxia
inflammation
senescence
therapy
* proliferative * guiescent
* symmetric cell division * asymmetric cell division
* |ess-invasive * more-invasive

Csermely et al., Seminars in Cancer Biology WFEEilo3l11T:11)\% rigid: few
doi: 10.1016/j.semcancer.2013.12.004 responses responses




Example 6:
Animal and human learning

e
s [=]
=
wn

modular position of
nodes in brain neuronal
network becomes more
plastic than more rigid
cerpeaaerp=a  during learning

Change in Flexibility ¥y

plasticity in previous
learning session
predicts the success of
later learning session

Learning

I 0.04
Flexibility

plastic: many rigid: few
responses responses




Example 2:

Adaptation of complex systems
learning processes

song Wiener
entropy variance

Male bird synaptic plasticity alternates
(same kinetics of infant word learning)
Csermely arxiv.org/abs/1511.01238




Example 2:

Adaptation of complex systems
creativity

Donald T. Campbell
A1

Applwd

Imagumn()n

PRINCIPLES AND PROCEDURES OF
CREATIVE PROBLEM-SOLVING

brainstorming PDCA-cycle OODA-loop

Csermely arxiv.org/abs/1511.01238




Example 2:

Adaptation of complex systems
learning organizations

MANCY M DIXOMN

']—Fm . . ] u ]
== exploitation

In firm and product development

Houw we can learn

SECOND EDITIOMN

Csermely arxiv.org/abs/1511.01238




Network-independent mechanisms
of plasticity-rigidy cycles

1. noise: reaching hidden attractors
coloured noise, node-plasticity

2. medium-effects: water, chaperones
membrane-fluidity, volume transmission
as neuromodulation, money

DYNAMISM, L : . .

B 2 - | Socialism: shortage
"Economy RE < economy - rigid
QN T : : -

&5 Capitalism: surplus
'-Q"

economy —> plastic
JANOS KORNAI




Example 4:

System resources determine network structure
properties of plastic/rigid networks

plastic network

soft spots

lattice errors, where melting
starts creative nodes

rigidity seeds
rigidity promoting
nodes

 extended, fuzzy core * small, dense core

« fuzzy modules » disjunct, dense modules
* no hierarchy * strong hierarchy

» source-dominated  sink-dominated

Csermely et al., Seminars in Cancer
Biology 30:42; Csermely, arxiv.org/abs/1511.01238




Applications 1: Aging as a rigidity-shift

* cognitive functions become more rigid
» fluid intelligence decreases

* practiced performance increases

* personality rigidity increases

* epigenetic modifications - genetic regulatory networks more rigid
(via system constraint increase)

 age of human cells is 99% predictable by their DNA methylation

age-induced cognitive decline is
associated with epigenetic
decrease In synaptic plasticity

Mendelsohn & Larrick, Rejuv. Res. 15:98




Applications 2: Evolution

=
\ selection

"evolutionary adaptation proceeds by cycles of
exploration of a neutral network, and

dramatic diversity reduction as beneficial mutations
discover new phenotypes residing on new neutral networks"




Applications 3: Drug design strategies

for and

The central hit strategy:
to kill rapidly growing cells
having flexible networks
with large dissipation

fchoke point targeting]»** o

specific, high
centrality node

e.g.: antibiotics

Csermely et al, Pharmacol & Therap 138: 333-408

cells

The network

influence strategy:
for differentiated cells
having rigid networks
with small dissipation

[central node hit causes

overioad. side effects

& foxicity]

- multiple targets

+ allonetwork drugs
e.g.: rapamycin




Applications 3: Intervention design

1. plasticity-rigidity cycle boosting or freezing

/

Screening for noise in gene
expression identifies drug synergies

by Ol =

" Noise enhancers reactivated latent cells
significantly better than existing best-in-class reactivation drug combinations (and ——
with reduced off-target cytotoxicity), whereas noise suppressors stabilized latency. Ko

age-change: plasticity-personalized therapies

2. targeting during cycle-induced attractor-change

Low resilience

‘windows of opportunity’
for successful intervention
close to bifurcation points




Adaptation to gross changes of environment
need a transient, plastic phase triggering
the emergence of unpredictable nodes

Rigidity == @ m=  Rigidity

Gross emergence of
independent, unpredictable,
creative nodes: unrest

Csermely arxiv.org/abs/1511.01238




Gross changes of environment
trigger the emergence of unpredictable nodes

PAUL HAVWKERMN

v ,__._.}..
3?;*-* fi When a system becomes

S

IEEEERRPRLLEl jeopardized, its nodes (actors)
gain more ‘independence’




Gross changes of environment
trigger the emergence of unpredictable nodes

Rézsa et al. Biology Direct

DOl 10.1186/513062-014-0034-5 B | o I (o) g y D i re Ct

HYPOTHESIS Open Access

The microbiome mutiny hypothesis: can our
microbiome turn against us when we are old or
seriously ill?

Lajos Rézsa'?, Péter Apari™® and Viktor Mller®™*

When our body becomes jeopardized,
our 10 billion bacteria gain more independence




Plastic behaviour (unrest) is characterized by
exploration + unstability of the inner self




Alternating resource poor and resource rich
periods build multi-layer complexity

resoqrce-p.oqr, 1 —
survival, rigid &

resource rich specialization, long-
expansion, plastic term cooperation

\,@

Resource rich,

. \ \
i (@ @D P —
plastic at a

higher layer of Self-
hierarchy @ organization,
environment

stabilzation




Networks and stability

Part 6. — Learning and decision making
of complex systems, a hypothesis

http://linkgroup.hu
http://turbine.ai
csermelynet@gmail.com

Péter Csermely and
the Turbine team




Decision-making of complex systems
key initial statements, I.

1. Learning increases the
weight of edges involved

"2l

Santiago Jerzy Konorski
Alexander Roan y1948 ]

Bain, 1874  cajal, 1894

Carillo-Reid
et al, Science
353:691

Hebb/Oja-rule (co-firing and weight increase
+ normalization; conformational memory of
unstructured proteins + signaling hysteresis)

Donald O. Erkki
Hebb,1949  Oja, 1982

2. Learning develops
(or deepens) attractors

John Hopfield
PNAS 79:2554

Willam A. Little
Math. Biosci 19:101
» attractors of state space are developed
by a Hebbian process
» Hopfield-like attractor networks are used
as artificial intelligence — this needs
backpropagation to avoid flat attractors

Toulouse G et al PNAS 83:1695; Amit, D. J. (1989)
Modeling brain function: The world of attractor neural
networks. New York, NY: Cambridge University Press




Decision-making of complex systems
key initial statements, Il.

3. A few central nodes 4. Responses of complex systems
make a network core form a few attractors

Szalay Kristof

L .

Stuart Kauffman attractors of T-LGL cancer cell
* most of nodes form the Nature 224:177-8 httpl/turblne ai

network periphery

* core is evolutionary
conserved and shielded
from the environment

» attractors of state space represent the
most important responses of complex systems
« attractors are determined by nodes of the
Coo TN strongly connected component (core)
yeta

J. Compl. Networks 1:93-123 SIAM J Appl Dyn Syst 12:1997
PLoS Comp Biol 11:1004193; arxiv.1605.08415

J Dyn Diff Eq 25:563; J Theor Biol 335:130
Réka Albert |1




Decision-making of complex systems
THE open question

We know a lot on complex networks.

We know a lot on their attractors.

We know surprisingly little, how
a complex system develops + encodes
a new attractor, when it needs
a new response in a new situation.

This lecture tries to give a generally
applicable answer to this question.




Decision-making of complex systems
fast and slow thinking of networks

Opinion leaders
have consensus

Opinion leaders
disagree

THIE]

information information

fast and
strong
response

Pritoirr e g i SIOW response requiring
THE WISDOM the contribution of the whole

OF CROWDS community (slow democracy)
JAMES

SUROWIECKI

Csermely arxiv.org/abs/1511.01239




Decision-making of complex systems
Example 1A: protein heat transfer

2ps RIS

2 P

Adtatin IS
encoded by

evolutionary selection!

Ota and
Agard
JMB 350:345

PSD95 PDZ-domain protein; His76-Phe29 channel
core - fast, anisotropic heat transfer
periphery (Tyr96) - slow heat diffusion

 other methods: anisotropic thermal diffusion; pump-probe molecular dynamics
(Proteins 65:347); evolutionary conserved sequences (Science 286:295)

- agrees well with experimental proofs
« valid in other proteins too (sequence analysis, NMR, molecular dynamics)




Decision-making of complex systems
Example 1B: protein energy transfer

Transfer to
y VAL 177
Passage site e,
ALA 8BS

Kick at

LEU 42 Piazza and Sanejouand

nonlinear elastic network model
EPL 88, 68001

a. Stiffest parts of subtilyzin have
‘discrete breathers’, which transfer energy between them

b. ‘ballistic’ heat transfer between albumin binding

sites without heating connecting amino acids

femtosecond infrared laser pulses + ultrafast time-resolved IR spectroscopy
Nature Communications 5:3100




Decision-making of complex systems
Example 1C: allostery, conformational memory

Allostery: direct response not evolutionary selection
a. allosteric activator of Pin1 increased microdomain
connectedness Biophys J 108:2771

b. ‘ballistic’ heat-transfer between albumin binding

sites is enhanced by its allosteric activator
Nat Commun 5:3100

NP — c. ,allokairy”: higher substrate affinity after catalytic
BCRENC Cycle completion — relaxing later
PNAS 112:11430/11553; Sci. Rep. 6:21696

[[Te)

[el]
e\\ /i%
[o][o]

d. conformational memory: neuronal + evolutionary memory

Cell 157:163
| Cell 167:369

COMMENTARY

PRION PROTEINS AS MEMORY MOLECULES: AN
HYPOTHESIS

P. TOMPA* and P. FRIEDRICH




Decision-making of complex systems
Example 1D: cellular networks, ecosystems

a. metabolic networks can be divided to core-metabolism
+ environment-dependent perlphery

The Activity Reaction Core and Plastic
of Metaboilc Networks

Chance and necessity in the evolution of minimal
metabolic networks

Csaba Pal'*, Balizs Papp™, Martin ). Lercher', Péter Csermely’, Stephen G. Oliver’ & Laurence D. Hurst'

Attractor Metabolic Networks

lidefonso M. De la Fuente' ™", Jesus M. Cortes’, David A. Pelta®, Juan Veguillas'

b. cell differentiation can be described by attractor change +
numerous environment-dependent trajectories

Mar & Quackenbush
PLoS Comp. Biol. 5:e1000626

c. general and specific resilience (memory) of ecosystems
shows the same core/peri phery duallty

.ologlca] memory as a source of general and specified resilience
[ «If .".'i."




Decision-making of complex systems
Example 2: brain

a. learning of Tritonia escape response

shifts periphery neurons to the core
Curr Biol 25:1

b. space learning of rat/mice hippocampus cells:
THINKIN G, plastic (periphery) cells become rigid (core)
ST STow Science 351:1440; Science 354:459
a:"’j,‘l” c. memory retrieval activates core neurons, which were
TAHNEN preferentially connected in the learning process

Science 353:691; Nature 526:653




Decision-making of complex systems
Example 3: social networks

a. whole ant colonies solve complex tasks better than individuals
however, individuals solve simple tasks better than the colony

PNAS 110:13769

b. the elite of social networks forms a tightly connected, rigid core
whose mistakes are repaired by the social periphery
providing novel, creative solutions

Science 337:337; PRE 81:057103; Phys A 343:725; Nature 461:879

Rediscovering

THE WISDOM

OF CROWDS rowee of 1ot crows o S | oW
SUROWIECKI ctec@2e = | @ o | W o sswosen renchont

CROWDSOURCING




Decision-making of complex systems
A more detailed mechanism

A. Stimulus is compatible
with a previously set attractor
of the network core
|| — S
stimulus i
transferred fast |

Scenario 1:

pre-set response of some
core nodes is activated
transferring the system
to its respective attractor

fast
system response

B. Stimulus is incompatible
with previously set attractors
of the network core

10

stimulus
provokes
conficting

Scenario 2:

system fluctuates
between attractors +
stimulus propagates

system response

C. Repeated stimuli set
a new attractor using
the conftribution of
the network periphery

Scenario 3:
repeated stimuli
reconfigure the
network core
encoding a new
system attractor

repeated
stimuli

emerging novel
system response




Decision-making of complex systems
hypothetical links to the initial comments

a. nodes defining major attractors are part of the network core
(attractor-preserving network reduction deletes peripheral nodes;
system controlling stable motifs and ,minimal feedback vertex sets
are parts of the strongly connected component)

SIAM J Appl Dyn Syst 12:1997; PLoS Comp Biol 11:1004193
J Dyn Diff Eq 25:563; J Theor Biol 335:130; arxiv.1605.08415

b

. attractors are defined by different and overlapping core node sets
not all core nodes participate in the definition of attractors
(e.g. mediating nodes may not define attractors)

. peripheral nodes define the size and shape of attractor
basins, but not their number and occupancy

. Hebbian learning may form/re-shape attractors by reconfiguring
the periphery and deepen attractors by reconfiguring the core




Decision-making of complex systems
Mechanisms 1: bridging distant network regions

a. ‘creative nodes’ birdge distant network regions

Creative elements: network-based Trends Biochem Sci
predictions of active centres in proteinsgErs;
and cellular and social networks

Peter Csermely

b.” ... To create consists in not making useless
combinations. Among chosen combinations the
most fertile will often be those formed of
elements drawn from domains which are far
apart (Poincare, 1908)”

c. re-connection of social groups leads to more creative solutions
+ combination of topics mentioned seldom together brings more attention

PNAS 113:2982; PNAS 113:11823




Decision-making of complex systems
Mechanisms 2: edge reversal

Changing the direction of only one edge may be
enough to change the controllability of networks
from centralized to distributed control (source - sink,
positive = negative, energy giving = energy vampire)

O Redundant Distributed
Intermittent

Jia et al, Nat. Comm. 4:2002




Decision-making of complex systems
Mechanisms 3: core remodeling

a. conflicts of network core are mediated by inter-hub bridges in
Twitter, telephone networks and fish schools
PNAS 112:4690; Nature 524:65

b. innovators are often the bridges connecting ‘early adopter’ hubs
(bridges are not bound by social norms + hubs are afraid to

change the status quo losing their priviledges = no innovation)
Science 337:49; Rogers: The Diffusion of Innovations

c. the new response is encoded by a new segment of the core,
which encodes a new system attractor
this may lead to the deletion of some of the old attractors (forgetting)




Decision-making of complex systems
Possible limitations

a. [optimal response of simple systems (e.g. proteins) may be encoded by evolution]

b. [nodes of core and periphery may overlap]
. the initial fast core response is often refined by the better/slow periphery
. many complex systems may not find the best response to a new situation

(may become extinct and give way to successful members of the population)
. the ‘wisdom of crowds’ may become the ‘madness of crowds’, this is
diminished by creative nodes
. the core may be super-rigid and super-slow - bureaucracies
. the core may consist of multiple parts (modular-cores)
. learning and response-encoding may require multiple cycles




Decision-making of complex systems
Possible proofs + applications

Potential possible proofs

a. core and periphery of signaling networks is not clear yet

b. we do not have enough data on the periphery of neuronal nets

c. reconfiguration mechanisms of social network cores are not known

Possible applications

a. artificial intelligence, neural networks, deep-learning
(neuromorphic computing, layer-specific learning rates, etc.)
b. Internet (adaptable core, flexible periphery)

c. drug design (central hit/network influence methods)

PNAS 113:11441; Science 351:32; Pharm. Therap. 138:333




Decision-making of complex systems
Take home messages

attractors of previously learned responses
are encoded by the network core

the core gives fast and efficient/reliable
responses to known situations

creative solutions of novel situations need
the experience of the network periphery too

democracy is NOT only a moral stance or
one decision making technique of the many
but our evolutionarily encoded ‘survival
recipe’ amidst unexpected challenges




“Itis not the strongest of the spec
survive, nor the most intelligent, but the

one most responsive to change”
- Charles Darwin




Networks and stability

Part 7. — Drug design

http://linkgroup.hu
http://turbine.ai
csermelynet@gmail.com

Péter Csermely and
the Turbine team




Drug-related networks

& environment 3

diseases Y theraples

o+ | \c

e ey P e I )
( Hisease genes: - drug targets ,,___fjia A ]

gene ontology -

~ transcriptome
“_cistrome/epigenome _~ e

(interactome)

e gy
& signaling ™,

-
(metabolome)
o —f
(publications)

—_

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330




Disease network

a4 Human Discase Network .« ® ¢ ﬂ. .

M T3 L ° deafness

b L3 «® o ..'..‘

= & "-_"'..l}'c. = . ..D = 1
: C'- T.': » "| paralysis l:. ) bllndness

= ‘@ 'y - @ .

3 =
“ .*::- . ﬁ. _._
- dlabetes| é. , stroke
L ® .

epilepsy 3 ] o Alzheimer’s
+ mental B sone . GEE D Zik - 4high blood pressure

retardation | B O T e~ o --| atherosclerosis
- & ' asthma
Parkinson’s

anemia

Goh et al., PNAS 104:8685

1,284 diseases & 1,777 related genes
link between two diseases: if they have a common gene




Yildirim et al., Nat. Biotech. 25:1119




Diseasome network 1.

J KIFLB(™ ; A1 :
pHxie@y T~ L] S e
o Jnacth | C :

mﬂi“ @ Multiple sclerosis (MS)
FVIYA® @ Peroxisomal disorders (PD)
Rheumatoid arthritis (RA)

disease-related proteins form overlapping
modules in the human interactome




Diseasome network 2.

CARDIOVASCULAR DISEASES
o Myocardial ischemia

G W dial infarction
o Coronary artery disease
e Cerebrovascular disorders

CORONARY
ARTERY DISEASE

CELIAC
ASTHMA DISEASE

ATHEROSCLEROSIS

BILIARY 4
TRACT DISEASES | N \ HEPATIC
< ' CIRRHOSIS

ASTHMA

ASTHMA . CELIAC DISEASE

Menche et al., Science 347:841

RESPIRATORY TRACT DISEASES

@ Respiratory hypersensitivity
@ Asthma

IMMUNE
NETWORK FOR IGA
PRODUCTION

CELIAC DISEASE

INTESTINAL IMMUNE NETWORK

disease-related proteins form overlapping
modules in the human interactome




Placebome

Neuro

Metabolic iISEEI:SE.‘S (15) Plssasey 1)

Muscular Diseases (6)

Neurocognitive

Diabetes Mellitus (3) Disordefs (6)

Mood Disorders (3)
Anxiety Disorders (3)

RNA Virustinfections (3)
FracturespBone (3)

Gonadal Bisorders (4)
Feeding and
~_ Eating Disorders (3)
Female lgfogépitai
Diseases(14) -
Genital Digeases, Male (4)

Immungproliferative

Urogenital

Neoplasms (4) 'Neopiasms by

Histolagic Type (13)

enerative

Respiration Neurggevelopmental
Disorders (4) Dis s (11)

Iﬂéigns and \
|Symptoms (39)

_

Sleep-Wake Neurobehavioral
Disorders (7)  Manifestations (4)

Vascular Diseases (20) Nutrition
N2 Disorders (4)

Neurologic)

M‘anifestg_tlons (24)

Placeb{?me mddule

Heart Diseases (8)

Pregnancy
Complications (4)

Poisoning (4)

Hyperfrophy (5)

Subst"arncéj—ReIated
Disorders (14)

Personality
Disorders (3)

Lung Blseases (7)

Digestive System
Neoplasms (3)

Neoplasm.ite (14)

Gastrgjntestinal
Diseases (4)

Schizophrenia Spectrum
and other Pyschotic
Disorders (5)

Hypersensitivity (4)

Respiratory
Tract Neoplasms (3)

Wang et al., JCI Insight 2:€93911

Placebo effects in various diseases




Drug network

1,178 drugs and 394 target-proteins
link between two drugs:
if they have a common target

Small giant component:
follow-on drugs
(experimental drugs:
bigger giant. comp.

- diversity)




The reverse: drug target network

e
FTGERZ

HTR1D
HTF?
AV 4 Membrane
SHBG
PTGDR .
Cyloplasm

HTRIE Exterior

HTR1R
L 4 MNucle

El Unknown

Yildirim et al., Nat. Biotech. 25:1119

1,178 drugs and 394 target-proteins
Link between two target proteins:
if they have a common drug




Therapy-network

Alimentary tract & metabolism
Blood & blood forming organs
Cardiovascular system
Dermatologicals

Genito urinary system &

sex hormones

Systemic hormonal preparations
Antiinfectives for systemic use
Antineoplastic &
immunomodulating agents
Musculo-sketal system
Nervous system

Antiparasitic products
Respiratory system

Sensory organs

Various

QoOOm>

re I

M
N
P
R
S
V

Nacher & Schwartz, BMC Pharmacol. 8, 5

5 levels: 3rd level: 106 therapies & their 338 drugs

if a drug is used in 2 therapies (21%): the 2 therapies are linked
The top level 1s shown, circle size — number of therapies
Link-weight — number of common drugs




Prediction of drug binding sites in
protein structure networks

18 cavity size & shape attributes:
machine learning (neural network)

Nayal & Honig, Proteins 63:892

Cyt-P450 . ;
(CYP2BY) How would you identify

here cavities?

structural holes:
missing links and nodes

Csermely, TiBS 33:569




Drug target crisis

New, active drug ingredients as expenditure increased

50,000
T 45,000
[=]
£ 40,000
= 35000
[3]

2 30,000
D 25,000
2 20,000
g 20
¢ 15,000
2 10,000
any
5,000
W]

Drug targets

Human genome: ~30,000 genes
~100,000 proteins
Modifying ligands: 836 proteins
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 :.;;;“ From thiS drug_like: 529
N R&D Spending  =#=NMEs and New Biologic .
Approved: 394

No. of NMEs and Biologics Approved

ecause they are not

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330




IKVIYTee Drug target crisis

Average pre-tax cost per
approved drug, including
cost of failures!

FDA tightens regulation after
the thalidomide scandal.

FDA begins to
clear backlog

reverse Moore law
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Classic and network
views of drug action

classic view of drug action

A /" .

{:_drUQ_:} — (. target ) =l therapeutic effect

) s side effect
( \target

network view of drug action

i i

e )

( target 1 J/' i il P
ol _J;::r' ("“““"s;
¢ target 2 ) <~ | therapeutic effects
/ + side effects

e

(target 4)

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330




Drug design strategies |I.

The central hit strategy: The network

for rapidly growing cells influence strategy:
having flexible networks . i for differentiated cells
. having rigid networks

choke point .

targeting influential nodes

/ (neighbors
high centrality prs - of central nodes

targets or of rigid clusters)

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330




Drug design strategies Il.

conventional drug

¢
s target \?

’




Network-based drug target options

overlapping elements bridges

Korcsmaros et al., Exp. Op. Drug Discov. 2:799




Overlapping nodes
as drug targets

E. coli metabolic network
(links: enzymes)

w Lrmpm n phee | rodas
W Danpreral modes

o S G GOS0
P P eumoial habs

@ Conmscns tubs

Pl | N ofre o s leE

Guimera et al., Bioinformatics 23:1616




Drug design strategies |I.

The central hit strategy: The network

for rapidly growing cells influence strategy:
having flexible networks . i for differentiated cells
. having rigid networks

choke point .

targeting influential nodes

/ (neighbors
high centrality prs - of central nodes

targets or of rigid clusters)

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330




Allo-network drugs: atom-level
interactome reveals hidden targets

(a) Onrthosteric drugs {b) Allosteric drugs {(c) Allo-network drugs

Isoform 1 Target Isoform 2 Isoform 1 Target  Isoform 2 Drug Target

_ _ - . blndlng .
s | Oy UGy Wiyl TH NGy | Tedd '“f

interaction
network

L]
{ii} Protein- Y@ yI
-protein @ FEEEN - | ® 2
¢ 5 9 R A @ &
- T 1™ &
V. |.| 'y 5




Distance of human disease
genes and drug targets

most drugs act via network-perturbation




Multi-target drugs

conventional drug multi-target drug

{i) protein
structures

{ii} protein-
-protein
interaction
network

TIPS 26, 178

Csermely et al, Trends Pharmacol Sci 26:178




Multitarget drugs:
a nhon-negligible segment

1,000 100000

10000

Active Ingredients

Drugs and Tragets

Drugs per target and targets per drugs




Multitarget drugs:
more prevalent than thought

* single target drugs: back-ups, robustness
* most drugs are multi-target drugs

» combinational therapies

e venoms, natural medicines: mixtures




Multitarget drug-types

e e E

2R

S
SEEERER R,
R
RN
PR

NP PP P P P PP PP PP PP PDT

e

AR

Sl e

integrated

_ overlapping multi-target
conjugate pharmacofores drug

Korcsmaros et al., Exp. Op. Drug Discov. 2:799




Multitarget drugs: low affinity drugs

 smaller dose and toxicity
 smaller blockade of alternative pathways

e proteins = in overlapping modules with different functions
M ° single protein inhibition = blocks multiple functions
BB ° partial inhibition of many proteins = blocks module/function

g .\

* [more weak links: more stable cell] N




How many partial attacks
can substitute a single full attack?

Model: E. coli and S. cerevisiae
gene transcription networks

1
2, _ Attack measure:

Efficiency E = NN - 1)
network efficiency

M0 -22122121 -
E = 0,181
E,, = 0,104
(57,5%)




Partial attack

types

. Dlstﬂhuted systern-wide attack
2l knockong 4. Distribntted attermation




Partial knock-out of nodes
substituting the most needed node

partial KO 50% attenuation

E. coli (1) 4.2 5
S. Cerevisiae (1) 2.8 3




Partial knock-out of links
substituting the most needed node

distributed KO distributed attn.

E. coli (72) 15 38
S. cerevisiae (18) 6 10




Multitarget drugs =
= target multiplicators

proteome
(25 to 100 thousand

proteins) proteome

potential
disease
targets
(1700)

druggable
proteins
(3000)

|

drug targets today
(~500)

Korcsmaros et al, Exp. Op. Drug Discov. 2:799

—

multi-target
drugs

novel drug target families




Effects are specific

two-fold increase
(blue neighbors: decrease
green 2nd neighbors: increase)

PNAS 104:13655

yeast interactome yeast interactome:
at least 20% changes




Multitarget drug search by modular
analysis and multi-perturbation

original target-set
] _perturbation centres’

K/
]
L] 1
b
- )
&l -y -

interference regions: [N
alternative target-set |

www.linkgroup.hu/modules.php
Antal et al, Curr. Pept. Prot. Sci. 10:161




Drug development phases

Exploration Optimization
phase phase

surprise factor surprise factor

unbiased unbiased
system-level system-level
network analysis network analysis

background background
knowledge knowledge

Csermely et al, Pharmacol & Therap 138, 333
http://arxiv.org/abs/1210.0330




