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Hypothesis

Water and molecular chaperones act as weak links of protein
folding networks: Energy landscape and punctuated equilibrium

changes point towards a game theory of proteins
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Abstract Water molecules and molecular chaperones efficiently
help the protein folding process. Here we describe their action in
the context of the energy and topological networks of proteins.
In energy terms water and chaperones were suggested to de-
crease the activation energy between various local energy min-
ima smoothing the energy landscape, rescuing misfolded
proteins from conformational traps and stabilizing their native
structure. In kinetic terms water and chaperones may make
the punctuated equilibrium of conformational changes less punc-
tuated and help protein relaxation. Finally, water and chaper-
ones may help the convergence of multiple energy landscapes
during protein–macromolecule interactions. We also discuss the
possibility of the introduction of protein games to narrow the
multitude of the energy landscapes when a protein binds to an-
other macromolecule. Both water and chaperones provide a dif-
fuse set of rapidly fluctuating weak links (low affinity and low
probability interactions), which allow the generalization of all
these statements to a multitude of networks.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction: Water and chaperones in protein folding

The start of protein folding is usually a mixture of two possi-

ble scenarios: the initial formation of major elements of the sec-

ondary structure and a fast collapse of the unfolded protein,

where most of its hydrophobic residues become buried and

(more-less) stable intermediates are formed. Later steps of the
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folding process often include a slow reorganization of the

hydrophobic core of the protein. The free energy gain in protein

folding enables the presence of local, thermodynamically unsta-

ble, ‘‘high-energy’’ protein structures even in the native state,

which are stabilized by thermodynamically favorable confor-

mation of all the additional segments of the protein. The

‘‘high-energy’’ local structures can stabilize themselves by form-

ing complexes with another molecule: thus, they often serve as

active centers of enzymes or as contact surfaces between various

proteins involved, e.g., in signal transduction [1–5].

Protein folding is accompanied by a massive dehydration [6].

Most of this dehydration occurs during the initial hydrophobic

collapse. Though a ‘‘wet’’ folding intermediate would be favor-

able [7], the expulsion of water molecules seems to be necessary

to stabilize the transient structures during and after the initial

steps [8–11]. However, water exclusion is not complete: the

usual folding intermediate, the molten globule, preserves most

of the native internal hydration sites, and has a native-like sur-

face hydration [12]. On the contrary, the intrusion of water

molecules and the consequent break in peptide hydrogen

bonds is a key step in protein denaturation [10,13].

Protein folding often requires assistance. The aggregation of

folding intermediates is a great danger, which is prevented by

molecular chaperones (passive mode: usually an ATP-indepen-

dent process). Chaperones recognize and cover hydrophobic

surfaces successfully competing with aggregation. However,

there is an important difference here. Unlike the aggregating

partners, chaperones can release aggregation-prone proteins.

This release is usually accompanied by a transfer to another

chaperone or occurs after a switch to the other mode of chap-

erone-mediated folding assistance. The second type of chaper-

one action (active mode: an ATP-dependent process) is

performed by unfolding the incorrectly folded proteins, thus

giving them another chance for spontaneous refolding. Passive

and active chaperone action is typical to stressful and resting

cells, respectively, reflecting the ATP-deficient state under

stress. The two types of chaperone-assistance may go in paral-

lel, or may be characteristic of different chaperone-target pairs

[14–17].

Setting the exact amount of internal water molecules seems to

be a rather important parameter to achieve a ‘‘smooth’’ protein

folding [18]. Too much buried water would allow a structural

uncertainty, while a complete exclusion of internal water would

freeze any further conformational transitions. In agreement

with this intricate balance, molecular chaperones were
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Fig. 1. (A) Network representation of the energy landscape of protein
folding. A hypothetical energy landscape is shown as a 3D image and
as a contour plot. On the bottom panel its transformation to a network
is described, where the solid and dotted lines represent strong (low
activation energy) and weak (high activation energy) energy links,
respectively [23,24]. (B) Topological network of protein conformation.
A node of a hypothetical topological network of the interactions
between amino acid side chains is shown after Vendruscolo et al. [29].
Please note that these topological links can also be strong and weak
depending on the affinity and probability of the bonds which make
them.
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suggested to readjust the internal hydration of proteins. Those

chaperones (often called as Anfinsen-cages), which have an

internal cavity to sequester partially folded proteins, grab their

targets by multiple interactions. An ATP-induced conforma-

tional change expands the inner walls of the chaperone-cavity,

and stretches, thus partially unfolds the target protein resulting

in a preferential mobilization of its internal, hydrophobic core

[5,19–21]. Hydrogen–deuterium studies showed a massive in-

crease in the amount of exchangeable protons during chaper-

one action. In several models, the increased exchange of

protons at buried sites of the hydrophobic core of the target

protein is accompanied by a rather high level of residual 3D

structure. This suggests that chaperones may induce a facili-

tated entry of additional water molecules to the hydrophobic

core of the partially misfolded protein. Thus, certain chaper-

ones may behave as ‘‘water-percolators’’. (Whether real perco-

lation occurs here, thus the chaperone-assisted entry of water

molecules leads to a communication of the entire protein struc-

ture requires further studies.) As a summary: a class of chaper-

ones may allow the penetration of water molecules to the

hydrophobic core of the target protein, and may also allow

these water molecules to catalyze conformational transitions

necessary to rescue the misfolded target from its folding trap [5].

In the current paper we will describe the above help of water

and molecular chaperones in protein folding using the network

approach. In part two we will introduce energy and topologi-

cal networks and show their usefulness to understand the pro-

tein folding process. In part three we will summarize earlier

suggestions that water and chaperone molecules efficiently

smooth the energy landscape of proteins. In part four we will

extend this analysis to kinetic events. First we will show that

the conformational transitions of proteins may be described

as a punctuated equilibrium. Next we will suggest that both

water and chaperones make this equilibrium less punctuated.

In part five we will return from conformational changes to

the analysis of a stable state: the native protein structure and

suggest that it is stabilized by water and chaperones. We will

raise the idea that water and chaperones may help the conver-

gence of multiple energy landscapes, which arise, when macro-

molecular complexes are formed. In part six we will extend

these thoughts, and will give an initial idea on the formulation

of future rules of ‘‘protein games’’ in the currently missing

game theoretical approach of these situations. In part seven

we will show that both water and chaperones form weak links

in protein topological networks, which raises the possibility

that all the above statements can be generalized to a multitude

of networks at various levels. Finally, in the concluding part

we will summarize our ideas and suggest a few points for

further studies.
2. Energy and topological networks of protein folding

Conformational states of proteins can be efficiently de-

scribed by energy landscapes. A 3D representation of this

landscape is shown in Fig. 1(A). Here the conformational

states are reduced to a 2D plane and the energy of each state

is shown along the z axis. The landscape approach was sug-

gested by Sewall Wright in 1932 [22] and the powerful concept

was applied later to understand protein folding [2,3,23,24]. The

energy landscape may be simplified to a network [25,26]. Here,
nodes of the network represent local energy minima and links

(called energy links to discriminate them from the chemical

bonds of the topological networks) between these energy min-

ima correspond to the transition states between them. The

energy landscape of proteins has both a small-world and a

scale-free character [25]. The small-worldness of the energy

landscape network gives us another explanation, why our

proteins fold so efficiently: the node of the network represent-

ing the native state is only a few steps (conformational

transitions) apart from any other energy minimum of the

landscape.

Small-worldness is a typical feature of not only the energy

but also the topological networks of proteins [1,27,28]. Here,

nodes of the network represent segments (atoms, amino acid

side chains) of the protein, while links are physical bonds be-

tween them as shown in Fig. 1(B). Usually only long-range

interactions between amino acid side chains are taken into

consideration when constructing these topological networks.

Interestingly, key amino acids, called nucleation centers

shown to govern the folding process form highly connected

hubs of this small-world network [29]. Moreover, small-world

type connectivity increases further during the folding process

[30].
3. Water and chaperones smooth the energy landscape

Water molecules make fluctuating hydrogen bonds with

atoms of the peptide bonds as well as with amino acid side
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chains [8]. These transient changes induce a fluctuation in the

energy level of the actual protein conformation, which open a

possibility for a transient decrease in the activation energy be-

tween various conformational states. In agreement with these

assumptions, a recent paper from Peter Wolynes� lab [31]

showed that water efficiently lowers the saddles (activation

energies) of the energy landscapes and makes previously for-

bidden conformational transitions possible. Interestingly,

water fluctuations are decreased in folded states [32], which

may indicate a decreased help for protein folding as the

multitude of conformational states converges to the native

conformation.

Molecular chaperones may act in a similar manner. On one

hand, some of the chaperone actions (e.g., that of the active

mode Anfinsen-cage chaperones) may capacitate a better ac-

cess of water molecules to protein segments (e.g., the hydro-

phobic protein core), where water enters only seldom and to

a restricted number of special places called internal cavities

[5]. On the other hand, chaperones themselves bind to proteins

transiently, and change their binding properties in a highly dy-

namic manner. In their active mode, the ATP-cycle of molec-

ular chaperones provides a mechanism called ‘‘iterative

annealing’’, resulting in an almost continuous change in the ac-

tual bonds between the chaperone and the target protein [33].

In the passive (ATP-independent) mode of chaperone action,

chaperone binding often uses disorganized segments of the

chaperone protein with low affinity interactions [34]. Chaper-

one–target complexes are transient and here again a significant

amount of fluctuations may occur via ‘‘stochastic cycling’’

[35,36]. In agreement with the above statements for water,

chaperone-mediated smoothing of the energy landscape has

been suggested by Ulrich Hartl and co-workers [37].
4. Water and chaperones make the punctuated equilibrium less

punctuated

Compared to the energy levels of various protein conforma-

tions we know relatively little about the detailed kinetics of

conformational transitions of the protein structure. The early

work of Ansari et al. [38] showed the existence of ‘‘protein-

quakes’’, i.e., the cascading relaxation of myoglobin after the

photodissociation of carbon monoxide. The protein-quake is

an example of the wide-spread self-organized criticality phe-

nomena [39,40], where an increasing tension is met with a re-

stricted relaxation. As a consequence, sudden avalanches

(here: protein-quakes) develop, which have a scale-free distri-

bution of both their occurrence and intensity. The scale-free

kinetics is related to the scale-free structure of protein surfaces

[41] and to the presumed scale-free transport ‘‘channels’’ inside

the proteins [42].

The scale-free kinetic character of protein movements means

that most conformational changes are restricted and rather

small. However, proteins might also take a big jump, which

happens only very rarely. If we take these features together

with the general notion that self-organized critical phenomena

lead to the development of a punctuated equilibrium [43], we

may conclude that proteins are in a punctuated equilibrium.

In this representation the relative ‘‘stasis’’ corresponds to the

fluctuations of the closely related set of conformations around

a local (or global) energy minimum, while the ‘‘punctuation’’
means the sudden jump over an activation energy barrier to

one of the neighboring stabile conformational states.

If water and chaperones lower the activation energy between

two local energy minima as we suggested in the previous part,

the transitions between these energy minima should be much

less dramatic. Thus the presumed water- and chaperone-

induced smoothing of the energy landscape leads to much less

punctuation of the punctuated equilibrium.

In agreement with the above assumptions, numerous pieces

of experimental evidence indicate that water is an essential and

unique source of conformational flexibility of proteins [8,18].

As an important example of the many, anhydrous enzymes

are ‘‘frozen’’, mostly inactive and retain a molecular memory

[44,45]. Fluctuating protein–water interactions allow a better

relaxation of the various conformational tensions and thus

‘‘dissolve’’ the large conformational jumps to a set of smaller

transitions. This makes the equilibrium less punctuated.

Passive chaperones bind to their unfolded or misfolded tar-

get and may help the disorganization of the outer, hydropho-

bic segments of these proteins [34]. On the contrary, the active

chaperone, GroEL increases the internal flexibility of both the

RuBisCO [19] and carbonic anhydrase [20] targets. Moreover,

Anfinsen-cage chaperones, like GroEL may allow water mole-

cules to enter the hydrophobic core as described above [5]. In

agreement with all these findings and assumptions, Hartl and

co-workers [37] proposed that chaperones smooth the energy

landscape. Thus, chaperones may also make the punctuated

equilibrium of protein conformations less punctuated. How-

ever, there seems to be a ‘‘division of labor’’ here. While (under

chaperone-free, ‘‘normal’’ conditions) water and passive chap-

erones mobilize mostly the outer segments of proteins, Anfin-

sen-cage chaperones may help to mobilize the inaccessible

internal core [19,5].
5. Water and chaperones may help landscape-convergence

In the above discussions we suggested how water and chap-

erones help folding or refolding proteins to reach their native

conformation by making a smoother transition between

energy minima as well as by making the conformational equi-

librium less punctuated. Here we show another aspect of the

same hypothesis: once the protein has reached the energy

minimum, it should stay there to achieve stability. However,

time-to-time the protein receives smaller or bigger energy

packages from its surroundings or receives direct conforma-

tional perturbations. If the energy landscape is rugged (and

the conformational equilibrium is punctuated) the native pro-

tein may jump to a neighboring, non-native energy state after

such a perturbation and its return to the original, native state

becomes kinetically inhibited by the large activation energy

barrier between the two. Water and chaperones diminish this

activation energy barrier, thus cause a kinetic stabilization of

the thermodynamically most stable (often but not always:

native) structure in the appropriate segment of the energy

landscape.

Thinking about the effects of water and chaperones on the

energy landscape further, an additional level of complexity

emerges. A transiently interacting partner (like water or chap-

erones) of the protein adds one or many new elements to the

topological network described in Fig. 1(B). Extension of this
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network transiently changes both the conformational space

(allowing previously forbidden conformations to occur) and

also influences the energy levels. Water and chaperones may

not only decrease the activation energy (the saddles) between

the energy minima but may also transiently change the x–y

plane of the landscape and the absolute value of the energy

minima (the z axis). Thus water and chaperones may smooth

the energy landscape both by lowering its saddles and by flat-

tening its energy minima due to the averaging of their fluctuat-

ing influences. (This may partially explain why dehydration is

needed for the completion of the folding process.)

What if stable protein–protein complexes are formed? Non-

transient, high-probability and usually rather high affinity,

strong interactions occur. These interactions may dramatically

change the original energy landscapes of the participating pro-

teins. At the binding event a rather complex set of ‘‘protein-

quakes’’ is expected to happen as the two proteins try to relax

the complex perturbations. Each element of the relaxation

events of any interacting protein changes the energy landscape

of both partners. The parallel search for conformational opti-

ma in the mutually and continuously changing energy land-

scapes of the interacting partners would be cognitively and

computationally intractable for the experimenters, and for

the participating proteins themselves would probably require

an astronomical time without the help of water and (quite of-

ten) chaperones. In addition to their presumed help in the posi-

tioning and steering of the two binding partners towards each

other [14,31], water and chaperones may also help the solution

of the ‘‘conformational conflict’’ of their initial contacts. In

agreement with these ideas water has been suggested to help

avoiding the conformational frustrations by Papoian and

Wolynes [46].

As a summary of our hypothesis: water and chaperones may

not only bring both the proteins and their energy landscapes

into motion but may also help the convergence of the various

energy landscapes after a protein–protein, protein–membrane,

protein–RNA or protein–DNA interaction. Without water

and chaperones the assembly of macromolecular complexes

would be hopelessly inefficient and self-organization would

not easily occur. This approach gives an additional element

to the necessity (paramount influence) of water for the devel-

opment of the current form of life on Earth. Moreover, the

same logic extends the previous ideas [47,48] on the importance

of molecular chaperones in the early stages of evolution.
6. Initial thoughts on protein games

The above scenario of protein–macromolecule interactions

raises yet an additional approach. The cognitively (and numer-

ically) intractable complexity of the situations, when the ele-

ments themselves continuously influence each other�s
landscapes (like the evolutionary landscape, innovation land-

scape, etc.) is usually approached by the game theory. The

application of game theory in the first approximation requires

two actors who consciously recognize the other�s actions and

modify the set and preference of their potential responses

(the points of the x–y plane as well as the positioning of these

points on the z axis of their ‘‘energy landscape’’ as shown in

Fig. 1). In this strict sense of games the application of the game

theory to macromolecular interactions becomes impossible.
However, if we take into account that the complexity of the

topological networks of proteins already results in a mutual

distortion of the original energy landscape of both interacting

partners, which – in turn – changes their interactions and

therefore a sequence of complex events occur as described

above, the necessity and possibility of the introduction of

‘‘protein game rules’’ becomes conceivable. If our proteins

were complex enough to be conscious (as they are obviously

not), the situation would be even more complex, since only a

perception but no physical interaction (geometrical proximity)

would be required to change their landscapes upon the obser-

vation of other players� acts or preferences in the game. We are

lucky: this will never happen. Proteins will not have morning

news announcing a change in the attitude of the cell they hap-

pen to inhabit. However, protein complexes are still sophisti-

cated enough to require the drastic but highly rational

simplifications of the game theory in their modeling.

In Table 1 we suggest a set of criteria to classify protein–pro-

tein interactions. A few elements of these aspects have been al-

ready characterized, thus steering was already discriminated to

electrostatic interaction- [49] or desolvation-mediated [50]

mechanisms, and initial binding may often involve specific an-

chor residues [51].

The introduction of protein games becomes justified, if the

development of protein–protein interactions can be classified

to well-discriminated basic scenarios, and these scenarios are

highly populated in the multitude of possible energy land-

scape-pairs. Domain-swapping (when two secondary struc-

tures or whole domains are exchanged between the binding

partners through a simultaneous unfolding/refolding event)

[52] and fly-casting (when one of the partners folds as the inter-

action develops) [53] are all possible scenarios of future protein

games. We have to note that in the cellular context binding of

two proteins is modulated by a whole range of interactions

with other elements of larger protein complexes, etc., which

make the game-rules even more complex. As an additional

note, we are also aware of the fact that the above thoughts

on protein games can be easily extended to any protein–mac-

romolecule (DNA, RNA, membrane, etc.) interactions.
7. Water and chaperones as weak links

Both water molecules and chaperones form low affinity,

low probability weak links with the segments of proteins they

interact with [32,36]. Therefore, we can formulate the above

assumptions in the following way: weak links may generally

lower the saddles of energy landscapes and by allowing a fas-

ter relaxation, make the conformational equilibrium less

punctuated. Weak links develop in the final (latching) steps

of anchor-mediated protein binding [51], and during the con-

stant reorganization of the fly-casting binding mechanism

[53]. Symmetric homodimers are often formed by two non-

identical monomers, where one of the monomers is more

folded than the other, and serves as a template for the folding

of the other [54]. Here again, diversity introduces a set of sta-

bilizing weak links. An optimal amount of weak links may

also induce the convergence of the energy-type landscapes

in case of network–network interactions helping the simplifi-

cation of most if not all scenarios usually treated by the game

theory [26,55].



Table 1
How does the key get to the lock and induced fit get induced?

Aspect Possible scenarios

(1) Where do the two proteins bind to each other?
Geometry of the binding surface ‘‘Flat’’

Convex/concave (degree of binding area complexity, fractal dimension, total surface area)

Binding surface localization Few amino acid side chains
Complex domain
Multiple domains

(2) How do the two proteins bind to each other?
Steering (approaching each other) No steering at all: bouncing or binding

Steering by weak protein–protein interactions
Steering by water-mediated contacts

Folding Both fold
Both unfold
One of them folds the other unfolds
One of them folds the other is unchanged
One of them unfolds the other is unchanged
None of them is changed

Cooperation Both proteins are ‘‘rigid’’: no cooperation during binding
Proteins are ‘‘flexible’’: cooperation

Binding trajectory Both energy landscapes are rough
One energy landscape is rough the other is smooth
Both energy landscapes are smooth

Water Help of water is essential
Help of water is important
Help of water is negligible

Other factor(s) Only amino acid side chains participate
Non-proteinaceous, covalently bond elements (oligosaccharides, lipids, etc.) are on the
binding surface
Co-factors participate (e.g., binding needs chaperones)

(3) What holds the two proteins together?
Type of bonds A few unique bonds (e.g., ion pairs)

Disperse bonds (H-bridges, van der Waals forces)
Both

Bond strength Strong
Weak
Both

Preliminary aspects of the classification of future protein games.
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8. Summary and perspectives

The most important hypotheses of the current paper can be

summarized as follows:

� water and chaperones may allow a faster relaxation of ten-

sions in protein conformations thus may make the occur-

rence of protein-quakes (avalanches of self-organized

protein criticality) less likely; in other words: proteins are

in a punctuated equilibrium of conformational states, water

and chaperones may make this conformational equilibrium

less punctuated; as a consequence: water and chaperones

may stabilize the local or global minimum energy (often:

native) state;

� water and molecular chaperones may smooth the energy

landscape of proteins and may develop easier transitions to-

wards the completion of the folding process [31,37]; as a

next step: water and chaperones may allow the convergence

of multiple energy landscapes in case of protein–macromol-

ecule interactions [46]; the introduction of a protein game
theory may be useful to point out and understand the most

frequent binding mechanisms from the multitude of possi-

ble scenarios;

� water and chaperones behave like weak topological links in

the protein structure network and establish weak energy

links in the energy network of the landscape model. This

may allow the generalization of all the above statements

to a multitude of social, ecological and other networks hav-

ing weak links [55].

The role of water and chaperones in the conformational tran-

sitions of proteins can be experimentally tested by measuring

the kinetics of protein relaxation after a perturbation in the

presence and absence of chaperones or various availability of

water. If our assumptions are correct, ‘‘smoother’’ transitions

and much less ‘‘protein-quakes’’ should be observed, if water

is freely available and chaperones are present. The justification

of protein games can be tested by systematic analysis of pro-

tein–complex databases [46] and by the assessment, if binding

scenarios populate rather separated islands in the energy
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landscape continuum. The generalization of weak link-induced

effects raises a multitude of exciting questions, which go way

beyond the scope of the current paper and will be described

in the upcoming book of one of the authors [55]. The interface

(fringe area) between the network approach and protein fold-

ing studies is a very rich field, which may help us to develop a

novel understanding of both.
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