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Chaperones come of age
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Abstract Chaperone function plays a key role in repairing proteotoxic damage, in the maintenance of cell architecture,
and in cell survival. Here, we summarize our current knowledge about changes in chaperone expression and function
in the aging process, as well as their involvement in longevity and cellular senescence.

INTRODUCTION: CONVENTIONAL AND
NONCONVENTIONAL ROLES OF MOLECULAR
CHAPERONES

Chaperones are ubiquitous, highly conserved proteins,
which probably played a major role in the evolution of
modern enzymes (Hartl 1996; Csermely 1997, 1999; Bu-
kau and Horwich 1998). Chaperones are vital for our cells
during their whole lifetime. However, they are needed
even more after environmental stress leading to proteo-
toxic damage. Besides the need for assistance in protein
folding and refolding, cellular life also requires a constant
remodeling of cell structure. In accordance with this,
chaperones are ideal candidates for the long-sought con-
stituents of a cytoplasmic meshwork, originally named
microtrabecluar lattice by Keith R. Porter (Wolosewick
and Porter 1979; Pratt 1997; Csermely 2001a). Various tar-
gets of molecular chaperones: (1) newly synthesized pro-
teins, (2) ‘‘constantly damaged’’ (mutant) proteins, (3)
newly damaged proteins, and (4) constituents of the cy-
toplasmic meshwork are competing with each other. Med-
ical efforts of the last 2 centuries potentially enhanced our
chances to be the victim of multigenic, ‘‘civilisation dis-
eases’’ by increasing the number of chaperone-repaired,
phenotypically silent mutations in the human genome
and by allowing us to survive to the age when the in-
creasing competition for the buffering capacity of chap-
erones by damaged proteins of the aged organism helps
to expose the silent mutations phenotypically (Rutherford
and Lindquist 1998; Csermely 2001b). Chaperone occu-
pancy emerges as an integrator of cellular, organismal,
and populational responses.
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PROTEIN DAMAGE AS A CONSEQUENCE AND
CAUSE IN AGING

During the life span of a stable protein, various posttrans-
lational modifications occur. Protein stability is abrogated
by numerous noxious insults, including backbone and side
chain oxidation, glycation, deamidation of asparaginyl and
glutaminyl residues and the subsequent formation of iso-
peptide bonds. (Wright 1991; Stadtman and Berlett 1998).
Susceptibility to various proteotoxic damages is increased
because of transcriptional and translational errors and the
resulting folding defects (Dukan et al 2000). Aging is char-
acterized by an increased rate of protein modification ag-
gravating the folding homeostasis. As we shall describe
later, chaperone function is impaired, and therefore an in-
crease in protein degradation is required. However, activ-
ity of the major cytoplasmic proteolytic apparatus, the pro-
teasome, also declines with aging and is compromised by
glycation (Conconi et al 1996; Bulteau et al 2001). More-
over, cross-linked and glycated proteins are often effective
inhibitors of proteasomal function in vitro (Friguet et al
1994; Bulteau et al 2001). Aggregation also leads to a near-
ly quantitative proteasomal inhibition and cell cycle arrest
in vivo (Bence et al 2001). Lysosomal protein degradation
is also impaired in aged rats (Cuervo and Dice 2000), prob-
ably because of the lipofuscin-mediated inhibition of au-
tophagy (Terman et al 1999). Accumulation of misfolded
proteins and attenuation of defensive mechanisms result
in the buildup of protein aggregates (reviewed by Sherman
and Goldberg 2001), which have a deleterious effect on
cellular function, at least in postmitotic tissues, and are a
causative factor in the diseases of aging.

CHAPERONE INDUCTION IN THE AGING
PROCESS

The growing number of unfolded polypeptide chains
may titrate out the chaperones from the heat shock factor
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Table 1 Chaperone levels and expression in aging

Chaperone Change/model system References

Changes in the constitutive levels of chaperones in aging
Hsp22, Hsp23, Hsp70a Elevated in Drosophila Wheeler et al 1995
Hsp47, Hsp70a Elevated in rat kidneys Maiello et al 1998; Razzaque et al 1999
Hsc70a Unchanged in hepatocytes Wu et al 1993
Hsc70a Decreased in testis Krawczyk and Szymik 1989
Hsc70a Elevated in liver of very old rats Cuervo and Dice 2000
Hsp70a Unchanged in rat skeletal muscle Locke 2000

Changes in chaperone stress inducibility in aging
Hsp27 Heat induction is impaired in human peripheral blood

lymphocytes
Rao et al 1999

Heme oxygenase (Hsp32) Oxygen damage induction is impaired in liver of se-
nescence-accelerated mice

Nakanishi and Yasumoto 1997

Hsp60 Heat induction is impaired in human peripheral blood
lymphocytes

Rao et al 1999

Hsp70a Heat, ischemia, restraint stress and mitogen induction
are impaired in liver, adrenal cortex, and lympho-
cytes of humans, mice, and rats

Deguchi et al 1988; Faassen et al 1989;
Blake et al 1991; Heydari et al 1994b

Hsp70a Heat and exercise induction is maintained in rat skele-
tal muscle and liver, respectively

Kregel and Moseley 1996; Locke 2000

a Hsp70 refers to the inducible, whereas Hsc70 refers to the constitutive form of the 70-kDa heat shock protein. For the sake of better
comparison and because of the lack of appropriate data in many publications, we did identify the exact genes of the Hsp70 family in each
of the studies cited.

b The large number of reports allowed us to cite only those that were among the first or provided a review of other studies.

(HSF) complex, thereby inducing a constitutive stress re-
sponse and elevated chaperone levels in aged organisms
(Table 1; Sőti and Csermely 2000). Although higher chap-
erone levels may reflect an adaptation mechanism, the
induction of various chaperones is impaired in aging (Ta-
ble 1). Whereas a few reports found no significant differ-
ence and inducibility, the vast majority of the reports
show that stress-induced synthesis of heat shock proteins
is impaired in aged animals. However, the extent of
changes may vary from chaperone to chaperone, as dem-
onstrated in an early study of Fleming et al (1988), who
showed a substantially altered pattern of heat shock pro-
tein induction in old fruit flies compared with young spe-
cies.

CHANGES IN THE MECHANISM OF CHAPERONE
INDUCTION

Differential chaperone induction in aged animals makes
it unlikely that a general mechanism is responsible for
the impairment in chaperone transcription. Indeed, the
level of HSF-1 as well as trimerization, phosphorylation,
and nuclear translocation are usually unchanged during
aging. However, binding of HSF-1 to the heat shock ele-
ment (HSE) is decreased in aged hepatocytes as well as
in myocardial cells (Locke and Tanguay 1996; Heydari et
al 2000). On the contrary, HSF activation and HSE bind-
ing is preserved in rat skeletal muscle (Locke 2000). The
exact mechanism of the defective activation and the tis-
sue-specific differences are not known. In recent years
several HSF-1 binding proteins were identified, all of

which modulate the heat shock response (Morimoto 1998)
and may well constitute the molecular mechanism of the
differential impairment of chaperone induction during
aging.

CHANGES IN CHAPERONE FUNCTION

Investigations on age-induced changes in chaperone func-
tion were mostly focused on a-crystallin: this abundant
lens protein is one of the longest-lived human proteins,
easy to purify, prone to proteotoxic damage, and plays
an important role in cataract formation. Chaperone activ-
ity of a-crystallin is markedly decreased in senile human
lenses (Cherian and Abraham 1995). Intramolecular di-
sulfide formation underlies this phenomenon, and repa-
ration partially restores the activity (Cherian-Shaw et al
1999). As another of the sporadic examples of chaperone
function in aged animals or human subjects, Hsp90 fails
to protect the proteasome in aged animals (Conconi et al
1996).

PROTEIN MISFOLDING, CHAPERONES, AND
CELLULAR SENESCENCE

Peripheral cells exhibit only a limited number of repli-
cations in cell culture. Morphological and functional
properties change until the cell reaches a nondividing—
senescent—state. Senescing fibroblasts cannot preserve
the induction of several chaperones, such as the collagen-
specific Hsp47, Hsp70, and Hsp90 (Cristofalo et al 1989;
Liu et al 1989; Miyaishi et al 1995). Similar to the mech-
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anism found in aged animals, activation and binding of
HSF-1 to the HSE is decreased in aged cells (Choi et al
1990). The exact mechanism of the defective activation is
not known.

Protein misfolding and aggregation can initiate cell cy-
cle arrest or apoptosis by 2 mechanisms, proteasomal in-
hibition and induction of the c-jun N-terminal kinase
(JNK)-dependent pathway, respectively (Volloch et al
1998; Bence et al 2001). A robust stress response can sup-
press JNK activation, by Hsp70-mediated JNK-phospha-
tase inhibition (Meriin et al 1999). Hsp70 can overcome
both caspase-dependent and -independent apoptotic
stimuli and confer immortality (Nylandsted et al 2000).

Several chaperones have a direct effect on cellular se-
nescence. Overexpression of Hsp27 in bovine arterial en-
dothelial cells leads to an accelerated growth and senes-
cence. Interestingly, when a mutant, nonphosphorylatable
form of Hsp27 was expressed, cellular senescence was
hindered (Piotrowicz et al 1995). When a mortality factor
was isolated from cytoplasmic extracts of senescing (mor-
tal) fibroblasts, it turned out to be a member of the Hsp70
chaperone family (Wadhwa et al 1993). As another pos-
sible involvement of chaperones in the regulation of cel-
lular senescence, the 90-kDa heat shock protein, Hsp90,
is required for the correct assembly and function of tel-
omerase, a major enzyme involved in determining the life
span of cells (Holt et al 1999).

The previous examples may lead to the conclusion that
chaperones are promoting cellular senescence. However,
chaperone induction per se seems to counteract senes-
cence because repeated mild heat shock (a kind of hor-
mesis) delays aging in fibroblasts (Rattan 1998). Impaired
Hsp90 function leads to activation of HSF-1, restoration
of the heat shock response, and slower chronological ag-
ing of nondividing Saccharomyces cerevisiae (Harris et al
2001).

CHAPERONES EXTEND LIFE SPAN

There are several reports showing that increased chap-
erone induction leads to increased longevity of both uni-
and multicellular whole organisms, like Drosophila, C. ele-
gans, or yeast (Lithgow et al 1995; Tatar et al 1997; Shama
et al 1998). Hsp22, Hsp23, and Hsp70 induction correlat-
ed with increased life span in Drosophila and mice (Nak-
anishi and Yasumoto 1997; Kurapati et al 2000). This ef-
fect can be generalized: a close correlation exists between
stress resistance and longevity in several long-lived C.
elegans and Drosophila mutants (Lithgow and Kirkwood
1996). These examples confirm the hypothesis that a bet-
ter adaptation capacity to various stresses makes a major
contribution to life span extension.

CHAPERONES AND CALORIC RESTRICTION

Caloric restriction is the only effective experimental ma-
nipulation known to retard aging in rodents and primates
by diminishing oxidative protein, deoxyribonucleic acid
(DNA), and membrane damage (Youngman et al 1992;
Sohal and Weindruch 1996; Ramsey et al 2000). Caloric
restriction (60% of ad libitum diet causing a 43% increase
in life span) increased the induction of Hsp70 by hepa-
tocytes (Heydari et al 1993), proximal gut (Ehrenfried et
al 1996), alveolar macrophages (Moore et al 1998), but not
by splenocytes (Pahlavani et al 1996), of aged rats com-
pared with their aged littermates on an ad libitum diet.
Similar to these findings, a reversal of the age-induced
constitutive Hsp levels upon calory restriction was dem-
onstrated in DNA microarray assays of mouse liver (Cao
et al 2001) and skeletal muscle (Weindruch et al 2001).

PERSPECTIVES

Aging leads to a decay of self-defensive mechanisms and
an accumulation of damage at the molecular-cellular and
organismal level. The attenuation in molecular chaperone
inducibility and the simultaneous accumulation of dam-
aged proteins raise the possibility that preservation of
protein homeostasis and long-range protein organization
can be major determinants in longevity. There are plenty
of exciting research areas for exploring these events:

● Our knowledge about the exact mechanism of the de-
cline in chaperone induction in aging and in senescent
cells is surprisingly little.
● Chaperones preventing membrane damage or ribonu-
cleic acid misfolding are also interesting targets of future
investigations in aged organisms.
● The delicate balance and competition between various
targets of chaperones deserves much greater attention, es-
pecially in aging, where protein damage becomes abun-
dant.
● As a special case when the need for chaperone action
becomes tremendously high, neurodegenerative diseases
are already an exciting field of chaperone research.
● Changes in the immune response against chaperones
during the aging process also provide an area worthy of
further exploration.
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