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ABSTRACT

Cellular plasticity is crucially important in cancer-induced cell reprogramming, as well as in regeneration therapies in diabetes,
Alzheimer’s, and Parkinson’s diseases. Protein—protein interaction, signaling, and gene regulatory networks are increasingly
used to describe plasticity-induced cellular adaptation in disease progression. This review delineates how network analysis of cell
plasticity leads to novel therapy options against 1) cancer progression; 2) epithelial-mesenchymal transition-induced metastases;

3) cancer stem cells, and 4) pre-existent drug-resistant cells. Network plasticity-designed sequential and differentiation therapies

are also outlined. 55 plasticity-related cancer drug targets are listed, where 20 have already approved drugs, 9 have investigational

drugs, and 26 are drug target candidates. The recent expansion of plastic network-driven pancreatic beta cell and neuron

regeneration therapies is described in diabetes, as well as in Alzheimer’s and Parkinson’s diseases, respectively. Finally, six major

network-related research gaps and promising future research areas are outlined, including the discovery of plasticity-related

cancer signaling pathways and cross-talks, cancer resensitization therapies, and the use of recently available proteome-wide

network data and models to find novel cancer cell differentiation cocktails, drug targets, proper timing, and biomarkers of

sequential therapies, as well as to perform in silico drug combination screens and in silico clinical trials.

1 | Introduction

Cellular plasticity refers to the ability of the same cell to produce
different phenotypes in response to environmental changes.
Plasticity plays a key role in embryonic development, tissue
remodeling (e.g., wound healing), and disease-induced cellular
reprogramming, such as in cancer, diabetes, and neurodegener-
ation [1-8]. As a sign of its increasing importance in therapeutic
options, phenotypic plasticity has been recently incorporated into
the hallmarks of cancer [4]. A balance between stability and plas-
ticity is often regarded as a stabilizer of cellular states. However,
increased plasticity of complex systems generally characterizes
their adaptation to changes in their environment [1-9]. A system

with an established, stable (relatively rigid) structure is crucially
important for the precise execution of “business as usual” tasks
of its everyday life [10, 11]. However, when adaptation is needed
to a new situation, the system (or at least a dedicated part of
it) must become plastic [2, 10, 11]. Therefore, an initial increase
of system plasticity (followed by a later decrease) accompanies
most cellular adaptive processes, which can be perceived as a
cellular learning process (Figure 1) [11-18]. Cancer development
isone of the processes exhibiting a biphasic plasticity increase and
decrease during cellular adaptation. First, rapid environmental
changes, hypoxia, and immune attacks (all of which are often
observed in cancer cells) induce considerable stress, leading to
increased network plasticity in developing cancer cells [3, 4].

This paper is dedicated to the memory of the corresponding author’s late dog, Vilma.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
© 2026 The Author(s). Advanced Science published by Wiley-VCH GmbH

Advanced Science, 2026; 0:22532
https://doi.org/10.1002/advs.202522532

10f22


http://www.advancedscience.com
https://doi.org/10.1002/advs.202522532
https://orcid.org/0000-0002-1542-8304
https://orcid.org/0009-0004-9834-190X
https://orcid.org/0009-0000-0373-8543
https://orcid.org/0000-0002-2968-0666
https://orcid.org/0000-0001-9234-0659
https://orcid.org/0000-0003-2011-8316
mailto:peter.csermely@semmelweis.hu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/advs.202522532
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadvs.202522532&domain=pdf&date_stamp=2026-01-31

(b) Transition state
increased plasticity

(a) Initial state
small plasticity

=l L

- 1N
@ d (BN Ol /A< ! /
oN 7 e
“1
Y 5 o=
T \\O @
@ O/ ®
defined core fuzzy core

overlapping modules
bridging nodes and edges

defined modules

Network plasticity changes as cellular learning

(c) Adapted state
small(er) plasticity

condensed core
defined modules

FIGURE 1 | Network plasticity changes as a cellular learning process. Upper images: illustrative stability landscapes, with local stability minima

acting as attractors. Lower images: corresponding illustrative network structures. We note that the figure shows a differentiation-type adaptation, where

the plasticity of the adapted state is lower than that of the initial state. In dedifferentiation, the situation is just the inverse.

However, building a supportive niche by metastasized cancer
cells (or by cancer stem cells) reduces these burdens and leads
to decreased network plasticity [3]. Similarly, biphasic adaptation
to high glucose concentrations may be observed in diabetes (see
Section 4) [3].

A profound example of pioneering cell plasticity studies led to
the 2012 Nobel Prize in Physiology or Medicine, which was
awarded jointly to John B. Gurdon and Shinya Yamanaka “for
the discovery that mature cells can be reprogrammed to become
pluripotent” [19, 20]. The landmark discovery of the tetrad of
OCT4, SOX2, KLF4, and c-MYC transcription factors opened
new ways of regenerative medicine, such as pancreatic beta cell
regeneration in diabetes, or neuron regeneration in Alzheimer’s
and Parkinson’s diseases [20-24].

Network representations provide a rich yet well-organized data
structure for complex systems from macromolecules to societies.
Cellular functions are often described by protein-protein inter-
action networks, by signaling networks, and by gene regulatory
networks [25, 26]. Complex systems having a plastic network
structure can reside in multiple states having relatively similar
stability and are divided by small energy barriers. In other words,

network plasticity enables a “smooth” (flat) energy landscape,
where several transitions may occur between individual system
states, such as between protein conformations, cellular pheno-
types, healthy and diseased cells, etc. Network plasticity can
be assessed by defining a measure to characterize the order in
the network, such as network entropy [27-29]. A recent study
showed that attractors (i.e., grossly populated network states)
are often protected by deep valleys. However, ridges between
attractors often became flattened, facilitating network plasticity
when multiple attractors co-exist [30]. Plastic network structures
are characterized by decreased (local or global) connection
density, by a large, fuzzy network core (having a blurred transition
to network periphery), by overlapping, fuzzy network modules,
and by network nodes (also called “creative” nodes) connecting
otherwise distant network nodes [26, 28-32].

This review summarizes the rapidly increasing recent knowledge
on plastic networks and answers the following questions. 1)
How do plasticity changes of protein structure networks and
molecular networks of the cell contribute to cellular adaptation?
2) How does the plasticity of molecular networks promote
cancer development? 3) How does the plasticity of the epithelial-
mesenchymal transition help the formation of cancer metastases
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and cancer drug resistance? 4) Why does the extreme plasticity of
cancer stem cells make them a special burden in anticancer ther-
apies? 5) What is the role of network plasticity in the development
of cancer drug resistance? 6) Why has network plasticity become
an important, recently expanding area of cancer drug design?
7) What are the benefits of network plasticity in the treatment
of diabetes? 8) How does network plasticity help regeneration
therapies in Alzheimer’s and Parkinson’s diseases? In conclusion,
the research gaps and perspectives of “plasticity drugs” (i.e., drugs
developed by using the rapidly increasing knowledge on cell and
network plasticity changes) will be delineated.

2 | Network Plasticity as a Cellular Learning
Process

Cellular adaptation involves cellular learning and cellular forget-
ting steps [12-18, 33]. Both processes involve changes in cellular
plasticity [13, 17, 28, 29, 33]. In this section, first, the plasticity
of protein structures and their network representations will be
reviewed. This will be extended by an overview of plasticity
changes in molecular networks of the cell, such as protein-
protein interaction networks, signaling networks, and gene
regulatory networks. Already, the plasticity of protein structures
can provide important information on various diseases, such as
cancer or neurodegeneration. This is grossly surpassed by the
frequent use of molecular networks characterizing the develop-
ment of cancer, cancer drug resistance, as well as Alzheimer’s and
Parkinson’s diseases.

2.1 | Plasticity of Protein Structure Networks

Protein structures can be perceived as networks of amino acids,
featuring a tightly packed core and a plastic periphery [26].
Ligand binding to proteins extends the rigid core, unveiling a
surprisingly long-range contribution of four amino acid residue
layers [34]. However, the entire protein molecule behaves as a
single unit. Analysis of NMR studies revealed that in the native
conformational state of a protein, the protein is in a critical
state, where the motion of each amino acid residue is “felt” by
every other residue. This means that despite being at a stable
point in the energy landscape, the protein molecule still pre-
serves its dynamic plasticity [17, 35]. Proteins integrate incoming
information by maintaining a balance between their rigid core
and plastic periphery, displaying a molecular “intelligence” [17].
Importantly, adaptive changes in the highly cooperative amino
acid ensemble of a protein structure occur preferentially at
mutations located at the protein periphery, distant from the ligand
binding site. Conversely, the amino acid “bridge” connecting
the distant mutation site and the ligand binding site is evolving
cooperatively, preserving its bridging function [36].

Plasticity of proteins is increased by 1) intrinsically disordered
protein regions, by 2) integrative plasticity of multiple phospho-
rylation events, and by 3) increased intracellular water content
(decreased molecular crowding in the cell) [37]. Molecular chap-
erones, a class of proteins that help the folding of other proteins
and RNAs, often have an intrinsically disordered region, which
provides the extra plasticity to maintain their chaperone function
[38]. Importantly, both major classes of molecular chaperones

(the HSP60 and the HSP70 classes) display an ATP-dependent
“chaperone-cycle,” where they first expand the unfolded protein
(grossly reducing its plasticity) and then release it (giving a
sudden burst of plasticity). These expansion/release cycles may
be repeated several times [29, 39-41].

Intrinsically disordered proteins (IDPs) play an important role in
cancer-specific cellular events, serving as a source of increased
cellular noise in cancer [28]. Several IDPs (such as JAG1, NOTCH,
HIF1A, AKT, GSK3B, and TCF/LEF) play a key role in the
epithelial-mesenchymal transition, a process leading to cancer
metastasis and drug resistance [13]. 12 out of the 55 drug targets
and potential drug targets (22%) listed in Section 3.5. as modu-
lators of cancer cell plasticity are IDPs with a higher disorder
content than 20% [42]. The IDP drug targets are master tran-
scription factors of cancer plasticity (FOS, ASCL1, MYC, NRF2,
FOXM]1), cancer plasticity signaling pathway members (YAPI,
GSK3), cancer cell differentiation proteins (PPAR-gamma), reg-
ulators of partial epithelial-mesenchymal transition (NRGI),
and modulators of chromatin plasticity (BDR3, BRDT, HDAC1).
PTEN, a tumor suppressor, was identified as an IDP. Both the
primary and secondary interactome layers of PTEN are enriched
in IDPs, most of which are also cancer-related [43]. Amyloid-
beta and alpha-synuclein—the major players of Alzheimer’s and
Parkinson’s disease, respectively—are IDPs [44-46]. 27 proteins
potentially relevant to the amyloid cascade signaling pathway are
IDPs [46]. These findings highlight the importance of molecular-
level plasticity in the development of plastic cellular phenotypes
in cancer and neurodegeneration.

2.2 | Plasticity of Protein-Protein Interaction,
Signaling, and Gene Regulatory Networks

Molecular networks of the cell (i.e., protein-protein interaction
networks, signaling networks, and gene regulatory networks)
have much fewer physical constraints than protein structures
(since, on the contrary to the protein backbone, they do not
contain a continuous connection of covalent bonds). Therefore,
network plasticity is displayed more at the cellular level than
in individual proteins. The plasticity of cellular networks leads
to plastic cellular phenotypes [8, 29, 47, 48]. However, plasticity
at the molecular level (in the form of the already mentioned
chaperones and IDPs, but also in the form of noncoding RNAs)
greatly contributes to plasticity at the molecular network level
[37].

Developmental plasticity leads to alternative phenotypes in
response to environmental changes. Vandermeulen and Cullen
[5] demonstrated that molecular networks display decentralized
control, where different pathways become dominant under vary-
ing environmental conditions. Gene by Environment Interactions
(GEI) network analysis of different environmental conditions
may uncover a major regulatory role of a previously under-
appreciated pathway [5]. Importantly, different environments
induce a grossly differing set of pathway cross-talks [5, 8]. These
observations underlie the importance of dynamic network nodes
connecting distant network regions (like the “creative nodes”
mentioned in the introduction) [31, 32]. As an example of
developmental plasticity changes (similarly to the chaperone-
cycle we described in Section 2.1), differentiating progenitor cells
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first display a plasticity increase (leaving the relatively stable state
of progenitor status), and only towards the end of differentiation
(approaching the differentiated state), they become less plastic
than the initial progenitor state [27].

Signaling networks need to be especially sensitive to environ-
mental stimuli; therefore, they display increased plasticity in
response to a changing environment. A mass spectrometry-based
phosphoproteomics study showed that breast cancer signaling
networks treated with PI3K or mTORC protein kinase inhibitors
became heterogeneously resistant to the same inhibitor [47].
These findings revealed that even under identical and carefully
controlled experimental conditions, the evolution of distinct
protein kinase network states took place. This indicated a high
level of network plasticity. Context-dependent kinase interactome
changes also characterized the development of cancer plastic-
ity in 18 diverse cancer cell lines [48]. Similarly, plasticity of
the epithelial-mesenchymal transition (which leads to cancer
metastases and drug resistance) revealed multi-stable signaling
and kinase interactome networks, where positive feedback loops
and key signaling proteins (like AAKI, the adapter-associated
kinase 1) became especially important [48, 49]. Peripheral pro-
teins of gene regulatory networks play a prominent role in
the development of Alzheimer’s and Parkinson’s disease and
are often connected to network hubs [50, 51]. This is a typical
network configuration increasing network plasticity [10]. These
studies demonstrate that molecular networks of the cell exhibit
highly versatile forms of network plasticity, which opens the
way to use this network feature in the development of new
therapeutic options. In Sections 3 through 5, we summarize
these new drug development areas in cancer, diabetes, and
neurodegeneration.

3 | Modulation of Network Plasticity in Cancer

The development of cancer can be viewed as a learning process,
where malignant transformation and survival induce a plastic
phenotype [13-15, 28, 52]. Phenotypic plasticity was included
among the hallmarks of cancer in 2022 [4]. Differentiated cells
lock their developmental plasticity. This process is accompanied
by the locking of continuing cell proliferation, one of the key
characteristics of cancer cells. Cancer-acquired cellular plasticity
may include dedifferentiation towards progenitor-like cell states
(which may lead to the development of cancer stem cells).
Conversely, cancer cells may develop by disrupting the cell
differentiation process and remaining in a partially differentiated,
progenitor-like, plastic stage [1, 2, 29]. Cancer cells themselves
have interconverting subpopulations, which become remodeled
upon drug treatment, leading to drug resistance [3, 53]. Cancer
cell subpopulations get stabilized and reside in a cancer attractor
[54]. As a clear sign of extreme plasticity, a subpopulation of
cancer cells repopulated the whole original basin of attraction
within days [55]. Increased cell heterogeneity and rearrangements
of the signaling network are key features of plastic cancer cells
[28, 56]. In this section, we first summarize our understanding
of the increased plasticity of molecular networks in cancer and
the network-related therapeutic possibilities. Next, we describe
the plasticity of the epithelial-mesenchymal transition and its
consequences in cancer therapy. We delineate the therapeutic
options involving the extremely plastic state of cancer stem cells

and the plasticity of drug resistance development. Finally, we
encapsulate the plasticity-related therapeutic options.

3.1 | Plasticity of Molecular Networks in Cancer

Protein-protein interaction, signaling, and transcription factor
networks in cancer cells can be characterized by increased
plasticity, i.e., the ability to undergo rapid network reconfigu-
rations in response to external stimuli [28]. Plastic networks of
cancer cells become enriched in intermodular edges connecting
different protein mega-complexes and signaling pathways [56-
58]. Transcription factor networks also increase their plasticity
in cancer development [59]. Cancer cell plasticity is regulated
by master transcription factors, such as HOXAS5, SMAD4, and
MITF [4]. Cancer-related plasticity-inducing signaling pathways,
such as the NOTCH pathway, and pathways related to master
transcription factors, offer promising therapeutic options for
slowing down or eradicating cancer cells with increased plasticity
[60-66].

3.1.1 | Plasticity of Cancer Interactomes and Signaling
Networks

Altered interactome modularity was shown as a predictive
measure in breast cancer patients [67]. As a sign of network
modularity-related plasticity increase, hubs with cancer-specific
mutations are located in the center of protein-protein interaction
network modules, forming bridges between them [56], and tend
to form a “rich-club,” i.e., become connected with each other [25].
As examples of these phenomena, cancer interactomes become
enriched by intermodular hubs, such as IRS1 or BRAF [25, 67].

Signaling networks of cancer cells contain more cross-talks
between signaling pathways than those of healthy cells [58].
Cross-talks correspond to plasticity, increasing intermodular
connections. For example, cancer-specific cross-talks bridge the
RAS-ERK and PI3K-mTORC pathways, which makes drug com-
binations that inhibit both pathways an important therapeutic
modality [68]. Cross-talks may offer novel drug combination
options, e.g., in cancer [69]. As another indication of increased
signaling network plasticity, a higher entropy of signaling
network degrees was found to correlate with poorer survival
outcomes in prostate cancer patients [70].

An increase in signaling network plasticity needs the formation
of new, “noncanonical” network connections in cancer cells. In
a receptor tyrosine kinase network, the “noncanonical” ERBB1-
IRS1 connection became stronger in breast cancer cell lines as a
summative result of numerous changes in the receptor tyrosine
kinase network [32]. Another example is the inhibitory cross-
talk between the PI3K-AKT and RAS-ERK pathways, which leads
to melanoma formation. First, benign changes induce RAS-ERK
signaling to such constitutively high levels that cell cycle arrest
or senescence occurs. Secondary mutations activating the PI3K-
AKT pathway dampen RAS-ERK signaling via AKT-V"EBRAF
phosphorylation to levels that cooperate with AKT to induce
malignant transformation [68]. Aurora kinase A (AURKA) drives
a non-canonical crosstalk between YAP1 and TAZ, sustaining
primary resistance to anti-EGFR therapy in colon cancer [71].
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The formation of “noncanonical” network connections is often
extended by the development of “creative nodes” (i.e., fluc-
tuating nodes giving transient connections between otherwise
distant network modules)—a general characteristic of all cellular
learning processes [26, 31]. Good examples of these creative
nodes are intermodular, dynamic data hubs [26] and “critical
nodes” (such as the IRS, PI3K, and AKT families) having
several isoforms involved in divergent signaling, being highly
regulated and forming cross-talks [72]. Molecular chaperones
(such as Hsc70, Hsp90, and Grp94) emerge as highly efficient
date hubs [31] involved in the progression of cancer (and neu-
rodegenerative diseases). Intrinsically disordered regions of these
chaperones become phosphorylated, which turns them into an
“epichaperone,” i.e., a protein that provides a multimeric scaffold
rewiring protein-protein interaction networks [73]. Importantly,
new plasticity-increasing network connections may also originate
from the tumor microenvironment in forms of direct cancer
cell-stroma interactions or via exosomes [74, 75].

3.1.2 | Plasticity of Transcription Factor Networks in
Cancer

Transcription factors are key regulators of the plasticity increase
in a malignant phenotype. The work of Pillai and co-workers [59,
76] identified a 17-node transcription factor network that acts as
a master regulator of melanoma development. Dynamic simula-
tions of the network revealed that the network becomes separated
into two modules centered around MITF (microphthalmia-
associated transcription factor; surrounded by 2 key other tran-
scription factors, including FOS) and around JUN (surrounded
by 7 transcription factors, including SMAD3 and KLF4). This
network settled into 4 attractors (stable transcription factor
expression patterns) corresponding to two proliferative and two
invasive phenotypes. Simulations recapitulated major pheno-
types observed in melanoma and explained the dedifferentiation
trajectory after BRAF inhibition [59] as well as predicted an effec-
tive combination drug treatment strategy involving MITF and
SMAD?3 inhibition during BRAF inhibitor treatment. Simulations
helped to quantify intra-tumor and inter-tumor heterogeneities
and gave a possible explanation for multiple trajectories towards
drug resistance [76]. The key role of JUN and FOS in the
development of diverse plasticity patterns in melanoma cells
has also been reported by Comandante-Lou et al. [77]. These
studies have shown that the increase in plasticity of transcrip-
tion factor networks grossly contributes to the development of
plasticity in cancer cells. A similar bimodal transcription factor
network (centered around ASCL1 and NEURODI1) has been
reported in connection with the phenotypic plasticity of small
cell lung cancer. The two modules of this network inhibit each
other. However, intra-modular connections activate the modules.
Thus, this transcription factor system forms a toggle switch
[78]. In hepatocellular carcinoma, FOXM1 and CEBPB form
a master decision-making toggle switch, where the inhibition
of FOXM1 restores tumor developmental homogeneity and re-
exposes tumor cells to immune surveillance [79]. As a recent
study showed, toggle switch structures can be generalized to two
mutually inhibiting teams of nodes [80].

HOXA5, SMAD4, and MITF are master regulator transcription
factors modulating network plasticity [4]. HOXAS is involved in

the anticancer action of retinoid acid and DNA-methyltransferase
inhibitors in breast, colorectal, bladder, and prostate cancers
[64]. Imatinib, a commonly used therapy in leukemia, blocks
tyrosine phosphorylation of SMAD4 and restores TGF-{ growth-
suppressive signaling [65]. MITF is a quinacrine-inhibited
molecular driver of MAPK-inhibitor-resistant melanomas [63].
Recently, the circadian regulator/nuclear receptor REV-ERB-
alpha was shown to be a master regulator of androgen recep-
tor inhibitor-induced plasticity increase in adenocarcinoma to
prostate cancer transition. Rev-ERB-alpha switched its targets
from kinase signaling and metabolic programs to increasing cell
plasticity and inducing EMT and stem cell formation [81].

The transcription factor INSM1 plays a key role in glioblas-
toma differentiation towards neuronal cells. Inhibition of INSM1
inhibits the tumorigenicity of glioblastoma formation [82].
Another recent study suggested the transcription factor DEBPD,
as well as TNFRI and ITGB1, as mesenchymal hotspots and
actionable nodes warranting therapeutic exploration in glioblas-
toma treatment [83]. Additionally, a subnetwork of FN1, CD44,
and YAP1 was upregulated by mir199a-3p associated with the
mesenchymal phenotype of neuroblastoma [84].

SNAIL, ZEB, and TWIST are additional master transcription
factors inducing cell plasticity and cancer progression. Their sig-
naling networks drive cell dedifferentiation involving chromatin
structure remodeling. These transcription factors are crucial
components promoting the invasive potential and stemness of
cancer cells [2]. ZEB2 has been shown to act as a key mediator
of the transcriptional network related to cancer cell quiescence
[85]. Biguanides administered with olaparib inhibit SNAIL and
consequent drug-resistant ovarian cancer cell tumorigenesis [62].
TWIST mediates the paclitaxel-resistance of gastric cancer cells
[86].

An additional example of tumor plasticity induction is the GATA6
epithelial master regulator in pancreatic ductal adenocarcinoma.
Loss of GATA6 with the concomitant loss of HNF1A and HNF4A
leads to the development of tumor plasticity, evasive phenotype,
and lung metastases [87].

3.1.3 | Therapeutic Possibilities Offered by Plastic
Cancer Networks

Master regulators of cancer cell plasticity are listed in Sec-
tion 3.1.2. already provided several examples of promising ther-
apies that suppress plastic cancer cells by inhibiting HOXAS5,
SMAD4, and SNAIL [62, 64, 65]. An additional important ther-
apeutic option is to block plasticity-related signaling pathways,
such as the NOTCH pathway. Dysregulation of the NOTCH
pathway promotes epithelial-mesenchymal transition, metasta-
sis, the development of cancer stem cells, and drug resistance
by inducing cellular plasticity [66, 88]. There are several clin-
ical trials involving inhibitors of gamma-secretase and ADAM
(both NOTCH pathway activator proteases); NOTCH itself; or
the NOTCH receptor ligands, DLL3 or DLL4 [66]. Alternative
pathways are the usual escape routes of cancer cells [69, 89]. The
HIPPO pathway may serve as another escape route [89] using cell
plasticity. YAP and TEAD, two members of the HIPPO pathway,
were shown to engage the epithelial-mesenchymal transition
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(a) In the human protein-
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FIGURE 2 | Thisfigureshows the position of cancer network plasticity-related drug targets in a) the human protein-protein interaction network and

b) the human signaling network. Drug targets mentioned in Sections 3.1-3.5 are listed in Table 1. The following isoforms and subunits of drug targets were
also visualized using the HGNC symbol system, such as ZEB1-2, TWIST1-2, NOTCH]1, gamma-secretase subunits PSEN1-2/NCSTN/PSENEN/APHI1A-B,
ADAMIO0 and -17, TEADI-4, PPARG, IRE-alpha = ERN1; MKK4 = MAP2K4, OCT4 = POUS5FI, TGFBI, PI3K = PIK3CA-B, NRF2 = NFE2L2, PERK =
EIF2AK3. Red: 26 drug target isoforms and subunits with approved drugs. Orange: 10 drug target isoforms and subunits with investigational drugs.
Yellow: 31 drug target isoform and subunit candidates. Diamonds and italic protein names denote IDPs. Network data were downloaded from the
databases BioPlex 3.0 (HEK293T cell line data) [91] and SIGNOR 4.0 [92] and were visualized using the OpenOrd and subsequent Yifan Hu layout

algorithms of Gephi [93].

transcription factor SLUG (detailed in Section 3.2) to repress
apoptosis. Pharmacological co-inhibition of YAP and TEAD
enhanced EGFR/MEK inhibition-induced cancer cell apoptosis
[90].

Sometimes, quite indirect routes can also be successful in combat-
ing cancer cell plasticity. For example, targeting the mevalonate
pathway overcomes PLK1 inhibitor resistance of colorectal cancer
cells [61]. Inhibition of the mevalonate pathway impairs the
synthesis of dolichol. Dolichol is a key factor in the glycosylation-
mediated activation of the AXL receptor. Thus, impairing the
mevalonate pathway provides an additional, upstream inhibi-
tion of the GAS6/AXL-PLK1-TWIST pathway, a key media-
tor of tumor progression, metastasis, and therapy resistance
[61].

Figure 2 shows the position of cancer network plasticity-related
drug targets in the a.) human protein-protein interaction net-

work; b.) human signaling network [91-94]. The signaling net-
work is more modularized than the protein-protein interaction
network, which is what we expect from the larger segregation of
signaling pathways. Visual arrangement of approved or investi-
gational drug targets, as well as drug target candidates, shows
no particular preference for certain network modules in both
networks. Similarly, IDP drug targets or target candidates are also
scattered in the network, having no particular preference for a
visual position. This arrangement reinforces the view that the
development and maintenance of network plasticity involve the
entire human molecular network. Target candidates are slightly
more peripheral in the protein—protein interaction network than
in the signaling network. This is what we would expect, since sig-
nal propagation does not need a high density of protein-protein
interactions. The significantly less direct connections between
network plasticity-related drug targets (or target candidates) in
the protein—protein interaction network than in the signaling
network (Figure 2) suggest that the direct signaling connections
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between these proteins are mostly transient or causational, like
phosphorylation or transcriptional activation.

3.2 | Plasticity of the Epithelial-Mesenchymal
Transition Networks

The epithelial-mesenchymal transition (EMT) plays a crucial
role in the release, invasion, and metastasis of cancer cells [2, 3,
95]. EMT becomes enhanced by the hypoxic tumor environment,
which results in the protection from anoikis [96]. Intercellular
communication of the heterogeneous tumor environment both
drives and maintains EMT [97]. First, we describe the plentitude
of plastic EMT transitions. Next, we outline the signaling network
of EMT plasticity. Finally, we list the therapeutic options related
to EMT plasticity.

3.2.1 | EMT Plasticity Drives Various Transitions in Cell
Phenotype

EMT does not proceed only from an epithelial (tissue-like) to a
mesenchymal (invasive type) state but can also be reversed to
a mesenchymal-epithelial transition, often needed to complete
metastasis [52, 98]. EMT usually displays several intermediate
states (showing partial EMT). These intermediate states are
often more carcinogenic, metastatic, and drug-resistant than
the mesenchymal state [6, 52, 95, 98-107]. EMT (and especially
its reverse, the mesenchymal-epithelial transition) can proceed
towards the cancer stem cell state [89, 108, 109]. The extremely
large plasticity of cancer stem cells will be summarized in Sec-
tion 3.3. The epithelial state may also shift towards an endothelial
state, helping the angiogenesis in melanoma and many other
carcinomas [3]. The duodenal epithelium may offer a protective
niche to pancreatic ductal adenocarcinoma cells that adopt the
mimicry of intestinal epithelial cells [110]. EMT can also be
directed towards the differentiated adipocyte state (Figure 3). This
cancer-adipose conversion provides important, novel combina-
tion therapy options of ZEB1 or MDM2 activators together with
Rosiglitazone [111]. As an additional sign of adaptation-directed
EMT plasticity, EMT involves several key players of the cellular
learning process [13].

3.2.2 | Signaling Network of EMT Plasticity

EMT signaling involves several hundred nodes. First, we list
some key actors mediating EMT plasticity. Next, we summarize
key results of EMT signaling network studies, which reveal
mechanisms of EMT plasticity. Finally, we show the important
role of non-coding RNAs and chromatin modifications in EMT
plasticity.

TGF-beta is a key activator of EMT. The cell membrane pro-
tein CD147 induced the dedifferentiation and malignancy of
hepatocellular carcinoma cells via the activation of matrix
metalloproteinases, which activated TGF-beta. Importantly, all-
trans-retinoic acid treatment induced the downregulation of
CD147 and reversed these effects [112]. The master transcription
factor families ZEB, SNAIL, and TWIST emerged as key factors of
EMT plasticity [2].

Positive feedback loops within the EMT signaling network were
shown to increase EMT plasticity in the complex study by Hari
et al. [49] using discrete, parameter-independent (Boolean) and
continuous, parameter-agnostic (RACIPE) models. This study
paved the way for novel therapeutic interventions (e.g., edgetic
therapies [113]) that break the positive feedback loops of EMT
signaling networks [49]. Mathematical modeling of single-cell
RNA sequencing data dynamics in EMT highlighted SFN (strat-
ifin, important in the maintenance of epithelial polarity, as well
as in the G2/M cell cycle checkpoint) and NRG1 (neuregulinl,
an ErbB receptor family protein having a key role in synaptic
plasticity) as key regulators of plastic, intermediate EMT states
[114]. A large-scale protein kinase interactome profiling study of
18 diverse cancer cell lines revealed that EMT plasticity-altered
endocytic and vesicle trafficking pathways were controlled by
the AAKI1 (adapter-associated kinase 1) interaction network [48].
AAKI1 emerges as a promising drug target alone or in combination
with HDAC inhibition [115].

The EMT signaling network is modulated by various non-coding
RNAs and epigenetic modifications. As an example of these, a
large set of microRNAs helps the mediation of cross-talk between
TGF-beta, NOTCH, and WNT in EMT [108]. Mutually inhibitory
feedback loops involving mir34/SNAIL and mir200/ZEB are cen-
tral motifs in EMT cell decision and plasticity [100]. Mir7974 was
recently shown to regulate EMT plasticity, promoting a rapidly
proliferating epithelial phenotype and reducing the metastatic
potential of colorectal cancer [116]. Similarly, circular RNAs also
play a central role in EMT-modulated cancer cell plasticity,
tumorigenesis, metastasis, and the development of drug resis-
tance [117]. As an example of epigenetic modifications, the key
epithelial marker CDHI (E-cadherin) becomes repressed during
EMT through increased DNA methylation in its promoter and
through the alteration in histone modifications from activation to
inhibition. Several other epigenetic modifications also contribute
to EMT plasticity [52].

3.2.3 | Therapeutic Targets Modulating EMT Plasticity

Promising EMT-related therapeutic targets are members of the
TGF-beta, WNT, and NOTCH pathways [95, 118, 119]. Recently,
targeting the embryonic cell guiding protein netrin-1 (NTN1)
was shown to block metastatic progression of squamous cell
carcinoma and endometrial cancer by shifting tumors towards
a more epithelial phenotype [120, 121]. The mesenchymal state
makes pancreatic ductal adenocarcinoma cells sensitive towards
inhibitors of the IRE-alpha-MKK4 arm of the endoplasmic
reticulum stress pathway [122]. Similarly, the frequently observed
loss of KDM6A, an X-chromosome-encoded histone demethylase
(a member of the COMPASS-like complex), rendered the quasi-
mesenchymal, squamous-like, metastatic pancreatic cancer cells
sensitive to BET inhibitors, which reversed squamous differentia-
tion and restrained tumor growth, reopening the window for tra-
ditional therapies [123]. The mesenchymal state predisposes cells
to ferroptosis, a cell death pathway mediated by iron-dependent
phospholipid peroxidation. The recent study of Schwab et al.
[124] showed that in cancers overexpressing ZEB1 (a key mediator
of EMT plasticity), the combinatorial therapy of SCD (stearoyl-
CoA-desaturase, an enzyme protecting cells against ferroptosis
by increasing their polyunsaturated fatty acid content) and GPX4
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FIGURE 3 | Routes enabled by epithelial-mesenchymal transition plasticity. Created in Biorender.

(glutathione-peroxidase 4, an enzyme protecting cells against
oxidation occurring in ferroptosis) inhibitors has a high therapeu-
tic promise. These studies opened new therapeutic possibilities
for targeting metastasis-prone mesenchymal cancer cells or for
directing them towards the endothelial state.

3.3 | An Extreme Case of Network Plasticity:
Cancer Stem Cells

Cancer stem cells are a minority subset of cancer cells that
survive conventional chemotherapies, repeatedly renew tumors,
and drive tumor metastasis progression by slowing down their
own proliferation rate [125], by building a supportive niche,
and by utilizing the extreme plasticity in their phenotype,
signaling, and metabolism [109, 126-129]. Already, early-stage
metastatic breast cancer cells possessed a distinct stem cell-
like gene expression signature together with EMT, pro-survival,
and dormancy-associated genes [99]. Actual properties of cancer
stem cells depend on the individual “stress-history” of the given
tumor [126]. Cancer stem cells also increase the plasticity of their
neighbors, such as that of tumor-associated macrophages [130].
By increasing the plasticity of their neighborhood, cancer cells
transform their surrounding environment into the supportive
niche mentioned before (Figure 3) [128-130].

EMT may also lead to cancer stem cell formation [99, 108, 128].
Cancer stem cells have an extremely plastic signaling network
(where even the level of plasticity may rapidly change upon

changes in the environment) [126]. Not surprisingly, their mod-
eling was called “modeling mayhem” [6]. NANOG, SOX2, OCT4,
KLF4, MYC, WNT, TGF-beta, as well as Notch and Hedgehog
pathway members emerged as key modulators of stemness. The
majority of this list overlaps with key players of EMT [6, 126].

Differentiation therapy was first suggested by Stuart Kauffman in
1971 [131] and is increasingly used to induce the differentiation
of cancer stem cells [3, 132, 133]. A conventional therapy is the
treatment of acute myeloid leukemia by all-trans-retinoic acid [3].
Inhibitors of isocitrate dehydrogenase (IDH1 and IDH2), such as
ivosidenib, enasidenib, or vorasidenib, are approved drugs that
induce the differentiation of cancer stem cells in IDHI/2-mutated
acute myeloid leukemia or glioma, respectively [134]. Ferroptosis,
an iron-dependent oxidative form of programmed cell death, has
emerged as a potential focal point in the eradication of cancer
stem cells and in tumor differentiation [135]. The ionophore
salinomycin killed breast cancer stem cells in mice at least
a hundred times more effectively than the anticancer drug
paclitaxel and induced tumor differentiation to epithelial cells
[136]. Salinomycin induces lysosomal iron sequestration, leading
to the production of reactive oxygen species, lysosome mem-
brane permeabilization, and ferroptosis [137]. DKK1 (Dickkopf
WNT signaling pathway inhibitor 1) increased the expression
of SLC7A1l sodium-independent cystine-glutamate antiporter,
which protected metastasizing cancer stem cells from ferroptosis.
Combined treatment of a ferroptosis inducer (Erastin or LSR3)
and DKKI1 inhibitor (WAY262611 or Gallocyanine) exhibited a
synergistic effect, inhibiting metastasis [138]. We have mentioned
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FIGURE 4 | Cancer drug resistance: a learning process of plasticity changes. Created in Biorender.

combination therapies of ZEB1 or MDM2 activators together
with Rosiglitazone that induce cancer-adipocyte differentiation
(competing with cancer stem cell formation) in Section 3.2.1
[111]. However, PPAR-gamma has recently been shown to induce
the retrodifferentiation of hepatocellular carcinomas [139], which
warrants its careful, selective use as a differentiation agent. Acti-
vation of G-protein-coupled estrogen receptor signaling shifted
melanoma stem cells to a more differentiated and more drug-
sensitive state [140]. Differentiation therapy is a typical example
of a therapeutic option based on cancer cell plasticity. The above
studies provided novel routes to expand the traditional, well-
established ways of differentiation therapy of acute myeloid
leukemia towards cancer stem cell differentiation.

3.4 | Network Plasticity Changes in Cancer Drug
Resistance Development

The development of cancer drug resistance was recently
described as a cellular learning process (Figure 4) [14, 15, 53].
Increase in cancer cell plasticity (such as that of cells undergoing
partial EMT or cancer stem cells described in Sections 3.1-3.3)
induces drug resistance [6, 52, 95, 98-101]. This process, together
with the well-documented cancer cell plasticity increase by
drug treatment [7], forms a vicious cycle of self-perpetuating
difficulty.

3.4.1 | Plasticity-Induced Pre-Existent Drug-Resistant
Cancer Cells: Therapy Options

The plasticity of the cancer cell phenotype permits the emergence
of drug resistance even in the absence of drug treatment. This
intrinsic drug resistance characterizes only a rare subpopulation
of cancer cells (less than 0.1% of cells). This transient, drug-
resistant state may become stabilized and persist through several
generations of dividing cancer cells (Figure 4) [141-143]. Long-
lived, rare but coordinated fluctuations in gene expression are
major sources of pre-existent drug-resistant cells. These and
other sources of noise are crucial in raising cellular hetero-
geneity (including pre-existent drug-resistant cells) in cancer
cell populations [141, 144, 145]. These pre-existent drug-resistant
cells have been shown to often become dormant, reducing
their proliferation rate, which helps their initial escape from
several anticancer drugs targeting cell division mechanisms [14].
However, sequential therapies, e.g., targeting first by a “cellular
memory drug” (i.e., a drug that affects cellular memory formation
or cellular forgetting mechanisms) [33, 53] such as PI3K, mTOR,
IGFR1, or HDAC inhibitors, followed by a targeted therapy
(e.g., that of BRAF or MEK inhibitors) proved to be useful to
sensitize cancer cells to targeted therapy by previous eradication
of plasticity-induced, pre-existent drug-resistant cells [7, 141, 144,
145]. Sometimes this strategy may work indirectly. As an example,
histone deacetylase (HDAC) inhibition cannot directly eradicate
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drug-resistant neuroblastoma cells. However, HDAC inhibition
improves the response of consecutive pro-apoptotic drugs by
restoring apoptosis-promoting JNK activity [145].

3.4.2 | Plasticity of Drug-Resistant Cancer Cell
Networks: Therapy Options

Intermodular hubs of cancer cell protein-protein interaction
networks often contain signaling domains playing a key role in
cancer signaling. These interactome module bridges proved to
be important in breast cancer prognosis [67]. Crucially, signaling
pathway cross-talks may offer novel drug combinations [69].
Signaling pathways independently acting on the same target
(such as ERK and YAPI regulating cell cycle control) significantly
contribute to cell plasticity and can substitute for each other in
the development of drug resistance [89]. In breast cancer cells
treated with protein kinase/phosphatase inhibitors, the signaling
network has been shown to become heterogeneously resistant to
the drug, which shows an important sign of network plasticity
[47]. Importantly, network plasticity and the relatively high noise
of cancer cells themselves re-induce the drug-dependent state
if the drug administration is ceased. This is the reason why re-
sensitization to a repeated drug challenge occurs, and why “drug
holiday” has become an important treatment option for cancer
patients [146, 147].

Several forms of therapy resistance are achieved by cancer cell
dedifferentiation. This process often involves the EMT promoting
SNAIL, TWISTI, and SLUG. SNAIL and TWIST1 activate PERK
kinase and its target, NRF2. NRF2 is a master transcription
factor of the antioxidant response, a key regulator of therapy
resistance [2]. The other EMT-related protein, SLUG, promotes
cell survival by repressing the pro-apoptotic protein PUMA [2].
Activation of other alternative pathway kinases, such as the WNT
pathway kinase GSK3, several HIPPO pathway kinases, and the
NFkB-activating kinase CHUK, has also been observed [48].

Importantly, as cancer cells increase their plasticity and escape
from the lethal consequences of a drug treatment, develop-
ing resistance, they become sensitive to other treatments. For
example, EGFR inhibitor-resistant cells are sensitized to the
genotoxic drug gemcitabine [3]. This opens the way for sequential
therapies, where, after a shorter treatment window, the treatment
rapidly shifts to a completely different mode of attack. Such
sequential therapies were already mentioned in Section 3.4.1.
where therapies with “cellular memory drugs” sensitized cancer
cells to targeted therapies by eradicating the minor, pre-existent
drug-resistant cell population. The prediction of biomarkers and
protocols of such sequential therapies is an important promise of
recently developed system-wide network models [148].

3.5 | Therapeutic Options Offered by Modulation
of Network Plasticity in Cancer

Table 1 summarizes the plasticity-modulating therapeutic options
mentioned in Section 3. For an extensive coverage of ther-
apy options for overcoming tumor cell plasticity-induced drug
resistance, see Shi et al. [7]. Importantly, 12 out of the 55
drug targets (22%) listed in Table 1 are intrinsically disordered

proteins with a higher disorder content than 20% [42]. This
highlights the important role of molecular-level plasticity in the
development of plastic phenotypes in cancer. Table 1 lists 20 drug
targets with more than 70 approved drugs [149]. Additionally,
35 drug targets (see their names in italic) have no approved
drugs yet. 9 of them (ITGB1, NOTCH, ADAM, IRS1, HSP90-beta,
BRD2, BRDT, KLF4, and DKK1) had investigational phase drugs
(Bexotegast, Aderbasib/Aprastat/XL787, Crenigacestat, NT-219,
Zelavespib, Birabresib, JQ1, APTO-253, and WAY 262611/Gallo-
cyanine, respectively). This list convincingly demonstrates that
network plasticity opens new areas in drug development against
cancer.

4 | Modulation of Network Plasticity in Diabetes

Network plasticity plays a key role in emerging therapies that
delay, prevent, or reverse the onset of the diabetic state. First,
we introduce the key players involved in network plasticity in
type 1 and type 2 diabetes. Next, we provide examples of how
network plasticity contributes to the development of diabetes.
We show how vascular smooth muscle cell plasticity contributes
to diabetes complications. Last, we summarize three ways of
modulating cell plasticity to achieve beta cell repopulation: 1)
beta cell regeneration; 2) transdifferentiation to beta cells; and 3)
proliferation of usually quiescent beta cells.

4.1 | Key Factors of Network Plasticity in Type 1
and Type 2 Diabetes

In early-onset type 1 diabetes, the insulin secretion of pancreatic
beta cells becomes impaired. FOXO1 deficiency induces beta cell
dedifferentiation, resulting in a more plastic, progenitor-type beta
cell phenotype that expresses NRG3, OCT4, NANOG, and L-MYC
[150]. Dedifferentiation of beta cells is driven by hyperglycemia-
enhanced endoplasmic reticulum stress, where the unfolded
protein response drivers, XBP1, IRE1, PERK, ATF6, and CHOP
play a key role [21, 151-153]. Beta cells may also transdifferentiate
into other cell types, such as pancreatic alpha cells [21, 154].
Simultaneous inhibition of EIF5A and NOTCH pathways was
suggested to upregulate immune tolerance and differentiation of
cytotoxic T cells, which kill pancreatic beta cells, restoring beta
cell dysfunction. Such a therapeutic modality may also be used
following islet cell transplantation or after adoptive cell transfer
[155]. Deletion of XBP1 in beta cells of non-obese diabetic mice
led to protection against the onset of islet inflammation and
consequent insulitis. This was achieved by reducing autoantigens
of beta cells, potentially involving the PREB, NME2, HNF6, NRF3,
and ASF1A proteins [156].

Type 2 diabetes is the most prevalent form of diabetes, character-
ized by insulin resistance and relative insulin deficiency. As a sign
of protein—protein interaction network plasticity, intermodular
proteins play a key role in the regulation of type 2 diabetes.
Importantly, proteins that link diabetes and heart disease overlap
with those that link heart disease and obesity [157]. The master
transcription factor of cell plasticity HOXAS is also involved in
the development of obesity and type 2 diabetes [158]. Another cell
plasticity master transcription factor, SMAD4, promotes diabetic
nephropathy [159].
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4.2 | Network Plasticity Helps the Progression to
the Diabetic State

We highlight the contribution of network plasticity to diabetes
development by two examples: 1) Network plasticity-derived
differences in the effects of acute versus long-term high glucose
and insulin receptor inhibition, where long-term treatment mim-
ics conditions of the diabetic state. 2) Endoplasmic reticulum
stress inhibitors—as an example of network plasticity modulation
helping to recover pancreatic beta cells from long-term stress
conditions.

When pancreatic islets were incubated in the presence of
high glucose, they exhibited a stronger response after 3 h,
which then developed into glucose insensitivity after 6 h [160].
Similarly, hyperglycemia led to the PKC beta II-induced phos-
phorylation and mitochondrial translocation of p66SHC, which
in turn induced the production of reactive oxygen species.
After normoglycemia had been restored, p66SHC remained
in the mitochondria, resulting in a hyperglycemic molecular
memory in human aortic endothelial cells. However, persis-
tent hyperglycemia upregulated reactive oxygen species, which
led to increased PKC beta II and p66SHC levels, creating a
vicious cycle [161]. A similar, biphasic effect was observed
when 3T3-L1 cultured fat cells were exposed to insulin recep-
tor auto-antibodies. Acute administration provoked a more
efficient deoxyglucose uptake, while prolonged incubation led
to insulin insensitivity [162]. These biphasic responses are
clear signs of network plasticity modulating cellular learn-
ing [12-18] and forgetting processes [33] involved in diabetes
development.

Inhibitors of beta cell endoplasmic reticulum stress, such as many
of the approved antidiabetic drugs, thiazolidinediones, GLP1
agonists, resveratrol, or tauroursodeoxycholic acid, emerge as key
factors preventing or delaying diabetes. However, the beta cell
bioavailability of these stress inhibitors is typically rather poor,
which necessitates the use of specifically targeted delivery options
[163, 164]. Modulation of endoplasmic reticulum stress or the
mTOR pathway may also prevent or delay the onset of diabetes
[21, 163]. In addition, inhibitors of polyamine biosynthesis, such
as difluoromethylornithine, also enhance beta cell regeneration
[21].

4.3 | Involvement of Vascular Smooth Muscle
Plasticity in Diabetes Complications

Vascular smooth muscle cell plasticity is a key driver for
several macrovascular complications associated with type 2
diabetes. Vascular smooth muscle cells may undergo phenotypic
transformation towards increased proliferative, inflammatory
(macrophage-like), or osteogenic (bone-like) properties. Pro-
and antiatherogenic adipokines, such as leptin and retinol
binding protein 4, as well as adiponectin and omentin 1, govern
these processes. Hyperglycaemia and insulin deficiency are
well-known factors contributing to vascular smooth muscle cell
calcification. Vascular smooth muscle cell dysfunction involves
PI3K/AKT, MAPK, AMPK/mTORC, and BMP2 signaling
[164].

4.4 | Pancreatic Beta Cell Plasticity Has a Key
Role in Diabetes

Beta cell plasticity is driven by a large number of transcription
factors, including ATF4, FOXA2, FOXO1, GATA6, GLIS3, HES]I,
HNF1A, HNF4, ISL1, LDB1, MAFA, MAFB, MNX1, NEURODI,
NGN3, NKX2, NKX6, NRX, PAX4, PAX6, PDX1, SOX9, STAT3,
and ZEB [21, 154]. Only three transcription factors of this list
(GATA6, NEURODI, and ZEB) have been associated with can-
cer cell plasticity (see Table 1). The mTOR signaling pathway
(including GRB10, RPTOR, and RICTOR) is crucial for beta cell
maturation [21]. Signaling pathway plasticity is often increased by
noncoding RNAs. Gojani et al. [21]. list ~30 microRNAs and ~20
long noncoding RNAs involved in beta cell plasticity.

4.5 | Modulation of Beta Cell Plasticity 1: Beta Cell
Regeneration

Beta cell regeneration emerged as a potential therapy for diabetes
[21]. Transient treatment of pancreatic ductal progenitor cells
from juvenile and adult type 1 diabetes patients by the FDA-
approved EZH2 inhibitors, GSK126 and Tazemetostat, induced
a shift of progenitor cells towards pancreatic beta cells [163].
Beta cell-derived progenitor cells were redifferentiated upon the
addition of the “redifferentiation cocktail” containing soluble
nicotinamide, exendin-4, activin A, and high glucose [154].

4.6 | Modulation of Beta Cell Plasticity 2:
Transdifferentiation to Beta Cells

Transdifferentiation of other cells into beta cells is another widely
studied option. Pancreatic alpha cell transdifferentiation into beta
cells is a natural route of beta cell regeneration. This process
can be enhanced by glucagon receptor antibodies. The process is
mediated by FGF21 and glucagon-like peptide 1 (GLP1) secretion
[21]. Overexpression of several beta cell plasticity-increasing
transcription factors (listed above), such as MAFA, NGN3, PAX4,
PAX6, and PDX1, prompted their examination as candidates for
potential targeted expression therapy [153]. Adipose-derived mes-
enchymal stem cells can transdifferentiate into beta cells. This
process is modulated by the upregulation and downregulation of
FOXOL1 in early and later phases of transdifferentiation, respec-
tively [21]. Bone marrow-derived mesenchymal stem cells were
transdifferentiated into beta cells using the “transdifferentiation
cocktail” of high glucose, nicotinamide, beta-mercaptoethanol,
betacellulin, and IGF1 [21]. Human umbilical cord mesenchymal
stem cells were shown to reverse beta-cell dedifferentiation.
This reversion was facilitated by the secretion of an interleukin
receptor antagonist by stem cells [21].

4.7 | Modulation of Beta Cell Plasticity 3: Beta Cell
Proliferation

Beta cells are usually quiescent. Their proliferation can be
stimulated by inhibiting the DYRKIA kinase. Fostamatinib is an
inhibitor of DYRK1A kinase approved to treat rheumatoid arthri-
tis [21, 132]. Combining a DYRKIA inhibitor with a glucagon-like
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peptide 1 receptor agonist accelerates beta cell proliferation
[21]. These numerous examples demonstrate the rich repertoire
offered by beta cell plasticity for anti-diabetic therapies against
both type 1 and type 2 diabetes.

5 | Modulation of Network Plasticity in
Neurodegeneration

Despite the importance of cell and cellular network reconfigu-
rations in neurodegeneration [165], there are only a few studies
on network plasticity in these diseases. Proteins of the periphery
of gene regulatory networks were shown to have preferential
contribution to the development of Alzheimer’s and Parkinson’s
disease [50, 51]. Importantly, known Alzheimer’s disease genes
were shown to be in the periphery of gene regulatory networks
and to be connected to network hubs [51]. This is a typical
network configuration that increases network plasticity [10].

5.1 | Key Network Plasticity-Related Players of
Neurodegenerative Disease Progression

Several proteins emerged as important hubs of plasticity-related
neurodegenerative disease progression. Histone HI is a key
modulator of chromatin plasticity. Disregulation of histone
H1 expression, localization, and posttranslational modifications
has been shown to contribute to neurodegenerative diseases
[166]. Disease-associated changes of the key antioxidant pathway
NRF2/KEAPI are involved in the pathogenesis of Alzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, and amyotrophic
lateral sclerosis, leading to protein aggregation, mitochondrial
dysfunction, and neuroinflammation [167]. Alzheimer’s disease-
associated posttranslational modifications transform several
molecular chaperones to epichaperones, i.e., multimeric scaf-
folds that rewire protein—protein interaction networks [73]. An
increase in presynaptic plasticity is associated with exosomal
protein function and may significantly compensate for initial
neurodegeneration [168].

Recently, several microRNAs have been shown to play key roles in
the development of neurodegenerative diseases. A brain-enriched
microRNA, mirl37, modulates amyloid-beta production, tau
phosphorylation, synaptic plasticity, and neuroinflammation,
preserves mitochondrial function, and mitigates oxidative stress.
The involvement of mirl37 in the development of Alzheimer’s
disease posits this microRNA as a potential biomarker and drug
target candidate [169]. Mirl46a-5p is a potent anti-inflammatory
agent. Network analysis indicated a mirl46a-5p-associated signal-
ing subnetwork involved in Alzheimer’s disease pathology [170].
Downregulation of miR17, miR20a, and miR106b was involved in
the elevation of thioredoxin-interacting protein (TXNIP), which
activated ASK-1, INK, and MAPK, as well as contributed to the
misfolding and aggregation of a-synuclein, a hallmark of Parkin-
son’s disease [171]. Additionally, 25 long noncoding RNAs were
identified as participants in an Alzheimer’s disease-associated
interaction network of the temporal cortex of 396 postmortem
brain RNA-seq samples [172].

5.2 | Recent “Plasticity-Breakthroughs” in
Neurodegenerative Disease Clinical Trials

There are several ongoing clinical trials for molecules improving
synaptic plasticity in Alzheimer’s disease, including a phase
II trial of Levetiracetam, an approved drug against epileptic
seizures [173, 174]. Additional ~30 clinical trials in Alzheimer’s
disease address the inhibition of beta-amyloid protein or tau
protein aggregation, the inhibition of amyloid precursor protein
cleaving beta-secretase (BACE), enhanced beta-amyloid or tau
plaque clearance, and enhanced glial protection, or involve
glutamate modulators and acetylcholinesterase inhibitors [175].
The early phase of Parkinson’s disease is conventionally treated
with dopamine analogues. However, in later phases, the loss
of dopamine-responsive neurons requires regenerative thera-
pies. Restoration of neuronal activity, both in Alzheimer’s and
Parkinson’s disease, increasingly involves stem cell therapy. There
are more than a hundred ongoing clinical trials in this area
[24].

Recently, breakthroughs in three clinical trials in Alzheimer’s
disease were reported [176-178]. A phase randomized, double-
blind, placebo-controlled I1a trial involved 49 Alzheimer’s disease
patients, and used specially treated, allogeneic bone marrow-
derived mesenchymal stem cells (laromestrocel/Lomecel-B),
which did not provoke an immune response. The treatment
was safe, improved cognitive functions, and showed a potential
improvement in brain structure [176]. In Parkinson’s disease, a
US/Canadian phase I trial used human embryonic stem cell-
derived dopaminergic neurons [178], while a Japanese phase
I/II trial used allogeneic induced pluripotent stem cell-derived
dopaminergic progenitors [177]. Both trials showed improvement
in motor functions—even as large as 50%. Moreover, there was
no incidence of dyskinesia (involuntary movements), which has
been a common problem with earlier fetal-tissue transplants
[177, 178]. These studies show a very promising sign of how
cellular and network plasticity may be used in regeneration
therapies of currently largely untreatable neurodegenerative
diseases.

6 | “Plasticity Drugs” and “Plasticity Therapies”:
Research Gaps and Perspectives

This review has convincingly demonstrated that in recent
years, a large number of drug targets (see e.g., Table 1)
and therapeutic options (such as regeneration therapies) have
become available, all of which are based on our increasing
understanding of the plasticity of diseased cells and their net-
work representations. We refer to the drugs related to cell
plasticity changes as “plasticity drugs” and the therapeutic
options utilizing cell plasticity remodeling as “plasticity thera-
pies.”

There are several research areas of plasticity changes in protein—
protein interaction, signaling, and gene regulation networks
related to cancer, diabetes, and neurodegeneration, which require
greater attention (Figure 5).
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FIGURE 5 | Plasticity drugs and plasticity therapies: research gaps and perspectives. The background image was designed by Freepik.

6.1 | Disease-Specific Intermodular Connections
in Cancer and Other Diseases

In plastic networks, the boundaries of network modules become
“fuzzier” by the emergence of intermodular connections [26, 32].
In agreement with this, an increasing number of studies show the
importance of novel, intermodular network connections specifi-
cally characterizing the disease state. Most of these connections
are provided by novel network edges or by peripheral network
proteins [31, 32]. The contribution of intermodular hubs can
also be observed. BRAF and IRSI are classic examples of the
intermodular hubs in cancer [25, 67]. In signaling networks, these
connections are disease-specific signaling pathway cross-talks [5,
22]. Disease-specific cross-talks significantly contribute to cancer
development [25, 56, 58]. Disease-specific interactome remod-
eling has recently explored in diabetes [179] and Alzheimer’s
disease [180].

Newly formed, disease-specific, intermodular network edges
or nodes often shortcut network regions that were distant in
healthy cells. Using this mechanism, these disease-specific, “non-
canonical” connections may re-route signaling pathways (see
Section 3.1.1) [31, 32]. Reorganization of the molecular chaperone
protein-protein interaction network has also been observed in
protein-folding related diseases, such as Alzheimer’s disease
[180].

Examinations of disease-specific, intermodular connections raise
the possibility of network remodeling-driven drug combinations
[69], such as those inhibiting the RAS-ERK and PI3K-mTORC
pathways [68]. A typical “non-canonical” connection of a cancer-
specific receptor tyrosine kinase network was found between
ERBBI1 and IRSI [32].

Novel, disease-specific intermodular connections, as well as
other disease-specific protein—protein interactions, such as those
establishing positive feedback loops in epithelial-mesenchymal
transition networks involved in cancer metastasis and drug resis-
tance formation [49], may be targeted by novel, edgetic therapies
[113]. Edgetic therapy is exemplified by the drug design strategy
of chemically induced proximity. These interventions introduce
bivalent molecules to cells, binding to two target proteins and
building a “molecular glue” between them [181]. Such “glues”
may change the phosphorylation status of a protein by gluing it
to a protein kinase or phosphatase [182]. Sequestering one of the
proteins involved in the novel, disease-specific “non-canonical”
connections to, e.g., a different subcellular compartment or by
binding to a protein mega-complex, may efficiently restore the
disease-specific reorganization of signaling pathways.

Targeting novel, disease-specific intermodular connections by
methods summarized in this subsection offers novel therapeutic
routes to combat diseases, which are different from the traditional
therapies targeting specific proteins or signaling pathways. Since
intermodular connections play a key role in modulating net-
work plasticity (see Section 2), intermodular connection-specific
interventions also enrich plasticity-related therapies.

6.2 | Core-Periphery Network Remodeling in
Cancer and Neurodegeneration

The increase in network plasticity often involves the reconfigura-
tion of the network core, which becomes larger and fuzzier due
to increased core-periphery connections [10, 26]. In agreement
with this, a frequently used mode of network remodeling in
a disease state is the disease-specific connection of peripheral
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nodes to central network hubs. For example, these peripheral
nodes play a prominent role in Alzheimer’s and Parkinson’s
disease development [50, 51]. Regretfully, studies on network
core remodeling in cancer development or in neurodegeneration
are largely missing. Such studies would open new areas of drug
design and therapy development.

6.3 | Plasticity-Related Cancer Signaling Pathways

There are several master transcription factors that govern cell
plasticity in cancer. Their inhibition already provides important
therapeutic options and may further enrich our repertoire in the
future (Table 1). Several signaling pathways, such as NOTCH and
HIPPO, directly contribute to cancer cell plasticity. Inhibition of
NOTCH or its ligand, DLL3, has investigational or approved drugs
already (Table 1) [66, 88, 90].

Specific attention is already directed towards the plastic, interme-
diate states of epithelial-mesenchymal transition. The drug target
candidate NRGI1 or the drug target AAK are key examples of this
type of promising future therapeutic intervention [48, 114, 115].

6.4 | Cancer Differentiation and Sequential
Therapies

Differentiation therapies were first suggested in 1971 [131] and
have become well-established in the treatment of acute myeloid
leukemia [3]. However, a large number of recent studies have
shown that a much wider application of differentiation therapies
might be feasible using cancer adipose differentiation provoked
by Rosiglitazone or melanoma stem cell differentiation by G
protein-coupled estrogen signaling as examples [111, 140].

Recently, sequential therapies, targeting cancer cells first by a
“cellular memory drug” [53], such as PI3K, mTOR, IGFR1, or
HDAC inhibitors, followed by a targeted therapy (e.g., by BRAF
or MEK inhibitors) proved to be useful to eradicate pre-existing
drug-resistant cells first and to kill most of the cancer cells only
as a second step [7, 53, 141, 144, 145].

6.5 | When Plasticity is Helpful: Cancer
Resensitization and Regeneration Therapies

Cancer cell plasticity is usually a curse, since it leads to metastasis,
the development of cancer stem cells, and drug resistance.
However, there are a number of cases when the “miraculous
weapon” of cancer cells, their plasticity, turns against them. As
a first example of this situation, the metastasis-prone cancer
mesenchymal state becomes sensitive to quite a few drugs, such
as inhibitors of the IRE-alpha-MKK4 arm of the endoplasmic
reticulum stress pathway, BET inhibitors, or ferroptosis (e.g.,
using the combination therapy of SCD and GPX) [122-124]. As
a second example, drug resistance can be re-induced by “drug
holidays,” i.e., periods when the drug administration is ceased
[146, 147]. As a third example, when cancer cells develop drug
resistance towards a specific drug, they often become sensitive to
another [3]. Thus, the development of shorter time windows for
treatments, through careful monitoring of adequate biomarkers

and by changing the therapy to a quite different mode of attack,
may provide a rich repertoire of sequential therapies in the
future—therapies that re-sensitize the drug-resistant cancers.

The increase of cell plasticity is a key goal of regeneration
therapies, which have become increasingly used in the treatment
of diabetes and neurodegenerative diseases. Beta cell regenera-
tion often uses the redifferentiation of highly plastic pancreatic
ductal or beta cell progenitor cells [154, 163]. Another route of
beta cell regeneration is the transdifferentiation of other cells
(such as alpha cells or stem cells), which can be achieved
by “transdifferentiation cocktails,” gradually diminishing the
initially high plasticity of cells targeted by the treatment [21]. Very
recently, stem cell therapy became rather promising for treating
Alzheimer’s and Parkinson’s disease [24, 176-178].

6.6 | System Level and Single Cell Network Data
and Models: Promises of the Future

Over the past few years, both protein-protein interaction network
(interactome) and signaling network data have expanded to
encompass the entire human proteome [183-185]. In addition,
system-level network dynamic models (covering 16% to 40% of
the human proteome) have been applied to investigate therapy
resistance, perform in silico clinical trials, and conduct large, in
silico drug combination screens [148, 186-189]. However, with
only a few exceptions [47, 50], the studies on network plasticity
used networks covering only a small part of the proteome, or
dynamic models restricted to only a relatively small number
of network nodes. System-level network models are extremely
useful to find novel cancer plasticity-related signaling path-
ways and pathway cross-talks; novel cancer cell “differentiation
cocktails”; sequential therapy targets, timing, and biomarkers,
as well as novel resensitization therapies. The use of system-
level network data and models in the treatment of diabetes and
neurodegeneration is a promising future research trend [148,
190-193].

Important developments also include time series analysis of
single-cell RNA-sequencing data, giving multiple snapshot anal-
yses of the underlying gene regulatory network [194]. Spatial and
time-series single-cell multiomics dynamic network analysis is a
rapidly increasing, very promising area of future studies [195, 196].

7 | Conclusion

An initial increase in cell plasticity accompanies most cellular
adaptive processes. This increase is typically followed by a subse-
quent decrease in plasticity. Cancer-induced cell reprogramming
often involves the high plasticity of epithelial-mesenchymal
transition (EMT), which may lead to the formation of extremely
plastic cancer stem cells. Cell plasticity changes govern beta cell
regeneration therapies in diabetes, as well as the very recently
expanding stem cell therapies in Alzheimer’s and Parkinson’s
diseases.

Plasticity changes of protein structure networks show how simple
macromolecular structures can already display a “molecular
intelligence.” Increased plasticity of intrinsically disordered pro-
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teins (IDPs), the integrative plasticity of multiple phosphorylation
events, molecular chaperones, and increased intracellular water
content all contribute to the development of cellular plasticity.
Importantly, 12 out of the 55 cell plasticity-related drug targets in
cancer are IDPs (Table 1). Not surprisingly, IDPs also play a key
role in EMT.

The size of protein-protein interaction networks and signaling
networks has recently reached the entire human proteome.
Plasticity at the cellular level is often induced by intermodular
connections (e.g., cross-talks between signaling pathways). These
adaptation-specific, “noncanonical” network edges often connect
distant network regions. Adaptation induces novel connections
between network nodes at the network periphery and those in
the network core. This may cause a remodeling of the network
core, which induces cellular reprogramming.

As a key point, this review reveals how this expanding organized
network data structure can be used to develop novel therapeutic
options: 1) discovering and blocking cancer plasticity-related
signaling pathways and cross-talks; 2) using the plasticity of
EMT to avoid the highly plastic intermediate EMT states and
cancer stem cell-directed EMT; 3) designing novel differentia-
tion therapies (such as directing EMT towards adipocytes and
differentiating cancer stem cells) and 4) eradicating pre-existent,
plastic, drug-resistant cells by sequential therapies. Table 1 lists
55 plasticity-related cancer drug targets, where 20 have already
approved drugs, 9 have investigational drugs, and 26 are drug
target candidates.

There has been a recent expansion of pancreatic beta cell
regeneration therapy for type 1 and type 2 diabetes, as well as stem
cell therapies in Alzheimer’s and Parkinson’s diseases. Network
analysis offers great assistance in discovering key intermodular
connections and master regulators to protect existing beta cells
and neurons, as well as in designing novel cell differentia-
tion cocktails to regenerate them. Combinations of beta-cell
endoplasmic reticulum stress or beta-amyloid, tau protein, and
alpha-synuclein aggregation inhibitors can also be designed using
network analysis.

Examination of disease-specific, novel intermodular connections
may lead to highly specific edgetic therapies that target these
connections. A more detailed analysis of network core and
network periphery changes will offer a novel understanding
of disease-specific plasticity changes and may lead to novel
drug candidates. Blocking plasticity-induced alternative signaling
pathways, network-designed extension of differentiation and
sequential therapies, as well as identifying novel sensitive points
of drug-resistant cancer cells (such as ferroptosis), are emerging
as new hopes in anti-cancer therapies. Finally, the use of recently
available proteome-wide network data and models, which offer
in silico drug combination screens and in silico clinical trials, will
give a new burst of medical research expanding all the therapeutic
options listed in this review.

Note added in Proof
The rapidly increasing field gave several important discoveries

between the acceptance and publication of this manuscript. Can-
cer, diabetes and neurodegeneration are, in fact network diseases

as described by Hans Westerhoff’s highly insightful paper [197]
showing that plastic molecular networks can be regarded as
efficient molecular neuronal networks. Meena et al., [198] showed
that five major interconnected axes of phenotypic plasticity in ER-
positive breast cancer: metabolic reprogramming, EMT plasticity,
luminal-basal switching, stemness and drug resistance drive
one another. TNF and Oncostatin M can drive proneural to
mesenchymal transition of glioblastoma tumor cells.[199] HNF1B
was implicated as a transcription factor potentially involved in
the plasticity of hepatocellular carcinoma cell heterogeneity and
transformation into intrahepatic cholangiocarcinoma.[200] The
EMT network was extended by the addition of a redox-adhesion-
exosome hub linking EMT plasticity to ferroptosis.[201] The
NSUN protein family (i.e. NOP2/Sun RNA methyltrasnferases),
mediators of 5-methylcytosine RNA methylation of a large variety
of RNAs emerged as central players of tumorigenesis and mainte-
nance of cancer cell plasticity.[202] Both HNF1B and NSUN can
be regarded as plasticity related potential drug targets.
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