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Network communities help the functional organization and evolution of complex 
networks. However, the development of a method, which is both fast and accurate, 
provides modular overlaps and partitions of a heterogeneous network, was rather 
difficult1-7. Here we introduce the novel concept of community landscapes and 
ModuLand, an integrative framework determining overlapping network modules as 
hills of the community landscape and including several widely used modularization 
methods as special cases1,3. The current 3+2 implementations of the community 
landscape concept provide a fast analysis of weighted and directed networks, and (1) 
determine overlapping modules with a high resolution; (2) uncover a hierarchical 
network structure in previously unprecedented details allowing a fast, zoom-in 
analysis of large networks; (3) allow the determination of key network elements and 
(4) help to predict network dynamics. The concept opens a wide range of 
possibilities to develop new approaches and applications including network routing, 
classification, comparison and prediction8,9. 
 
The widely used module determination methods provide useful and clear dissections of 
the network, but many times do not determine the overlaps, and suffer from the ‘giant 
component problem’ failing to determine small and large modules simultaneously (Fig. S1, 
Table S1 and S2)1-7. Keeping in mind the emerging needs for an integrative approach 
avoiding the above problems we have developed the concept of community landscapes 
and a three-step framework, called ModuLand, to construct them (Fig. 1. and Fig. S2). First, 
we determined the ‘community heaps’ of the network by three community heap 
construction methods, called NodeLand, LinkLand and PerturLand, which we describe in 
detail in Methods and in the Supporting Information (SI). Since the LinkLand method 
behaves as a representative ‘average’ of the other two methods we used this method in 
most cases. Here the community heap was defined as the maximal connected subgraph of 
the starting link, where the threshold of [the sum of the weights of the links belonging to 
the community heap] / [number of elements in the community heap] was not allowed to 
decrease during the network walk providing the growth of the subgraph. Fig. 1A shows 
three community heaps of the network science co-authorship network10. All the three 
starting links highlighted by the arrows belong to widely collaborating, key players of the 
field, having a large community heap. 
 
The ‘community landscape’ is generated by summing up all the community heap values 
of a given link of the network, and by consequently performing this summation to each 
link. The resulting sums may be plotted vertically over a 2D representation of the 
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network resulting in a 3D visual image of the community landscape as shown on Fig. 1B. 
The community landscape height is a centrality-type measure, since a central link both 
belongs to many community heaps and has large community heap values in many of 
them (Fig. S3). The third step of the ModuLand method-family identifies the modules of 
the network by finding the ‘hills and mountains’ of the community landscape. This is 
seemingly easy (we can ‘see’ them on Fig. 1B), but we should not forget that the position 
of links in their 2D network representation of Fig. 1 already reflects the information on 
the density and strength of their interactions. In the two implementations we worked out 
in detail, the TotalHill and ProportionalHill methods (Fig. 1C and Fig. S2) we start the 
identification of the modules by finding the module centers, i.e. the links (or plateaus of 
links), which have a local maximum height on the community landscape. We have to 
note at this point that by finding local maxima the method automatically determines the 
maximal number of modules giving a much simpler solution than many other methods, 
where the exclusion of additional dissections often needs special criteria (see Fig. S4 and 
Table S2). Elements and links can be assigned to the module-centers by using a number of 
module membership assignment methods (Section V. of the SI; Figs. S4 and S5). The most 
detailed module overlap information is achievable by the TotalHill module membership 
assignment method, as shown on Fig. 1C, where large segments of the network belong to 
at least two modules. 
 
Several widely used, efficient network modularization methods1,3 can be interpreted as 
parts of the ModuLand framework either by identifying the underlying community heap 
construction method or by identifying the community landscape directly (Section IV.4. of the 
SI). New modularization methods can easily be generated by taking an existing 
ModuLand modularization protocol, and changing any of its community heap 
construction, landscape generation, hill determination, or module membership 
assignment methods. Additionally, former methods yielding non-overlapping modules 
can be upgraded to overlapping modularization methods using the ModuLand approach 
(Section IV.4. of the SI). Optionally, a higher level hierarchical representation of the network 
can also be created, where the nodes of the higher level correspond to the modules of the 
original network, and the links of the higher level correspond to the overlaps between the 
respective modules (Fig. 1D, Fig. S2 and Fig. S6). This hierarchical representation can be 
used recursively in several steps until the whole original network is represented by a 
single element allowing a fast, zoom-in type analysis of large networks (Section VII. of the SI). 
 
Even a very simple version of the ModuLand method family, the NodeLand community 
heap construction method correctly identified the observed split of the gold-standard 
Zachary karate club network11 while uncovering a third, previously identified module and 
several club-members in modular overlaps (Fig. S7). Application of the more detailed 
LinkLand community heap construction method to the University of South Florida word 
association network12 resulted in a set of modules having a highly heterogeneous degree, 
module size and module overlap distribution (Fig. S8), which is in agreement with earlier 
data (see SI) 2,3. Enriching the binary, yes/no module membership assignment of many 
previous methods, the ModuLand method-family gives a continuous scale for the 
association of each link and element to all modules (Fig. S7). To define the number of 
modules of link or element the ‘effective number’ of modules was introduced (see Section 
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V.6.b. of the SI), which is a threshold-less, continuous measure based on the effective size of 
support of a probability distribution13. The ‘effective number’ of modules was proved to 
be a fairly stable measure in case of increasingly erroneous network data (Fig. S13. and 
Section VI.2. of the SI), which shows the robustness of the ModuLand method. Moreover, the 
ModuLand method solved the giant component problem (Fig. S4)4 by simultaneously 
identifying both large and small modules of the network without the use of any preset 
threshold. Additionally, the ModuLand method allowed the definition of a large set of 
novel, topological measures characterizing e.g. the centrality and bridgeness of network 
elements and links (Sections IV. and V.6. of the SI). 
 
Extending the analysis of the gold-standard Zachary karate club network, we examined 
the much larger University of South Florida word association network having 10,617 
elements and 63,788 links12, which was a target of a successful modularization study 
yielding overlapping modules3. This detailed analysis took 10 minutes on a computer 
with a 3 GHz Intel CPU. Fig. 2 shows the modular environment of the antagonym word, 
“terrific” and that of the heteronym, “content”. The mingling colors indicate a high 
overlap between the modules. Importantly, the overlap of the modules with alternative 
meanings of the two words is much greater in the case of “terrific” than in case of 
“content”, which is a reasonable consequence of the fact that variations of antagonistic 
meanings (“terrific”) are often amongst our associations, while associations between 
differently pronounced meanings (“content”) are much more seldom. Overlap between 
the multiple meanings of the words “bright” and “focus” (Fig. S9) is closer to that of 
“terrific” than that of “content”. However, in case of these latter, multiple meaning words 
the similarly pronounced meanings are not divided into two major sections as in case of 
the antagonyms or heteronyms, which is again in agreement with our common 
knowledge. 
 
The modular hierarchy of the high school friendship Community-44 of the Add-Health 
dataset14 was uncovered using several community heap construction methods all 
revealing four well-distinguishable main modules with a large amount of further sub-
modules (Fig. 3A and Figs. S10-S12). Girls were less likely to form multiracial modules (Fig. 
3B), and the modular overlap of boys and girls significantly differed (chi-square 
p < 0.00001; Fig. 3C). These differences are in agreement with the sociological 
observations indicating a larger cohesiveness of friendship circles of girls than that of 
boys15,16. 
 
To test whether the ModuLand framework can identify key network elements, we 
calculated the change of network integrity17 during the disintegration of the USA Western 
Power Grid network18. Elements were removed in the decreasing order of their degree, 
betweenness centrality and ModuLand bridgeness (measuring the bridge-like role of the 
elements between the modules as defined in Section V.6.d. of the SI). Fig. 4 shows that the impact 
of bridgeness-based element removal on network integrity was larger than that of the 
degree-based attacks and was well comparable to, or better than the result of betweenness 
centrality-based element removal. The equal-to-better performance of bridgeness-based 
disintegration compared to that using betweenness centrality is surprising all the more, 
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since the global network integrity measure corresponds extremely well to the global 
betweenness centrality measure17. 
 
Discrimination of date- and party-hubs of protein interaction networks, i.e. proteins 
sequentially or simultaneously interacting with a large number of neighbors, is a rather 
difficult task19-24. We hypothesized, that among date-hubs and party-hubs of similar 
centrality, date-hubs may have a higher bridgeness (i.e. they are more overlapping 
between modules of the network). This assumption was substantiated by the inter-
modular position of date-hubs19,22 and by the similarly high efficiency of bridgeness-based 
and date-hub-based network disintegration (cf. Fig. 4 with Fig. 2 of ref. 19 and ref. 24). 
The identification of the overlapping modules of a high-confidence yeast protein-protein 
interaction network20 resulted in a number of modules with well-known functions (Fig. 
5A and Fig. S14). We calculated the bridgeness and centrality measures of the individual 
proteins, and plotted these values on Fig. 5B. The separation of date- and party-hubs 
represented by the line of Fig. 5B classified 84 party-hubs correctly of the total of 201, 
and 307 date-hubs of the total of 318. This result becomes even more convincing, if we 
consider that 10 out of 11 incorrectly identified date-hubs (91%) and 89 out of 117 
incorrectly identified party-hubs (76%) have been potentially misclassified, if comparing 
them to the consensus of classifications19-23. In conclusion, by the help of the novel 
measures of the ModuLand-based analysis, we were able to discriminate between date- 
and party-hubs, thus predicting the dynamic behavior of network elements using only the 
topological information of their network. 
 
The ModuLand method-family we introduced in this paper and in part in an earlier patent 
application25 is a novel, fast and robust method, which can be tailored for the special 
needs of the experimenter as well as for the conditions of the network studied. The 
method gives a comprehensible, hierarchical representation of large, real-world networks. 
Several key steps and especially their combination in the ModuLand method-family are 
novel, since (a) such a large variety of community heap-determination methods have not 
been integrated in any modularization methods; (b) community landscapes and their hills 
have never been used to determine network modules. Previous methods using local 
community detection or yielding overlapping modules (Table S2)3,6 used only one or 
another of the approaches presented here, and did not combine any of them to community 
landscapes. Previous network landscape methods utilized local elements of topology26,27, 
while the ModuLand method assesses a wide range of structural information. Moreover, 
none of the previous authors used their landscapes for module determination. The recent 
work of Roswall and Bergstrom5 published during the course of the current study25 used 
the probability flow of random walks to construct a map of scientific communication. 
This method is similar to our PerturLand community heap construction method, but its 
application in ref. 5 yields non-overlapping modules. 
 
The extensive and rich overlaps, network hierarchy, as well as the novel centrality and 
bridgeness measures uncovered by the ModuLand method can be used for the 
identification of long-range, stabilizing weak links, for the determination of the recently 
described creative, trend-setting elements governing network development and 
evolution28, for prediction of missing links or elements, for network classification and for 
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the design of efficient information transfer to name only a few of the many possibilities. 
Module overlaps might play a key role in the disconnection and synchronization of 
modules of complex systems, and their re-assembly during and after crisis, respectively. 
We invite our colleagues to design novel versions of the framework we gave, and to 
explore the above and other examples. 
 
Methods 
 
Networks 
Network science co-authorship network. The giant component of the undirected, un-weighted network 
science co-authorship network contained 379 elements and 914 links10. Karate club social network. The 
weighted and undirected social network of a karate club has been reported by W. Zachary11 containing 34 
elements and 78 links. As the members of the karate club have split into two factions later, the network 
became a gold-standard of module determination methods1-3,5-7. Word association network. The giant 
component of Appendix A of the University of South Florida word association network 
(http://www.usf.edu/FreeAssociation/)12 with removed link directions contained 10,167 elements and 
63,788 weighted links, where weight refers to the association strength (see Section I.3. of the SI). School 
friendship network. The giant component of the high school friendship Community-44 of the Add-Health 
database (http://www.cpc.unc.edu/projects/addhealth)14 with removed link directions contained 1,127 
elements and 5,096 weighted links, where weights represent the strengths of friendships (see Section I.4. of 
the SI). Power-grid network. The unweighted and undirected network of the USA Western Power Grid18 
contained 4,941 elements and 6,594 links. Yeast protein-protein interaction network. The giant component 
of the un-weighted and undirected yeast protein-protein interaction network20 contained 2,444 elements and 
6,271 links, covering approximately half of the yeast genome and the most reliable (‘strongest’) ~3% of the 
expected number of total links. 
 
Brief description of the ‘NodeLand’, ‘LinkLand’ and ‘Perturland’ community heap construction 
methods 
The ModuLand module determination protocol gives an integrative approach, where modifications of the 
various parameters used in the three major steps (community heap formation, community landscape 
construction and module membership assignment, the latter including the hill determination step) may 
result in a large number of special implementations. We have developed three community heap 
construction methods (NodeLand, LinkLand and PerturLand), one trivial landscape construction method 
summing the community heap values over the links of the network, and two module membership 
assignment methods (ProportionalHill and TotalHill, each utilizing the PeakHill hill determination 
method). We describe these methods in the SI in detail, and list only the major steps of the three 
community heap determination methods here. As discussed in Section IV. of the SI, the best community heap 
determination method depends on the input of network data. From the three community heap determination 
methods the perturbation propagation-based PerturLand method gives the most detailed and robust results. 
However, the LinkLand and the more basic NodeLand methods exploring the densely connected region of 
the starting link or element, respectively, are faster, require no parameter tuning, and give us accurate 
enough results with even inaccurate link weights. A detailed description of these methods is given in 
Sections IV. and V. of the SI. The Linux-based computer programs of the ModuLand-related methods (7 
Mbytes) and a Windows-based application (240 Mbytes) can be downloaded from here: 
www.linkgroup.hu/modules.php. 
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Figure 1 Description of the ModuLand method-family. A1-A3, First, the community heap of 
each link (or element) of the network are identified. If a link is in the ‘middle’ of a module, it will 
be a part of many community heaps (all the three widely collaborating, highlighted author-pairs, 
shown by the arrows are from this category). On the contrary, links at module ‘edges’ will belong 
to a few community heaps only. B, Next, the community landscape is constructed by summing up 
the community heap values. The hills of the community landscape correspond to the modules of 
the network. C, Last, modular centers are identified as the links at the maxima of the community 
landscapes, and memberships of links in all network modules are determined. D, Optionally, a 
higher level hierarchical representation of the network can be created, where elements of the 
higher level correspond to modules of the original network, and links of the higher level 
correspond to overlaps between the respective modules. On the vertical axes community heap 
values (panel A), or community landscape values (panels B, C and D) of the links are shown. For 
this illustrative example we used the network science co-authorship network10 without link 
weights using the LinkLand and TotalHill methods. The network was visualized using the Pajek 
program28 with the Kamada-Kawai algorithm supplemented with a custom Blender script. 
Community heaps of panels A1 or A2 belong to the Barabási—Vicsek or Girvan—Newman 
author-pairs, respectively. Panel A3 shows the merged community heap of the Arenas—Pastor-
Satorras and Guimera—Amaral co-authorship links. Links and nodes of panels C and D are 
colored in proportion of the colors of the modules they belong. 
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Figure 2 Overlapping modules of a word-association network. Modules of the University of 
South Florida word association network12 were determined using the LinkLand community heap 
construction method and the TotalHill module membership assignment method. The network was 
laid out using the Kamada-Kawai algorithm of Graphviz30 and visualized using a custom program 
written in Python language using OpenGL graphics. Links were colored in proportion to the 
colors of the modules they belong. A, Modules around the antagonym word, “terrific”. B, 
Modules around the heteronym word, “content”. In addition to the selected words “terrific” and 
“content” similar words above a similarity threshold of 10% are also shown with a contrast 
corresponding to their degree of similarity. The extent of similarity between two words was 
calculated as the sum of the two pair-wise minima of their unity-normalized module membership 
vector giving the membership assignment strength of the given word to all modules of the 
network (for more details see Section V.6.e. of the SI). 
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Figure 3 Overlapping modules of a school-friendship network. We have determined the 
modular structure of Community-44 of the Add Health survey14 using the LinkLand community 
heap determination method together with the ProportionalHill module membership assignment 
method. A, Modules of Community-44. The school friendship network was visualized using the 
Pajek-program28 with the Kamada-Kawai algorithm. Elements represent the individual students, 
and were colored in proportion to the colors of the different friendship modules they belong. We 
show the modular structure of the second hierarchical level having 7 modules. The inset of Panel 
A shows color-codes of the modules with an area proportional to the size of the respective 
module. B, The number of network modules in case of boys (blue, solid bars) and girls (red-white 
hatched bars) with mixed racial contents in the first hierarchical level. The extent of mixed racial 
content was monitored using the ‘effective number of races’ (Section V.6.b. of the SI) with a bin-size 
of 0.5. C, The number of boys (blue, solid bars) and girls (red-white hatched bars) having 
different overlaps in friendship circles as determined in the first hierarchical level with a bin-size 
of 1. Overlap was measured as the ‘effective number’ (Section V.6.b. of the SI) of modules of the 
given student. 
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Figure 4 Determination of key elements of the USA Western Power Grid network. The 
figure shows the decreasing integrity of the USA Western Power Grid network18 as a function of 
the number of elements removed. Elements were removed in the order of their decreasing degree 
(black alternating dashes and dots) betweenness centrality (red dashed lines)1 or ‘bridgeness’ 
(solid blue lines), where ‘bridgeness’ measures the overlap of the given element between different 
modules as described in detail in Section V.6.d. of the SI. Network integrity has been calculated after 
Latora and Marchiori17. Bridgeness was calculated from the modular structure of the lowest 
hierarchical level as determined by the LinkLand community heap construction method and the 
TotalHill module membership assignment method. On the vertical axis of the insets the 
betweenness centrality (left, color-coded from red to yellow) and bridgeness (right, color-coded 
from blue to green) of the elements of the USA Western Power Grid network are shown. 
Networks on the insets were laid out using the Pajek-program29 with the Kamada-Kawai 
algorithm and visualized with a custom Blender script. 
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Figure 5 Prediction of the dynamical behavior of network elements: segregation of date- 
and party-hubs based on their modular overlaps. Overlapping modules of the yeast protein-
protein interaction network of Ekman et al.20 were identified using the LinkLand community heap 
determination method with the TotalHill module membership assignment method using the 
modular structure of the lowest level of hierarchy. A, A 3D view of the yeast protein-protein 
interaction network. The underlying 2D network layout was set by the Pajek-program29 with the 
Kamada-Kawai algorithm. The vertical positions reflect the community landscape values of the 
elements on a linear scale. Elements were colored as the module of their maximum membership. 
B, Centrality and bridgeness of yeast date- and party-hubs. Hubs having more than 8 neighbors 
and non-hubs with less neighbors were positioned on the scattergram according to their 
ModuLand centrality (x-axis, the height of the community landscape) and ModuLand bridgeness 
(y-axis) as defined in Section V.6.d. of the SI. Date- and party-hubs are marked with red circles and 
blue triangles, respectively, while non-hub proteins are represented by gray crosses. The inset 
shows a double logarithmic plot of hubs with large centrality. 


