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Under laboratory conditions 80% of yeast genes seem not to be
essential for viability1. This raises the question of what the
mechanistic basis for dispensability is, and whether it is the
result of selection for buffering or an incidental side product.
Here we analyse these issues using an in silico fluxmodel2–5 of the
yeastmetabolic network. Themodel correctly predicts the knock-
out fitness effects in 88% of the genes studied4 and in vivo fluxes.

Dispensable genes might be important, but under conditions not
yet examined in the laboratory. Our model indicates that this is
the dominant explanation for apparent dispensability, account-
ing for 37–68% of dispensable genes, whereas 15–28% of them
are compensated by a duplicate, and only 4–17% are buffered by
metabolic network flux reorganization. For over one-half of those
not important under nutrient-rich conditions, we can predict
conditions when they will be important. As expected, such
condition-specific genes have a more restricted phylogenetic
distribution. Gene duplicates catalysing the same reaction are
not more common for indispensable reactions, suggesting that
the reason for their retention is not to provide compensation.
Instead their presence is better explained by selection for high
enzymatic flux.

Although many single-gene deletions have negligible effects on
growth rates under laboratory conditions1,6, the causes and evolu-
tion of gene dispensability has remained a controversial issue7–9. The
capacity of organisms to compensate mutations partly stems from
gene duplicates8, whereas alternative metabolic pathways might also
have a role7,10–12. The one previous systematic analysis on a eukary-
otic organism13 used a gene’s rate of evolution as a proxy for
dispensability, a supposition now considered questionable14. A
third possibility, and one that has received relatively little attention,
is that genes only seem to be non-essential, and that they have
important roles under environmental conditions yet to be repli-
cated in the laboratory8,15.

To investigate the causes of gene dispensability, the metabolic
capabilities of the Saccharomyces cerevisiae network were calculated
using flux balance analysis (FBA)16. The previously reconstructed
network2,4 consists of 809 metabolites as nodes (including external
metabolites), connected by 851 different biochemical reactions
(including transport processes). The method first defines a solution
space of fluxes of all metabolic reactions in the network that satisfy
the governing constraints (that is, steady state of metabolites, flux
capacity, direction of reactions, nutrients available in the environ-
ments; see Methods). Next, the optimal use of the metabolic
network to produce major biosynthetic components for growth
can be found among all possible solutions using various optimiz-
ation protocols3,4. The FBA and MOMA5 (minimization of meta-
bolic adjustment) protocols enable us to predict the phenotypic
behaviour of nutritional changes and gene deletions, along with the
concomitant changes in flux distributions.

We start by asking how well the mathematical model predicts
experimentally measured fluxes, and the effects of gene deletions.
We then use it to address the relative importance of the suggested
mechanisms for gene dispensability. Finally, we ask whether dis-
pensability is a directly selected feature or a side consequence.

Owing to the availability of systematic knockout studies1 and
some experimentally measured fluxes under four different growth
conditions17, we can directly test the predictive power of the
mathematical protocol. We initiated the model to mimic the growth
conditions used in these experimental studies. The model correctly
predicts: (1) relative differences in flux values; (2) presence or
absence of fluxes in 91–95% of the cases; (3) the fitness effects of
88% of single-gene deletions under nutrient-rich growth con-
ditions4 (see Supplementary Tables S1–S3). Although the model
ignores details of gene regulation, the predicted variations in the
activity of metabolic pathways across environments are consistent
with observations (Supplementary Tables S1 and S2; see also ref. 3).
The method, although robust, is not perfect. Although the fre-
quency of experimentally verified essential genes in the group of
genes with zero predicted flux is low on rich medium, it is not zero
(8.8% for genes with zero flux compared with 28.8% for the rest;
x2 ¼ 18.54, P , 1024, 1 degree of freedom (d.f.)). The few essential
genes in this group probably represent incomplete biochemical
knowledge, missing components from the biomass equation, or
pleiotropic gene functions4.
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To investigate the possible causes of empirically observed gene
dispensability, we compared the predicted and experimentally
measured effects of enzyme deletions under nutrient-rich con-
ditions (see Methods). Enzymes were classified into five mutually
exclusive groupings on the basis of the presence of isoenzymes,
predicted dispensability and flux distribution: (A) enzymes that are
inactive under nutrient-rich conditions but active under some other
environments; (B) single-copy enzymes that encode essential reac-
tions; (C) duplicated isoenzymes that encode essential reactions;
(D) single-copy enzymes that encode dispensable reactions with
non-zero enzymatic flux; (E) duplicated isoenzymes that encode
dispensable reactions with non-zero enzymatic flux (Fig. 1; see also
Supplementary Table S4).

One possible reason that a gene might be non-essential is that its
function is not required under a given circumstance. Indeed, the
model predicts that a large fraction of experimentally ‘verified’ non-
essential genes should have zero enzymatic flux under nutrient-rich
conditions (68.3%). This result indicates that many enzymes make
no contribution to the production of biomass components under
this condition.

Can we find conditions under which the apparently non-essential
genes with zero predicted flux have an important fitness contri-
bution? As with a previous study3, we set up nine different growth
conditions that might have been representative during the evolution
of this species (Fig. 2), and performed enzyme-based deletion
studies. Under nutrient-rich medium, the fraction of essential
reactions and reactions with non-zero flux are especially low
(Fig. 2). Importantly, more than half of the experimentally verified
non-essential genes that are predicted to have zero flux under
nutrient-rich condition appear to have non-zero flux under some
other conditions (54.5%, 79 out of 145 cases). These we define as
‘conditionally active’ genes. This contrasts with the unconditionally
active (non-zero flux under all conditions examined) genes and
those for which we cannot find conditions under which they are
active. These results suggest that 37–68% of the seemingly dispen-
sable genes are environmentally specific (Supplementary Table S4).

Many of the conditionally active genes (76%) are predicted to
catalyse reactions that are essential under specific conditions. It
remains to be seen whether experiments will actually confirm the
detailed predictions.

If the above classifications are correct, one should expect differ-
ences in the phylogenetic distribution of enzymes with uncondi-
tional and conditional activity, as the latter group can more easily be
lost during evolution if the appropriate environment becomes rare.
We investigated this issue using a database18 of enzymatic reactions
across 133 sequenced genomes. We found that enzymes having non-
zero fluxes under only a few environmental conditions tend to
have a more limited phylogenetic distribution than enzymes with
unconditional activity (Fig. 3).

Why is it that there are dispensable genes associated with non-
zero predicted fluxes under nutrient-rich conditions? To shed light
on the relative importance of the compensation mechanisms
(duplication versus flux reorganization in the network), we first
compared the fraction of experimentally verified essential genes
between single-copy enzymes and duplicated isoenzymes. For the
comparison, only genes that are predicted to encode essential
reactions were considered (Fig. 1, class B and C). The low fraction
of essential enzymes with isoenzymes strongly supports previous
claims that dispensability partially results from redundant gene
duplicates8. The two exceptions (failure of compensation) might be
due to lack of duplicate enzyme activity in the same subcellular
compartment (Supplementary Table S5). Assuming that all or none
of the non-essential genes of class E are due to gene duplication
rather than flux reorganization, we obtained a lower (14.6%) and
upper estimate (27.8%) for the contribution of gene duplication to
dispensability (Supplementary Table S4).

The ability of duplicates to buffer each other’s loss may be
considered a special case of a more general mode of compensation,
in which the metabolic network adjusts the metabolic flux, and, in so
doing, mitigates the loss of individual genes. Compensation occurs
only if the original enzyme has a contribution to biomass production
(non-zero flux), but the underlying reaction is dispensable for
growth19 (class D and E, Fig. 1). To see the effect of flux reorganization
on in vivo gene dispensability independent of duplicate gene copies,
we compared the fraction of experimentally verified essential genes
between class B and D under the assumption that essential and
dispensable reactions should differ in the network’s ability to com-
pensate for their loss. Indeed, this is what we observed (Fig. 1).
However, this mode of compensation can only explain 3.8–17% of
gene dispensability (Fig. 1; see also Supplementary Table S4).

What factors might limit the compensatory capability of the
metabolic network? Our model demonstrates that the extent of flux

Figure 1 Number of experimentally verified essential and non-essential genes in different

categories. The classes are: (A) predicted to have zero flux under nutrient-rich conditions,

but non-zero flux in at least one other environment; (B) single-copy genes predicted to

catalyse essential reactions; (C) duplicate genes predicted to catalyse essential

reactions; (D) single-copy genes predicted to catalyse dispensable reactions; and (E)

duplicate genes predicted to catalyse dispensable reactions. When comparing groups B

and C, of the 68 metabolic genes that are predicted to catalyse essential reactions, 33 are

known to have a duplicated isoenzyme. Only about 6% of those that have an isoenzyme

are observed to be essential in vivo, whereas the proportion of essential genes is roughly

69% among those without an isoenzyme (x2 ¼ 28.1, d.f. ¼ 1, P , 1026). When

comparing groups B and D, of the 47 single-copy genes 35 are predicted to catalyse

essential reactions whereas 12 are predicted to be dispensable. The fraction of essential

genes is indeed higher in the former class (about 69% versus about 33%, x2 ¼ 4.6,

P , 0.05). A plus sign indicates the presence and a minus sign the absence of

isoenzymes/flux compensation.

Figure 2 The proportion of genes predicted to have non-zero flux and to be essential

under different growth conditions. Single-enzyme knockouts were simulated under nine

different growth conditions listed below. The total number of investigated enzymes was

310 for all conditions (isoenzymes were counted only once). Environments were: YPD, rich

glucose, low O2; min1, minimal glucose, low O2; min2, minimal glucose, anaerobic; min3,

minimal ethanol, low O2; min4, minimal acetate, low O2; min5, minimal glucose, carbon

limited; min6, minimal glucose, nitrogen limited; min7, minimal glucose, phosphate

limited; min8, minimal glucose, sulphur limited.
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reorganization positively correlates with the predicted fitness effect
of the compensated knockout (Supplementary Fig. S1), suggesting
that the yeast metabolic network has difficulties in tolerating large
flux reorganization.

Although it is clear that the presence of isoenzymes has a large
effect on gene dispensability, is it likely that dispensability has
evolved to enable such compensation or might it instead be a side
product? In the former case, one would expect gene duplicates to be
preferentially maintained if they specify a crucial function to
provide a shield against intracellular noise20. If it were so, then
one would expect the most important reactions of the network to be
under the control of isoenzymes. In contrast to expectations,
essential reactions are not more likely to be catalysed by isoenzymes
compared to non-essential reactions (Supplementary Table S6).
One possible alternative explanation for the maintenance of iso-
enzymes is that selection favours enhanced dosage of the same
product to provide high enzymatic flux21. We found strong support
for this theory: the average predicted flux of reactions catalysed by
isoenzymes is higher under all conditions than that of reactions
catalysed by single-copy enzymes (Supplementary Table S7).

Although many suggest that the high number of dispensable
genes is evidence for the selection of robustness to perturbation, our
results support a different conclusion. For the most part, knockout
studies performed under nutrient-rich conditions provide a sub-
stantial underestimate of the number of genes that are essential
under some environmental conditions (Fig. 2). Moreover, non-
essential genes may make small but significant contributions to
fitness even under routine growth conditions, but the effects are not
large enough to be detected8,15. Of those that seem to be truly
dispensable (non-zero flux and viable knockout), at least in the case
of gene duplicates, the dispensability is better explained as a side
consequence, rather than the result of selection to favour resilience.
These results, along with previous studies21,22, indicate that the
dosage requirements have an important influence on the evolution-
ary maintenance of gene duplicates in yeast.

Is it likely that environmental specificity explains much of the
apparent dispensability seen in other organisms? Recent systematic
deletion studies1,23–25 suggest that despite the apparent differences in
metabolic complexity and the extent of gene duplication across free-
living bacterial and eukaryotic species, the fraction of essential genes
under a given laboratory condition is generally low, in the range of
7–19%. In contrast to these low figures in free-living species, the
fraction of essential genes is 55–73% in the Mycoplasma genitalium
genome26. This is not simply due to a rarity of gene duplicates. We
suggest that, being a parasite with strict host and tissue specificity,
M. genitalium should have relatively few condition-specific genes.
We can test this hypothesis by comparing the proportion of single-

copy genes that are non-essential in yeast and in Mycoplasma. In
agreement with the theory, in yeast this is at least 62%, whereas this
drops to 24% in Mycoplasma. More direct evidence comes from a
data set on the growth phenotypes of mutant strains in Escherichia
coli27: most genes show severe fitness defects only under a small
fraction (10%) of the 282 conditions investigated (Supplementary
Fig. S2). Moreover, in agreement with the results on yeast metabolic
genes, condition-specific genes of E. coli show limited phylogenetic
distribution (Supplementary Fig. S3).

These issues are important, not least because they affect our
ability to test reliably hypotheses concerning the evolution of genes
and genomes. For example, the abundance of environmentally
specific genes in yeast might explain why dispensability under
nutrient-rich conditions only very weakly correlates with the rate
of protein evolution14. A

Methods
Filtered data sets used in this study
To investigate the metabolic network we used a previously compiled list of enzymatic
reactions in yeast2. The metabolic reconstruction gives accurate information on the
stoichiometry and direction of enzymatic reactions and on the presence of isoenzymes.
Cytosolic, mitochondrial and extracellular metabolites are treated separately, and the data
set also includes a list of transport reactions between compartments. Reactions catalysed
by isoenzymes were considered as a single flux, eliminating duplicate reactions. For data
analyses we restricted our attention to unambiguously classified enzymes; that is, those
with complete EC numbers. Sequence similarity between isoenzyme pairs was computed
by a pair-wise BLASTP28 search (we used an E-value of ,0.01 as a cutoff to recognize even
distant duplicated isoenzymes). We checked whether the duplicated isoenzymes act in
protein complexes, using both the compiled list on yeast metabolism and the MIPS
CYGD29 catalogue on known protein complexes, and these pairs (N ¼ 21) were excluded
from further analysis. Classification of the dispensability of genes on glucose-rich medium
(essential versus non-essential) was as provided by the Saccharomyces Genome Deletion
Project (http://www-sequence.stanford.edu/group/yeast_deletion_project/), which
contains information on large-scale knockout studies1. To minimize confounding factors
in designation of dispensability, multienzyme polypeptides, genes participating in protein
complexes (according to the MIPS CYGD catalogue of annotated complexes) and genes
with overlapping reading frames were excluded from all of the analyses. The KEGG
database18 was used to identify the enzymatic reactions of 133 bacterial and eukaryotic
species with complete genome sequences (a filtered set of genomes consisting of only one
genome per genus gives similar results).

Basic metabolic network model
Flux distribution and metabolic network capabilities were investigated by modification of
a previously elaborated genome-scale metabolic flux balance model of S. cerevisiae2–4. The
model starts by specifying the mass balance constraints around intracellular metabolites.
These constraints specify a series of linear equations of individual reaction fluxes that must
be fulfilled to enable steady state of metabolites. Mathematically, this is represented by
Sv ¼ 0, where S is the m £ n stoichiometric matrix, with m as the number of metabolites,
and n as the number of reactions. An Sij element of the stoichiometric matrix represents
the contribution of a jth reaction to metabolite i. The vector v represents the individual
fluxes of the network. Besides mass balance equations, reversibility/irreversibility
constraints are also imposed on individual internal fluxes (vi . 0 for irreversible
reactions). Import flux of external metabolites was constrained to be zero when not
available under the studied environment. The system also includes a biomass reaction
(with rate vgrowth) that represents the relative contribution of metabolites to the cellular
biomass of yeast (see Supplementary equation S1). Linear programming was used to find a
particular flux distribution that maximizes vgrowth under the described constraints and
defined nutrient uptake rates. We used this optimal flux configuration as the wild type
under the given growth conditions. We have investigated nine different environments (see
Fig. 2).

Calculating the fitness effect of gene knockouts
Enzyme deletions were simulated by constraining the flux of the corresponding reactions
to zero and calculating the knockout flux configuration under the assumption that
knockout metabolic fluxes undergo a minimal flux redistribution with respect to the flux
configuration of the wild type (minimization of metabolic adjustment, MOMA
protocol5). Using a different optimization protocol3,4 gives almost exactly the same results
(data not shown). Thus, calculation of knockout vgrowth requires quadratic programming
to find a point in flux space, which is closest to wild type. The software tool Cplex 7.5 was
used to solve these linear and quadratic optimization problems. We scaled fitness relative
to the wild type. Essential enzymes are defined as knockout strains having a growth rate of
at most one-half of the wild type. We observed a clear bimodal distribution of knockout
fitnesses: enzymes predicted to be non-essential have minimal or no effect on growth
(Supplementary Fig. S4). If the optimization problem for a given knockout was infeasible
we treated the enzyme as essential. Flux and knockout phenotype predictions were not
attempted for enzymes located on dead-end pathways or for enzymes with functions not
represented in the biomass equation4 (for example, glycoprotein, haem and chitin
metabolism, transfer RNA synthetases). In the case of reactions catalysed by isoenzymes, the

Figure 3 Relationship between phylogenetic distribution and condition specificity.

Enzymes having non-zero fluxes in most of the simulated environments have wide

phylogenetic distributions (analysis of variance: F ¼ 17.72; d.f. ¼ 3, 281; P , 1029).

Data are means (square symbols) ^ 2 standard errors.
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duplicates were deleted to obtain predictions on the dispensability of the underlying
enzymatic reaction.

Comparison of Mycoplasma and Saccharomyces genomes
We calculated the frequency of non-essential genes in the M. genitalium and the
S. cerevisiae genomes (only single-copy genes were considered). Gene duplicates were
identified using a BLAST protein search, with at least 25% amino acid similarity (using
different thresholds do not affect our results). The list of putative essential Mycoplasma
genes is from ref. 26. We found 1,881 out of 3,003 single-copy yeast genes that are non-
essential. This figure is 83 out of 356 genes for Mycoplasma.
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The ability to use environmental stimuli to predict impending
harm is critical for survival. Such predictions should be available
as early as they are reliable. In pavlovian conditioning, chains of
successively earlier predictors are studied in terms of higher-
order relationships, and have inspired computational theories
such as temporal difference learning1. However, there is at
present no adequate neurobiological account of how this learn-
ing occurs. Here, in a functional magnetic resonance imaging
(fMRI) study of higher-order aversive conditioning, we describe a
key computational strategy that humans use to learn predictions
about pain. We show that neural activity in the ventral striatum
and the anterior insula displays a marked correspondence to the
signals for sequential learning predicted by temporal difference
models. This result reveals a flexible aversive learning process
ideally suited to the changing and uncertain nature of real-world
environments. Taken with existing data on reward learning2,
our results suggest a critical role for the ventral striatum in
integrating complex appetitive and aversive predictions to co-
ordinate behaviour.

Substantial evidence in humans and other animals has outlined a
network of brain regions involved in the prediction of painful and
aversive events3–6. Most of this work has concentrated on its simplest
realization, namely first-order pavlovian fear conditioning; how-
ever, the predictions in this paradigm are rudimentary, showing
little of the complexities associated with sequences of predictors that
are critical in psychological investigations of prognostication7.
These latter studies led to a computational account called temporal
difference learning1,8, which has close links with methods for
prediction, and optimal action selection, in engineering9. When
applied to first-order appetitive conditioning, temporal difference
learning provides a compelling account of neurophysiological data,
both with respect to the phasic activity of dopamine neurons in
animal studies, and with blood-oxygenation-level-dependent
(BOLD) activity in human functional neuroimaging studies10–15.
However, beyond this simple paradigm, the utility of temporal
difference models to describe learning remains largely unexplored.
Here we provide a neurobiological investigation based on aversive
and, importantly, sequential conditioning.

We used fMRI to investigate the pattern of brain responses in
humans during a second-order pain learning task. Fourteen healthy
subjects were shown two visual cues in succession, followed by a
high- or low-intensity pain stimulus delivered to the left hand
(Fig. 1a) (see Methods). Subjects were told that they were perform-
ing a study of reaction times and were asked to judge whether the
cues appeared on the left or on the right side of a display monitor.
The second cue in each sequence was fully predictive of the strength
of the subsequently experienced pain; however, the first cue only
allowed a probabilistic prediction. Thus, in a small percentage of
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