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Abstract

Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with
the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains
rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular,
small-word, scale-free and modular network models in repeated, multi-agent Prisoner’s Dilemma and Hawk-Dove games.
Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote
cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level
of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and
random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling
the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of
learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play
a prominent role in the evolution of self-organizing, complex systems.
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Introduction

Cooperation is necessary for the emergence of complex,

hierarchical systems [1–5]. Why is cooperation maintained, when

there is a conflict between self-interest and the common good? A

set of answers emphasized agent similarity, in terms of kin- or

group-selection and compact network communities, which is

helped by learning of successful strategies [2,3]. On the other

hand, agent diversity in terms of noise, variation of behavior and

innovation, as well as the changing environment of the agent-

community all promoted cooperation in different games and

settings [3,6–8].

Small-world, scale-free or modular network models, which all

give a chance to develop the complexity of similar, yet diverse

agent-neighborhoods, provide a good starting point for the

modeling of the complexity of cooperative behavior in real-world

networks [9–13]. However, the actual level of cooperation in

various games, such as the Prisoner’s Dilemma or Hawk-Dove

games is very sensitive to the topology of the agent network model

[14–16, Electronic supplementary material S1 – ESM1 – Table

S1.1]. In our work we applied a set of widely used network models

and examined the stability of cooperation after repeated games

using the reinforcement learning strategy adoption rule, Q-

learning. To examine the surprising stability of cooperation

observed, when using Q-learning, we approximated the complex

rules of Q-learning by designing a long-term versions of the best-

takes-over and other strategy adoption rules as well as introducing

a low level of randomness to these rules. We found that none

of these features alone results in a similar stability of cooperation

in various network models. However, when applied together, long-

term (‘learning’) and random (‘innovative’) elements of strategy

adoption rules can make cooperation relatively stable under

various conditions in a large number of network models.

Our results have a wide application in various complex systems

of biology from the cellular level to social networks and

ecosystems.

Results

Sensitivity of cooperation on network topology
As an illustrative example for the sensitivity of cooperation on

network topology, we show cooperating agents after the last round

of a ‘repeated canonical Prisoner’s Dilemma game’ (PD-game) on

two, almost identical versions of a modified Watts-Strogatz-type

small-world model network [13,17]. Comparison of the top panels

of Figure 1 shows that a minor change of network topology

(replacement of 37 links from 900 links total) completely changed

both the level and topology of cooperating agents playing with a

best-takes-over short term strategy adoption rule. We have

observed a similar topological sensitivity of cooperation in all

combinations of (a) other short-term strategy adoption rules; (b) a

large number of other network topologies; (c) other games, such as

the extended Prisoner’s Dilemma or Hawk-Dove games (ESM1

Figures S1.1 and S1.6).
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Q-learning stabilizes cooperation in different network
topologies

On the contrary to the general sensitivity of cooperation to the

topology of agent-networks in PD-games using the short-term

strategy adoption rule shown above, when the long-term,

reinforcement learning strategy adoption rule, Q-learning was

applied, the level and configuration of cooperating agents showed

a surprising stability (cf. the bottom panels of Figure 1). Just

oppositely to the short-term strategy adoption rule shown on the

top panels of Figure 1, the Q-learning strategy adoption rule (a) is

based on the long-term experiences of the agents from all previous

rounds allowing some agents to choose a cooperative strategy

despite of the current adverse effects, and (b) is an ‘innovative’

strategy adoption rule [3] re-introducing cooperation even under

conditions, when it has already been wiped out from the network-

community completely [18,19].

Extending the observations shown on Figure 1 we decided to

compare the level of cooperation in PD-games on small-world and

scale-free networks at various levels of temptations (T, the

defector’s payoff, when it meets a cooperator) in detail. The top

panel of Figure 2 shows that the cooperation level of agents using

the best-takes-over strategy adoption rule rapidly decreased with a

gradual increase of their temptation to defect. This was generally

true for both small-world, and scale-free networks leaving a

negligible amount of cooperation at T-values higher than 4.5.

However, at smaller temptation levels the level of cooperation

greatly differed in the two network topologies. Initially, the small-

world network was preferred, while at temptation values higher

than 3.7, agents of the scale-free network developed a larger

cooperation. The behavior of agents using the Q-learning strategy

adoption rule was remarkably different (top panel of Figure 2).

Their cooperation level remained relatively stable even at

extremely large temptation values. Moreover, the cooperation

Figure 1. A long-term learning adoption rule, Q-learning improves and stabilizes cooperation of agents forming various small-
world networks in Prisoner’s Dilemma games. The modified Watts-Strogatz small-world network was built on a 15615 lattice, where each node
was connected to its eight nearest neighbors. The rewiring probabilities of the links placed originally on a regular lattice were 0.01 (left panels) and
0.04 (right panels), respectively. For the description of the canonical repeated Prisoner’s Dilemma game, as well as the best-takes-over (top panels)
and Q-learning (bottom panels) strategy adoption rules see Methods and the ESM1. The temptation level, T was 3.6. Networks showing the last round
of 5,000 plays were visualized using the Kamada-Kawai algorithm of the Pajek program [46]. Dark blue dots and diamonds correspond to cooperators
and defectors, respectively. The Figure shows that both the extent and distribution of cooperators vary, when using the best-takes-over strategy
adoption rule (see top panels), while they are rather stable with the Q-learning strategy update rule (see bottom panels).
doi:10.1371/journal.pone.0001917.g001

Learning Cooperative Networks
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levels of agents using Q-learning had no significant difference, if

we compared small-world and scale-free networks. This behavior

continued at temptation values higher than 6 (data not shown). We

have observed the same differences in both the extent of

cooperation at extremely high temptations (or gains of hawks

meeting a dove in the Hawk-Dove game) and the topological

sensitivity of cooperation in all combinations of (a) other short-

term strategy adoption rules; (b) a large number of other network

topologies; (c) other games, such as the extended Prisoner’s

Dilemma or Hawk-Dove games (ESM1 Figures S1.2 and S1.6).

Long-term strategy adoption rules improve but do not
stabilize cooperation in different networks

Next we wanted to see, if other long-term strategies besides Q-

learning can also promote cooperation between agents. In Q-

learning agents consider a long-term experience learned in all the

past rounds of the play. Therefore, we modified the best-takes-over

strategy adoption rule allowing the agents to use accumulative

rewards of their neighbors in all past rounds instead of the reward

received just in the last round. In agreement with our expectations,

both on small-world and scale-free networks this long-term

strategy adoption rule outperformed its short-term version

allowing a larger number of agents to cooperate – especially at

high temptation values. Importantly, the differences between

cooperation levels observed in small-world and scale-free networks

were even greater, when we applied the long-term strategy

adoption rule compared to its short-term version (middle panel of

Figure 2). We have received very similar results in all combinations

of (a) other short- and long-term strategy adoption rule pairs; (b) a

large number of other network topologies; (c) other games, such as

the extended Prisoner’s Dilemma or Hawk-Dove games. Long-

term learning strategy adoption rules also promoted cooperation

(albeit at lower efficiency than in case of complex network

structures), when we used networks re-randomized after each play,

or randomly picked agents (ESM1 Figures S1.3–S1.6). As a

summary, we conclude that long-term strategy adoption rules

(‘learning’ instead of simple imitation) allow a larger cooperation,

but do not stabilize the cooperation-fluctuations inflicted by the

different topologies of the underlying networks, which leaves the

remarkable topological stability of the Q-learning strategy

adoption rule still unexplained.

Low level of randomness of the strategy adoption rules is
needed to stabilize cooperation level in different network
topologies

Next we tested, if the innovative elements of the Q-learning

strategy adoption rule may contribute to the stability of

cooperation in various network topologies. For this, we construct-

ed an ‘innovative’ version of the long-term version of the best-

takes-over, ‘non-innovative’ strategy adoption rule by adding a low

level of randomness instructing agents to follow the opposite of the

selected neighbor’s strategy with a pre-set Pinnovation probability (see

Methods). Cooperation levels achieved by the innovative long-

term best-takes-over strategy adoption rule are shown on the

bottom panel of Figure 2. At temptation values smaller than

T = 3.8 the innovative long-term version of the best-takes over

strategy adoption rule outperformed Q-learning, which resulted in

Figure 2. Long-term learning elements of strategy update rules
help, while a low level of randomness relatively stabilizes
cooperation in Prisoner’s Dilemma games played on various
networks. Small-world (SW, filled, red symbols) networks were built as
described in the legend of Figure 1. The Barabasi-Albert-type scale-free
networks (SF, open, blue symbols) contained 2,500 nodes, where at
each construction step a new node was added with 3 new links
attached to the existing nodes. For the description of the canonical
repeated Prisoner’s Dilemma game, as well as that of the best-takes-
over (triangles, all panels), the Q-learning (rectangles, top panel) the
best-takes-over long (circles, middle panel), and the best-takes-over
long innovative (crosses, Pinnovation = 0.0002, bottom panel) strategy
adoption rules, see Methods and the ESM1. For each strategy adoption
rules and T temptation values 100 random runs of 5,000 time steps
were executed. The figure shows that long-term, ‘learning-type’

elements of strategy update rules help cooperation in Prisoner’s
Dilemma games played on various networks. A low level of randomness
(also called as ‘innovation’ in this paper) brings the level of cooperation
closer in different network topologies.
doi:10.1371/journal.pone.0001917.g002
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a larger proportion of cooperating agents (cf. top and bottom

panels of Figure 2). However, at high temptation values Q-

learning proved to be more efficient in maintaining cooperation.

Most importantly, cooperation levels in small-world and scale-free

networks were much closer to each other, when using the long-

term innovative strategy-adoption rule, than either the ‘only long-

term’, or short-term versions of the same strategy adoption rule

(Figure 2). At high temptation values cooperation levels of long-

term innovative strategy adoption rules on small-world and scale-

free networks were converging to each other and even to the

cooperation level observed, when using the Q-learning strategy

adoption rule. We have received very similar results in

combinations of (a) other innovative short- and long-term strategy

adoption rules; (b) a large number of other network topologies; (c)

other games, such as the extended Prisoner’s Dilemma or Hawk-

Dove games (ESM1 Figures S1.7 and S1.8). According to the

expectations [8], the stabilizing role of the randomness in the

strategy adoption rules depended on the actual value of the pre-set

Pinnovation probability, and showed an optimum at intermediary

Pinnovation levels, where the actual value of optimal Pinnovation

depended on the strategy adoption rule and network topology.

The effect of changes in Pinnovation was much more pronounced in

case of scale-free networks than at small-world networks, which is

a rather plausible outcome, since the larger irregularity of scale-

free networks makes the re-introduction of extinct strategies a lot

more crucial (ESM1 Figure S1.8).

We have shown so far that long-term, learning strategy adoption

rules help the development of cooperation, while ‘innovative’

strategy adoption rules make the cooperation level more

independent from the actual network topology. Figure 3 illustrates

how the cooperative network topologies were expanded, when we

used long-term learning and ‘innovative’ versions of the best-takes-

over strategy adoption rule as well as Q-learning at a high level of

temptation, which made cooperation especially difficult. The

application of the best-takes-over strategy adoption rule resulted in

non-zero cooperation only sporadically. Cooperation levels using

the long-term best-takes-over strategy adoption rule varied greatly,

and still had several network configurations with zero cooperation.

On the contrary, the two ‘innovative’ long-term learning strategy

adoption rules had a much higher than zero cooperation in almost

all networks tested, and the cooperation level remained fairly

stable using a great variety of network topologies. This was

especially true for Q-learning, which gave a stable level of

cooperation even at regular networks (Figure 3), which result in a

high instability of cooperation (see ESM1 Table S1.1). We have

received very similar results in extended Prisoner’s Dilemma and

Hawk-Dove games (ESM1 Figures S1.9 and S1.10).

Discussion

As a summary, our simulations showed that long-term learning

strategy adoption rules promote cooperation, while innovative

elements make the appearance of cooperation less dependent from

the actual network topology in two different games using a large

number of network topologies in model networks. We must

emphasize that the term ‘learning’ is used in our paper in the sense

of the collection and use of information enriching and diversifying

game strategy and behavior, and not in the restricted sense of

imitation, or directed information-flow from a dominant source

(the teacher) pauperizing the diversity of game strategies. The help

of learning in promoting cooperation is already implicitly involved

in the folk theorem, which opens the theoretical possibility for the

emergence of cooperation at infinitely repeated games [3,20].

Learning, communication, negotiation, reputation-building mech-

anisms have all been shown to promote cooperation in various

simulations as well as in games with groups of a variety of living

organisms, including animals and humans (ESM1 Table S1.2).

With the current work we have extended these findings showing

that agents can markedly improve their cooperation, when they

are allowed to consider long-term experiences either of their own

(Q-learning) or their neighbors (other long-term strategies used),

and this ‘shadow of the past’ [21] acts similarly at a great variety of

network topologies.

We use the term ‘innovation’ in the sense of irregularities in the

selection of adoption rules of game strategy. Therefore, ‘innova-

tion’ may be caused by errors, mutations, mistakes, noise,

randomness and temperature besides the bona fide innovation of

conscious, intelligent agents. Our term, ‘innovation’ allows the

change of the strategy adoption rules, therefore allows (increases)

the evolvability [22] of our model system. Innovative strategies

help to avoid ‘herding’, when agents start to use a uniform strategy

and behavior forming synchronous clusters (ESM1 Figures S1.11,

S1.12 and data not shown). Innovation increases game diversity

and complexity, which, similarly to the stabilizing effect of weak

links in a large variety of static networks, may significantly stabilize

network dynamics (probably by helping the convergence of

possible outcomes; [23]). Irregularities in network topology, noise,

stochastic resonance, stochastic focusing and innovative strategies

were shown to promote cooperation in various simulations as well

as in games of primates and humans (ESM1 Table S1.3).

However, the innovation-driven relative stabilization of coopera-

tion in various network topologies is a novel finding reported here.

Cooperation helps the development of complex network

structures [4,5,24]. Network dynamics and evolution lead to a

large variety of link re-arrangements [25,26]. Network evolution is

full of stochastic ‘errors’, and often results in the development of a

higher average degree [25], which makes cooperation more

difficult [15,16]. The highly similar cooperation levels of scale-free

networks with different average degrees and of many other

network topologies of model networks (Figure 3, ESM1 Figures

S1.9 and S1.10) show that innovative long-term learning strategy

adoption rules may provide a buffering safety-net to avoid the

deleterious consequences of possible overshoots and errors in

network development on cooperation. Our simulations showed

(Figure 2, ESM1 Figures S1.2 and S1.6) that the help of innovative

long-term learning is especially pronounced at conditions, where

the relative cost of cooperation is the highest making cooperation

most sensitive to the anomalies of network evolution [15]. This

extreme situation is more easily reached, when the whole system

becomes resource-poor, which makes all relative costs higher.

Resource-poor networks develop a set of topological phase

transitions in the direction of random R scale-free R star R
fully connected subgraph topologies [27]. This further substanti-

ates the importance of our findings that long-term, innovative

learning allows a larger ‘cooperation-compatible’ window of these

topologies, thus helps to avoid the decomposition of network

structure in case of decreasing system resources due to e.g. an

environmental stress. Further work is needed to show the validity

of our findings in real-world networks as well as in combination

with network evolution.

Our current work can be extended in a number of ways. The

complexity of the game-sets and network topologies offers a great

opportunity for a detailed equilibrium-analysis, similarly to that

described by Goyal and Vega-Redondo [28]. The cited study [28]

allows a choice of the interacting partners (an option denied in our

model), which leads to another rich field of possible extensions,

where the network topology is changing (evolving) during the

games such as in the paper of Holme and Ghoshal [29]. Similarly,

Learning Cooperative Networks
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Figure 3. Long-term learning and innovative elements of strategy adoption rules, when applied together allow cooperation in a
large number of model networks. (Top middle panel) The small-world (spheres) and scale-free (cones) model networks were built as described in
the legends of Figures 1 and 2. The rewiring probability, p of the links of the original regular lattices giving small-world networks was increased from
0 to 1 with 0.05 increments, the number of edges linking each new node to former nodes in scale-free networks was varied from 1 to 7, and the
means of shortest path-lengths and clustering coefficients were calculated for each network. Cubes and cylinders denote regular (p = 0) and random
(p = 1.0) extremes of the small-world networks, respectively. For the description of the canonical repeated Prisoner’s Dilemma game, as well as the
best-takes-over (green symbols); long-term learning best-takes-over (blue symbols); long-term learning innovative best-takes-over (magenta
symbols) and Q-learning (red symbols) strategy adoption rules used, see Methods and the ESM1. For each network 100 random runs of 5,000 time
steps were executed at a fixed T value of 3.5. (Left and right panels) 2D side views of the 3D top middle panel showing the proportion of cooperators
as the function of the mean length of shortest paths or the mean clustering coefficient, respectively. (Bottom middle panel) Color-coded illustration
of the various network topologies used on the top middle panel. Here the same simulations are shown as on the top middle panel with a different
color-code emphasizing the different network topologies. The various networks are represented by the following colors: regular networks – blue;
small-world networks – green; scale-free networks – yellow; random networks – red (from the angle of the figure the random networks are behind
some of the small-world networks and, therefore are highlighted with a red arrow to make there identification easier). The top middle panel and its
side views show that the best-takes-over strategy adoption rule (green symbols) at this high temptation level results in a zero (or close-to-zero)
cooperation. As opposed to this, the long-term best-takes-over strategy adoption rule (blue symbols) raise the level of cooperation significantly
above zero, but the individual values vary greatly at the different network topologies. When the long-term strategy adoption rule is combined with a
low level of randomness (magenta symbols) the cooperation level stays in most cases uniformly and its variation becomes high greatly diminished. Q-
learning stabilizes cooperation further even at regular networks, which otherwise give an extremely variable outcome.
doi:10.1371/journal.pone.0001917.g003
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a detailed analysis of link rearrangement-induced perturbations,

avalanches like in the paper of Ebel and Bornholdt [30] as well as

exploration of a number of other topological re-arrangements

would also significantly extend the current results. Such topology-

changes may include

N hub-rewiring including the formation and resolution of ‘rich-

clubs’, where hub-hub contacts are preferentially formed

[31,32];

N emergence of modularity beyond to our data in ESM1 Figure

S1.4;

N appearance and disappearance of bridge-elements between

modules;

N changes of modular overlaps and module hierarchy, etc.

Tan [33] showed that cooperation helps faster learning. This,

when combined with our current findings may lead to a self-

amplifying cycle between cooperation and learning, where

cooperation-induced learning promotes cooperation. Emerging

cooperation alleviates a major obstacle to reach a higher level of

network hierarchy and complexity [4]. In social networks learning

establishes trust, empathy, reputation and embeddedness [34–37],

and the benefits of learning by multiple generations are

exemplified by the development of traditions, norms and laws.

These give the members of the society further reasons for

withholding their individual selfishness, thereby reaching a higher

network complexity and stability. We believe that learning and

innovation (in forms of repeated, interaction-driven, or random

network remodeling steps, respectively or using the Baldwin-effect,

see ESM1 Discussion) help the evolution of cooperation between

agents other than human beings or animals, including proteins,

cells or ecosystems [23,38], and were crucial in the development of

multi-level, self-organizing, complex systems.

Methods

Games. In both the Hawk-Dove and the Prisoner’s Dilemma

games, each agent had two choices: to cooperate or to defect. In

the repeated, multi-agent Hawk-Dove game the benefit of

defectors is higher than that of cooperators, when they are at

low abundance, but falls below cooperator benefit, when defectors

reach a critical abundance [12,13]. On the contrary, in the

Prisoner’s Dilemma game defection always has a fitness advantage

over cooperation. The canonical parameter-set of the Prisoner’s

Dilemma game (R = 3, P = 1, S = 0, the T, temptation value varies

between 3 to 6; 3 is not included; where R is the reward for mutual

cooperation, P is the punishment for mutual defection, S and T

are the payoffs for the cooperator and defector, respectively, when

meeting each other) restricts cooperation more, than the

parameter set of the extended (also called as ‘weak’) Prisoner’s

Dilemma game (R = 1, P = 0, S = 0 with T values ranging from 1 to

2; [11–13]). (When we tried the parameter set of R = 1, P = 0.2,

S = 0.1 with T values ranging from 1.0 to 2.0, we have received

very similar results; data not shown.)

In the Hawk-Dove games (or in the conceptually identical

Snowdrift and Chicken games [13,39,40]) each agent had two

choices: to defect (to be a hawk) or to cooperate (to be a dove).

When a hawk met a dove, the hawk gained G benefits, whereas the

payoff for the dove was zero. Two hawks suffered a (G2C)/2 cost

each upon encounter, where C.G was the cost of their fight.

When two doves met, the benefit for each dove was G/2. If not

otherwise stated, the cost of injury (C, when a hawk met a hawk)

was set to 1. The value of G varied from 0 to 1 with the increments

of 0.1. If we want to compare the above, usually applied

nomenclature of the Hawk-Dove games with that of the Prisoner’s

Dilemma games, R = G/2, P = (G2C)/2, S = 0 and T = G.

In Hawk-Dove games T.R.S.P, in the extended (also called

‘weak’) Prisoner’s Dilemma game T$R.P$S, while in the

canonical Prisoner’s Dilemma game T.R.P.S. This makes the

following order of games from less to more stringent general

conditions allowing less and less cooperation: Hawk-Dove

game.extended Prisoner’s Dilemma game.canonical Prisoner’s

Dilemma game. Due to this general order, we showed the results

of the canonical Prisoner’s Dilemma game in the main text, and

inserted the results of the two other games to the Electronic

Supplementary Material S1 (ESMS1).

In our simulations each node in the network was an agent, and the

agent could interact only with its direct neighbors. Agents remained

at the same position throughout all rounds of the repeated games,

and they were neither exchanged, nor allowed to migrate. If not

otherwise stated, games started with an equal number of randomly

mixed defectors and cooperators (hawks and doves in the Hawk-

Dove game), and were run for 5,000 rounds (time steps). The payoff

for each agent in each round of play was the average of the payoffs it

received by playing with all its neighbors in the current round. In our

long-term learning strategy adoption rules introduced below, the

accumulative payoff means the accumulation of the average payoffs

an agent gets in each round of play. Average payoff smoothes out

possible differences in the degrees of agents, and in several aspects

may simulate real-world situations better than non-averaged payoff,

since in real-world situations agents usually have to observe a cost of

maintaining a contact with their neighbors [39–41]. Moreover,

average payoff helps the convergence of cooperation levels as the

rounds of the game (time steps) proceed, what we indeed observed in

most of the cases (with a few exceptions noted in the text), and helps

to avoid ‘late-conversions’ occurring mostly in scale-free networks

after 10,000 or more time steps using non-averaged payoffs. With

this method it was enough to calculate the proportion of cooperators

as the average ratio of cooperators of the last 10 rounds of the game

(if not otherwise stated) for 100 independent runs.

Strategy adoption rules. In Prisoner’s Dilemma and Hawk-

Dove games our agents followed three imitation-type, short-term

strategy adoption rules, the ‘pair-wise comparison dynamics’ (also

called as ‘replicator dynamics’), ‘proportional updating’ and ‘best-

takes-over’ (also called as ‘imitation of the best’) strategy adoption

rules [13]. We call these rules strategy adoption rules and not

evolution rules to avoid the mis-interpretation of our games as

cellular automata-type games, where agents are replaced time-to-

time. In our games no replacement took place, therefore these games

were not evolutionary games in this strict sense. All strategy adoption

rules had synchronous update, meaning that in each round of play

the update took place after each agent had played with all their

neighbors. To avoid the expansion of parameters with the

differential placements of various agents in complex network

structures all agents used the same strategy adoption rule in the

agent-network. In the three strategy adoption rules we applied

initially (‘best-takes-over’, ‘pair-wise comparison dynamics’ and

‘proportional updating’) all agents were myopic, and made their

decisions based on the average payoffs gained in the previous round.

Pair-wise comparison dynamics strategy adoption

rule. In the ‘pair-wise comparison dynamics’ strategy adoption

rule [13] for any agent i, a neighboring agent j was selected

randomly, and agent i used the strategy of agent j with a probability

of pi. In our experiments the probability was determined as

pi~f Gi{Gj

� �
~

Gj{Gi

dmax
if Gj{Giw0

0 otherwise

(
,
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where dmax = (G+C)/2 (for Hawk-Dove games) or dmax = max(T, R)

(for Prisoner’s Dilemma games), which was the largest gap of gain

between two agents in one round of play. Gi and Gj were the average

payoffs received by agent i and j respectively in the current round of

play.
Proportional updating strategy adoption rule. For the

‘proportional updating’ strategy adoption rule [13] agent i and all

its neighbors competed for the strategy of agent i with the

probability pi, which was determined as pi~
GiP

n
Gn

,

i,n[ N ið Þ|if g where N(i) was the neighborhood of agent i and

Gi was the average payoff received by agent i in the current round

of play. Since p is a probability, C was added to each Gi to avoid

negative values. For Prisoner’s Dilemma games, because the

reward for an agent is always greater than or equal to zero, there

was no need to increase the value of Gi.
Best-takes-over strategy adoption rule. In the ‘best-takes-

over’ strategy adoption rule (also called as imitation of the best

strategy adoption rule, [13]) agent i adopted the strategy of that

agent selected from i and its neighbors, who had the highest

average payoff in the last round of play.

Q-learning strategy adoption rule. As a reinforcement

learning [19] strategy adoption rule, we used Q-learning [18],

where agents learned an optimal strategy maximizing their total

discounted expected reward in the repeated game. In Q-learning

we assumed that the environment constituted a discrete Markov

process with finite states. An agent chose action at from a finite

collection of actions at time step, t. The state of the environment

changed from state st to st+1 after the action of the agent, and the

agent received the reward rt at the same time. The probability of

state transition from st to st+1 when the agent chose action at was

prob s~stz1jst,at½ �~P st,at,stz1½ �:

The task of the agent was to learn the optimal strategy to

maximize the total discounted expected reward. The discounted

reward meant that the rewards received by the agent in the future

were worth less than that received in the current round. Under a

policy p denoting how the agent selected the action at its actual

state and reward, the value of state, st was

Vp stð Þ~R p stð Þð Þzc
X

stz1[S

P st,at,stz1½ �Vp stz1ð Þ,

where R(p(st)) is the expected reward of state st under policy p and

c(0,c,1) is the discount factor.

The theory of Dynamic Programming [19] guarantees that

there is at least one optimal stationary policy, p*, which can be

written as

V � stð Þ~Vp� stð Þ~ max
at[A

R p stð Þð Þzc
X

stz1[S

P st,at,stz1½ �Vp� stz1ð Þ
( )

:

The task of Q-learning was to learn the optimal policy, p, when

the initial conditions of both the reward function and transition

probabilities were unknown. If the environment model (reward

model and transition probabilities of states) is known, then the

above problem can be solved by using Dynamic Programming.

Watkins and Dayan [18] introduced Q-learning as incremental

Dynamic Programming. The idea of Q-learning is to optimize a

Q-function, which can be calculated iteratively without the

estimate of environment model. For this having a policy, p, we

defined the Q-value as:

Q s,að Þ~R p sð Þð Þzc
X
s0[S

P s,a,s0½ �Vp s0ð Þ:

Q-learning consisted of a sequence of distinct stages or episodes.

The Q value of state-action pair (st, at) can be learned through the

following iterative method:

Qt st,atð Þ~ 1{atð ÞQt{1 st,atð Þzat rtzcVt{1 stz1ð Þ½ �,

where Vt{1 stz1ð Þ~ max
a[A

Qt{1 stz1,að Þf g and at controls the

learning and convergence speed of Q-learning.

In repeated multi-agent games, the state of each agent was

affected by the states of its direct neighbors. Those neighbors

constituted the environment of the agent. The reward of the agent

i after taking action at(i) was defined as:

rt ið Þ~ 1

ki

X
j[N ið Þ

ST
t ið ÞMSt jð Þ,

where M was the payoff matrix, St(i) was a column vector indicating

the state of agent i at round t, ki was the number of neighbors of agent

i and N(i) was the set contains all the direct neighbors of agent i. The

values of elements of St(i) were 0 or 1 and 1 indicated that agent i was

in the corresponding state. In such a repeated multi-agent game, Q-

learning meant that each agent tried to optimize its total discounted

expected reward in the repeated game. The optimal strategy was

approximated by an iterative annealing process. For this for each

agent, the selection probability (Boltzmann-probability) of action ai

at time step t was defined as

prob aið Þ~
eQ st,aið Þ=TP

ak[A

eQ st,akð Þ=T
,

where T was the annealing temperature. In our experiments we

selected the discount factor, ct = 0.5, since in the initial experiments

we found that this value is helpful to achieve high levels of

cooperation. The initial annealing temperature was set to 100 in

Hawk-Dove and extended Prisoner’s Dilemma games, while it was

raised to 10,000 in canonical Prisoner’s Dilemma games to extend

the annealing process [42]. In all cases the annealing temperature

was decreased gradually by being divided by t in each round of the

game till it reached a low bound of 0.001. In order to control the

convergence speed of Q-learning, a= 1/(1+TimesVisited(s, a)) where

TimesVisited(s, a) was the number of times that the state-action pair (s,

a) had been visited at time step t. In this way a decreased gradually

with the time.

Long-term learning and innovative strategy adoption

rules. Long-term learning strategy adoption rules were

generated by considering the accumulative average payoffs

instead of instantaneous average rewards in the update progress

during each round of play for all strategy adoption rules used. In

both short term and long-term innovative strategy adoption rules,

agent i used the opposite strategy of the selected neighbor (for

proportional updating and best-takes-over strategy adoption rules,

the neighborhood included agent i itself) in the last round of play

with probability of Pinnovation, which was 0.0001 in case of Hawk-

Dove and extended Prisoner’s Dilemma games, while 0.0002 in

case of canonical Prisoner’s Dilemma games, if not otherwise

stated (like in the legend of ESM1 Figure S1.8). In innovative
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strategy adoption rules agent i adopted the strategy of the selected

neighbor with a probability of 12Pinnovation.
Network construction. In our work we used a set of widely

adopted model networks to simulate the complexity of real-world

situations. Generation of the Watts-Strogatz-type small-world

model network [17] was modified according to Tomassini et al.

[13] to avoid the heterogeneity in node degrees, which arose

during the Watts-Strogatz-type rewiring process changing the

regular lattice to a small-world network. Such heterogeneity was

shown to have a rather big influence on the level of cooperation

[13,43]. At the generation of the Barabasi-Albert-type scale-free

network [44], we started from an initial fully connected graph of

‘m’ nodes (where ‘m’ ranged from 1 to 7), and added the new

nodes with ‘m’ novel links as specified at the individual Figure

legends. In the modular networks described by Girvan and

Newman [45] each network had a scale-free degree distribution,

contained 128 nodes, and was divided into 4 communities. The

average degree was 16. Modularity (community structure) was

gradually decreased at ‘levels’ 1, 5, 10 and 16, where ‘level 1’

meant that for each node in the network, the expected number of

links between a node and the nodes which were in other

communities was 1 (e.g. low compared to the average degree of

16). With increasing ‘level’ the community structure gradually

decreased.
Network visualization. At the visualization the coordinates

of the small-world networks with a rewiring probability of p = 0.01

were used for the p = 0.04 networks to avoid the individual

variations of the Pajek-figures [46] and to help direct comparison.

With 15615 agents the final representations of cooperators

showed a moderate variability. This was almost negligible, when

50650 agents were used (data not shown). However, 15615

agents gave a better visual image than the crowded, bulky 50650

version. Therefore, we opted to include this variant to Figure 1.

We have selected those figures from the results of 15615 agent

games, which best represented the 50650 versions.

Supporting Information

Electronic Supplementary Material S1 This supporting

information extends the major findings of the paper to two

different games (the extended Prisoner’s Dilemma Game and the

Hawk-Dove/Snowdrift game) and a wide parameter set, and gives

additional methods, discussion and references.

Found at: doi:10.1371/journal.pone.0001917.s001 (0.74 MB

PDF)
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Supplementary Text 
 
Supplementary Results 
 
Similarly to the case shown in Figures 1 and 2 for the best-takes-over strategy adoption rule 
in canonical Prisoner’s Dilemma games, the three short-term strategy adoption rules (pair-
wise comparison dynamics, proportional updating and best-takes-over) resulted in a rather 
remarkable variation of cooperator levels in Hawk-Dove games when using large number of 
small-world and scale-free model networks (Figures S1 and S2). For the description of game 
types, strategy adoption rules and model networks see Methods and refs. [1-11].  
 
At Figure S1 the m=1 scale-free networks display an irregular ‘phase-transition’-like 
phenomenon, which is most pronounced at the proportional updating strategy adoption rule 
but leads to a faster decay of cooperation at all short-term strategy adoption rules tested. At 
the construction of these m=1 scale-free networks the novel nodes are linked to the existing 
network with a single link only, which results in a tree-like final topology. Due to the 
especially large wiring-irregularity of these networks (as compared to the similarly scale-free, 
but more ‘cross-linked’ networks, where the new nodes are joined with more than one links to 
the existing network) a gradual change in the payoff values makes a more rapid disappearance 
of cooperation. At panel E of Figure S1 a non-monotonic behavior of p=0 networks is 
observed. This is derived from the extreme sensitivity of these p=0 regular networks on initial 
conditions, strategy update rules, etc (see references listed in Suppl. Table 1). 
 
Both Q-learning and the long-term versions of all three strategy adoption rules above 
outperformed the short-term variants resulting in a higher proportion of cooperators in Hawk-
Dove games on small-world and scale-free model networks especially at high cooperation 
costs (Figures S2A, S2B and S3). Long-term strategy adoption rules (including Q-learning) 
were also more efficient inducers of cooperation even at high costs in modular networks 
(Figure S7). Moreover, long-term strategy adaption rules maintained cooperation even in 
randomly mixed populations as well as in repeatedly re-randomized networks (Figure S5). 
Interestingly, long-term strategy adoption rules (especially the long-term version of the best-
takes-over strategy adoption rule) resulted in an extended range of all-cooperator outcomes in 
Hawk-Dove games (Figures S3–S5 and S7). Finally, long-term strategy adoption rules helped 
cooperation in canonical and extended Prisoner’s Dilemma games in case of all three strategy 
adoption rules tried (Figure S6). 
 
While short- and long-term strategy adoption rules resulted in a remarkable variation of the 
cooperation level in a large variety of random, regular, small-world, scale-free and modular 
networks in Hawk-Dove and both canonical and extended Prisoners’ Dilemma games 
(Figures S1–S6), Q-learning induced a surprising stability of cooperation levels in all the 
above circumstances (Figures S2–S6). Interestingly, but expectedly, Q-learning also 
stabilized final cooperation levels, when games were started from a different ratio of 
cooperators (ranging from 10% to 90%) than the usual 50% (data not shown). When we 
introduced innovativity to long-term strategy adoption rules in Hawk-Dove games (for the 
description of these innovative strategy adoption rules see Methods) similarly to that shown 
for the canonical Prisoner’s Dilemma game on Figure 2, cooperation levels were closer to 
each other in small-world and scale-free networks than their similarity observed when using 
only long-term, but not innovative strategy adoption rules (Figure S7). Importantly, 
innovativity alone, when applied to the best-takes-over short-term strategy adoption rule 
could also stabilize cooperation levels in small-world and scale-free networks (Figure S7C). 
When we compared different levels of innovation by changing the value of innovationP  in our 
simulations (Figure S8), an intermediary level of innovation was proved to be optimal for the 
stabilization of cooperation in small-world and scale-free networks. Scale-free networks and 
Prisoner’s Dilemma game were more sensitive to higher innovation levels than small-world 
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networks or Hawk-Dove games, respectively (Figure S8). Summarizing our results, Figures 
S9 and S10 show that similarly to canonical Prisoner’s Dilemma games (Figure 3), both in 
Hawk-Dove games (Figure S9) and extended Prisoner’s Dilemma games (Figure S10) long-
term strategy adoption rules and innovation (including Q-learning) resulted in a stable non-
zero cooperation in a large variety of network topologies in combination only. 
 
Figure S11 shows the distribution of hawks (blue dots) and doves (orange dots) at the last 
round of a repeated Q-learning game on small-world (Figure S11A and S11B) or scale-free 
networks (Figure S11C and S11D) at low (Figure S11A and S11C) and high (Figure S11B and 
S11D) relative gain/cost ( G ) values. Under these conditions both hawks and doves remained 
isolated (see arrows). On the contrary, when Hawk-Dove games were played with any of the 
three short-term, non-innovative strategy adoption rules doves, but even hawks showed a 
tendency to form networks (Figure S12 and data not shown). This effect was especially 
pronounced for doves in both small-world and scale-free networks, as well as for hawks in 
small-world networks, and present, but not always that strong for hawks in scale-free 
networks, where hawks remained more isolated in all configurations. Interestingly, the 
proportional updating strategy adoption rule quite often showed an extreme behavior, when in 
the last round of the play all agents were either doves or hawks. This behavior was less 
pronounced with a larger number (2,500) of players. All the above findings were similarly 
observed in extended Prisoner’s Dilemma games (data not shown). 
 
Supplementary Discussion 
 
Explaining cooperation has been a perennial challenge in a large section of scientific 
disciplines. The major finding of our work is that learning and innovation extend network 
topologies enabling cooperative behavior in the Hawk-Dove (Figures S1–S5 and S7–S9, S11, 
S12) and even in the more stringent Prisoner’s Dilemma games (Figures 1–3, S6, S8 and 
S10). The meaning of ‘learning’ is extended here from the restricted sense of imitation or 
learning from a teacher. Learning is used in this paper to denote all types of information 
collection and processing to influence game strategy and behavior. Therefore, learning here 
includes communication, negotiation, memory and various reputation building mechanisms. 
Learning makes life easier, since instead of the cognitive burden to foresee and predict the 
‘shadow of the future’ [4–6] learning allows to count on the ‘shadow of the past’, the 
experiences and information obtained on ourselves and/or other agents [12]. Likewise to our 
understanding of learning, the meaning of ‘innovation’ is extended here from the restricted 
sense of innovation by conscious, intelligent agents. Innovation is used in this paper to denote 
all irregularities in the strategy adoption process of the game. Therefore, innovation here 
includes errors, mutations, mistakes, noise, randomness and increased temperature besides 
conscious changes in game strategy adoption rules.  
 
In the Supplementary Discussion, first we summarize the effects of network topology on 
cooperative behavior, then discuss the previous knowledge on the help of cooperation by 
learning and innovation, and, finally, we compare our findings with existing data in the 
literature and show their novelty and implications. 
 
Effect of network topology on cooperation. Cooperation is not an evolutionary stable 
strategy [13], since in the well-mixed case, and even in simple spatial arrangements it is 
outcompeted by defectors. As it is clear from the data summarized in Table S1, the emergence 
of cooperation requires an extensive spatial segregation of players helping cooperative 
communities to develop, survive and propagate. Cooperation in repeated multi-agent games is 
very senitive to network topology. Cooperation becomes hindered, if the network gets over-
connected [14–16]. On the contrary, high clustering [17,18], the development of fully 
connected cliques (especially overlapping triangles) and rather isolated communities [14,18] 
usually help cooperation. Heterogeneity of small-worlds and, especially, networks with scale-
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free degree distribution can establish cooperation even in cases, when the costs of cooperation 
become exceedingly high. 
 
However, in most spatial arrangements cooperation is rather sensitive to the strategy adoption 
rules of the agents, and especially to the strategy adoption rules of those agents, which are 
hubs, or by any other means have an influential position in the network. Moreover, minor 
changes in the average degree, actual degree, shortests paths, clustering coefficients or 
assortativity of network topology may induce a profound change in the cooperation level. 
Since real world networks may have rather abrupt changes in their topologies [17,20–26], it is 
highly important to maintain cooperation during network evolution. 
 
Effect of learning on cooperation. From the data of Table S2 it is clear that learning 
generally helps cooperation. Cooperation can already be helped by a repeated play, assuming 
‘learning’ even among spatially disorganized players. Memory-less or low memory strategy 
adoption rules do not promote cooperation efficiently. In contrast, high-memory and complex 
negotiation and reputation-building mechanisms (requiring the learning, conceptualization 
and memory of a whole database of past behaviors, rules and motives) can enormously 
enhance cooperation making it almost inevitable. As a summary, in the competitive world of 
games, it pays to learn to achieve cooperation. However, it is not helpful to know too much: if 
the ranges of learning and the actual games differ too much, cooperation becomes impossible 
[18]. 
 
Learning requires a well-developed memory and complex signaling mechanisms, which are 
costly. This helps the selection process in evolution [13], since ‘high-quality’ individuals can 
afford the luxury of both the extensive memory and costly signaling [27]. However, 
cooperation is rather widespread among bacteria, where even the ‘top-quality individuals’ do 
not have the extensive memory mentioned above. Here ‘learning’ is achieved by the fast 
succession of  multiple generations. The Baldwin-effect describing the genetic (or epigenetic) 
fixation of those behavioral traits, which were benefitial for the individuals, may significantly 
promote the development of bacterial cooperation and the establishment of biofilms [28–32]. 
Genetically ‘imprinted’ aids of cooperation are also typical in higher organisms including 
humans. The emotional reward of cooperation uncovered by a special activation of the 
amygdalia region of our brains [33] may be one of the genetically stabilized mechanisms, 
which help the extraordinary level of human cooperation besides the complex cognitive 
functions, language and other determinants of human behavior. 
 
Effect of randomness (‘innovation’) on cooperation. From the data of Table S3 it is clear 
that a moderate amount of randomness, ‘innovation’ generally helps cooperation. Many of the 
above learning mechanisms imply sudden changes, innovations. Bacteria need a whole set of 
mutations for interspecies communication (such as quorum sensing), which adapt individual 
organisms to the needs of cooperation in biofilms or symbiotic associations. The improved 
innovation in the behavior of primates and humans during games has been well documented 
[34–36].  
 
An appropriate level of innovation rescues the spatial assembly of players from deadlocks, 
and accelerates the development of cooperation [18]. Many times noise acts in a stochastic 
resonance-like fashion, enabling cooperation even in cases, when cooperation could not 
develop in a zero-noise situation [37,38]. As a special example, the development of 
cooperation between members of a spatial array of oscillators (called synchrony) is grossly 
aided by noise [39]. Egalitarian motives also introduce innovative elements to strategy 
selection helping the development of cooperation [40]. 
 
However, innovation serves the development of cooperation best, if it remains a luxurious, 
rare event of development. Continuous ‘innovations’ make the system so noisy, that it looses 
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all the benefits of learning and spatial organization and reaches the mean-field limit of 
randomly selected agents with random strategy adoption rules (Table S3). 
 
Comparison and novelty of our findings. In Hawk-Dove games on modified Watts-
Strogatz-type small-world [2,9] and Barabasi-Albert-type [10] scale-free model networks we 
obtained very similar results of cooperation levels in all synchronously updated pair-wise 
comparison dynamics, proportional updating and best-takes-over strategy adoption rules to 
those of Tomassini et al. [2,3]. The success of our various ‘long-term’ strategy adoption rules 
to promote cooperation is in agreement with the success of pair-wise comparison dynamics 
and best-takes-over strategy adoption rules with accumulated payoffs on scale-free networks 
[1,3].  
 
On the contrary to Hawk-Dove games, in the Prisoner’s Dilemma game defection always has 
a fitness advantage over cooperation, which makes the achievement of substantial cooperation 
levels even more difficult. In the extended Prisoner’s Dilemma games on scale-free networks 
[10] we obtained very similar results of cooperation levels using synchronously updated pair-
wise comparison dynamics and best-takes-over strategy adoption rules to those of Tomassini 
et al. [3]. Similarly to the Hawk-Dove game with the extended Prisoner’s Dilemma game our 
results with various ‘long-term’ strategy adoption rules on scale-free networks are in 
agreement with those of pair-wise comparison dynamics and best-takes-over strategy 
adoption rules using accumulated payoffs [1,3].  
 
We have to note that the definition of pair-wise comparison dynamics strategy adoption rule 
was slightly different here, than in previous papers, and on the contrary to the non-averaged 
payoffs used previously, we used average payoffs [1–3], which allows only a rough 
comparison of these results to those obtained before, and resulted in a lower level of 
cooperation than that of e.g. ref. [1]. The reason we used average payoff was that this made 
the final level of cooperators more stable at scale-free networks even after the first 5,000 
rounds of the play (data not shown). When we used non-averaged payoffs in the extended 
Prisoner’s Dilemma game with 100,000 rounds of play, we re-gained the cooperation levels 
of ref. [1] at scale-free networks (m=4, data not shown). The additional papers on the subject 
used differently designed small-world networks or different strategy adoption rules, and 
therefore can not be directly compared with the current data. It is worth to mention that none 
of the previous papers describing multi-agent games on various networks [1–3] used the 
canonical Prisoner’s Dilemma game, which was used obtaining our data in the main text, and 
which gives the most stringent condition for the development of cooperation. 
 
As a summary, our work significantly extended earlier findings, and showed that the 
introduction of learning and innovation to game strategy adoption rules helps the 
development of cooperation of agents situated in a large variety of network topologies. 
Moreover, we showed that learning and innovation help cooperation separately, but act 
synergistically, if introduced together especially in the complex form of the reinforcement 
learning, Q-learning.  
 
Interactions of learning and innovations, conclusions. Real complexity and excitement of 
games needs both learning and innovation. In Daytona-type car races skilled drivers use a 
number of reputation-building and negotiation mechanisms, and by continuously bringing 
novel innovations to their strategies, skilfully navigate between at least four types of games 
[41].  
 
Noise is usually regarded to disturb the development of cooperation. Importantly, complex 
learning strategies can actually utilize noise to drive them to a higher level of cooperation. 
Noise may act as in the well-known cases of stochastic resonance, or stochastic focusing 
(with extrinsic and intrinsic noise, respectively) enabling cooperation even in cases, when it 
could not develop without noise. In a similar fashion, mistakes increase the efficacy of 
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learning [37,38,42]. Additional noise greatly helps the optimization in the simulated 
annealing process [43–45]. 
 
Noise not only can extend the range of cooperation to regions, where the current level of 
learning would not be sufficient to achieve it, but extra learning can also ‘buffer’ an increased 
level of noise [19]. Thus, learning and innovation act side-by-side and – in gross terms – 
correct the deficiencies of the other. Learning and innovation also cooperate in the Baldwin 
effect, where beneficial innovations (in the form of mutations) are selected by the inter-
generational ‘meta-learning’ process of evolution [28–32]. Mutual learning not only makes 
innovation tolerable, but also provokes a higher level of innovation to surpass the other agent 
[36].  
 
Our work added the important point to this emerging picture that the cooperation between 
learning and innovation to achieve cooperation also works in the extension and buffering of 
those network configurations, where cooperation becomes possible. 
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Supplementary Tables 
 

Table S1. Effect of network topology on cooperation 
 
Network 
topology 

Effect on cooperation Games; 
strategy 
adoption 
rules 

Agents 
(players) 

References 

Lattice Sensitive to strategy 
adoption rules and 
topology (cooperation 
level is very sensitive on 
strategy adoption rules, 
high degree inhibits 
cooperation) 

HD, PDa Simulation 14, 46–48 

Lattice with 
dilution (with 
empty spaces) 

Helps (localized groups of 
cooperators emerge better) 

PD Simulation 49 

Lattice with 
hierarchical layers 

Helps (at top level, if the 
number of levels is lower 
than 4; in middle layers 
otherwise) 

PD Simulation 50, 51 

Regular random 
graphs 

Sensitive to topology 
(triangles help, loops>3 
and high degree inhibit 
cooperation) 

PD Simulation 14, 52 

Random graphs Sensitive to topology, 
long-lasting avalanches 
may develop (high degree 
inhibits cooperation) 

PD Simulation 14, 15, 53 

Small-world 
(Watts-Strogatz-
type) 

Mostly helps (helps the 
spread of cooperation + 
introduces heterogeneity to 
stabilize it, high degree 
inhibits cooperation) 

PD Simulation 14, 15, 54, 55 

Small-world 
(randomly replaced 
edges) 

Sensitive to strategy 
adoption rules (very 
sensitive to the applied 
strategy adoption rules) 

HD Simulation 2, 3 

Small-world 
(Watts-Strogatz-
type) with an 
influential node 

Destabilizes (the central 
node is very sensitive for 
attacks by defectors) 

PD Simulation 56 

Homogenous 
small-world 
(degree is kept 
identical) 

Sensitive to topology and 
temptation level (at small 
temptation helps the attack 
of defectors via shortcuts, 
helps at high temptation) 

PD Simulation 54, 55 

Scale-free 
(Barabasi-Albert-
type) 

Sensitive to to strategy 
adoption rules (hubs 
stabilize cooperation but 
make it vulnerable to 
targeted attacks, clusters 
and loops help, sensitive to 
strategy adoption rules, 
high degree inhibits 
cooperation) 

HD, PD; 
pair-wise 
comparison 
dynamics, 
imitation of 
the best  

Simulation 1, 3, 14–16, 57–59 
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Table S1. Effect of network topology on cooperation (continued) 
 
 
Network 
topology 

Effect on 
cooperation 

Games; strategy 
adoption rules 

Agents 
(players) 

References 

Scale-free with 
hierarchy (Ravasz-
Barabasi-type 
hierarchy) 

Inhibits (makes it 
very sensitive for 
the attack of 
defectors) 

PD Simulation 50 

Scale-free with 
communities 

Helps (isolated 
communities help 
intra-community 
cooperation) 

PD Simulation 16 

Real world 
networks 

Generally helps 
(small-worlds and 
hierarchy help 
cooperation) 

PD Internet 
communities, 
emails, karate club 

60 

Dynamic (evolves 
during the game) 

Generally helps (a 
small-world and 
hierarchy develops, 
which stabilizes 
cooperation, a 
slower reaction to 
new information is 
beneficial) 

PD Simulation 17, 21–26 

aHD = Hawk-Dove (Snowdrift, Chicken) game;  PD = Prisoner’s Dilemma game (please note that in this 
supplementary table we did not discriminate between conventional and cellular automata-type games, where in the 
latter simulating evolution agents ‘die’, and are occasionally replaced; in our simulations we used only 
‘conventional’ games, where agent-replacement was not allowed). 
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Table S2. Effect of learning on cooperation 
 
Type of 
learninga 

Effect on 
cooperation 

Networks; 
games; strategy 
adoption rules 

Agents 
(players) 

References 

One-step learning 
strategy adoption 
rules 

Help (increases 
cooperation in repeated 
multi-agent games) 

Lattice; PDb; Tit-
for-tat strategy 
adoption rule and 
its generous 
versionsc 

Simulation 61–63 

Two-step learning 
strategy adoption 
rulesd 

Help (make cooperation 
rather resistant to noise 

 often win against Tit-
for-tat) 

Lattice; PD; 
Pavlov strategy 
adoption rule and 
its generous 
versionsc 

Simulation 61–66 

Extended learning 
strategy adoption 
rules (3 or more 
steps) 

Help (each additional 
memory unit contributes 
less to the increase of 
cooperation) 

Lattice, scale-free; 
HDb, PD, 
alternating PD 
with noise; higher 
memory ‘Firm 
Pavlov’, ‘Meta-
Pavlov’ strategy 
adoption rules 

Simulation 32, 62, 67–71 

Complex learning 
strategy adoption 
rules (adaptive 
learning, operant 
conditioning, 
preferential 
learning, Q-
learning, 
reinforcement 
learning) 

Help (are not only 
resistant to noise but can 
exploit noise to drift 
towards cooperation, 
reinforcement learning 
based on local or global 
information enables 
sophisticated strategy 
adoption rules to 
emerge and allows 
efficient network 
formation) 

Lattice, scale-free; 
HD, matching 
pennies game, PD; 
pair-wise 
comparison 
dynamics strategy 
adoption rule 

Simulation, 
primates, 
humans 

12, 36, 37, 46, 72–
77 

Natural learning 
processes 

Help (fishes, monkeys 
remember their 
cooperators; birds learn 
cooperation with 
feedback signals or 
accumulated payoffs; 
lions learn cooperative 
hunting to capture fast 
prey; vampire bats share 
blood by regurgitation; 
students are more 
successful using 
complex Pavlov strategy 
adoption rules than tit-
for-tat, which is the 
default, if their memory 
capacity is 
compromised 
disfavoring cooperation; 
subjects with 
psychopathy disorders 
have a deficit of 
emotional reward for 
cooperation, which can 
be corrected by 
learning) 

PD (interfering 
Memory game) 

Guppies, birds, 
vampire bats, 
lions, monkeys, 
humans 
(controls, 
subjects with 
psychopathy, 
autism, or 
attention-deficit 
hyperactivity 
disorder) 

33, 78–86 
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Table S2. Effect of learning on cooperation (continued) 
 
Type of 
learninga 

Effect on 
cooperation 

Networks; 
games; strategy 
adoption rules 

Agents 
(players) 

References 

Communication, 
negotiation 

Help (viruses lack 
communication and 
cooperation; quorum 
sensing is required for 
bacterial biofilm 
formation; avoidance of 
discussion blocks 
cooperation; complex 
communication allows 
better cooperation; 
feedback eases internet 
and traffic congestion; 
firm’s market image 
helps cooperative 
response; description of 
future goals greatly 
enhances cooperation) 

PD, ‘game of 
sexes’, biofilm 
formation, internet 
usage, car-race, 
trade 

Simulation, 
viruses, bacteria, 
humans, firms 

41, 72, 73, 87–94 

Quantum 
entanglement 
(‘quantum 
communication’) 

Helps (quantum bits, 
‘qubits’ enable a 
continuous cooperation, 
which works as a 
contract) 

Quantum minority 
game, quantum PD 

Simulation 95 

Tag, reputation-
building 

Help (establishing and 
learning tags and 
reputation help 
cooperators to detect 
each other – even 
without memory – and 
build communities) 

Donation game, 
PD, ultimatum 
game, car-race, e-
trade 

Simulation, 
humans 

19, 27, 41, 67, 96–
98 

Evolutionary 
preserved 
recognition (using 
the Baldwin-effect) 

Helps (enables the 
detection and avoidance 
of cheaters; the learned 
habbit is selected and 
fixed by evolution) 

Hermaphrodites 
exchanging eggs 

Hermaphrodite 
worms 

99 

Memory of 
cooperation 
patterns (cultural 
context) 

Helps (cooperation in 
previous games; 
cooperative educational 
or cultural traits) 

Intergenerational 
public good game, 
PD, ultimatum 
game 

Humans 12, 27, 100, 101 

aThe term ‘learning’ is used here in the sense of the collection and use of information influencing game strategy 
adoption rules and behavior, and not in the restricted sense of imitation, or directed information-flow from a 
dominant source (the teacher). Therefore, learning here includes communication, negotiation, memory, label-
assignment and label-recognition, etc. 
bHD = Hawk-Dove (Snowdrift, Chicken) game;  PD = Prisoner’s Dilemma game (please note that in this 
supplementary table we did not discriminate between conventional and cellular automata-type games, where in the 
latter simulating evolution agents ‘die’, and are occasionally replaced; in our simulations we used only 
‘conventional’ games, where agent-replacement was not allowed). 

cTit-for-tat = this strategy adoption rule copies the opponent’s step in the previous round; Pavlov = a ‘win stay – 
lose shift’ strategy adoption rule; generous strategy adoption rules = allow ‘extra’ cooperation options with a given 
probability. 
dThese strategy adoption rules are interchangeably called as ‘memory-one’ or ‘memory-two’ strategy adoption 
rules referring to the fact that e.g. in the Pavlov strategy adoption rule agents remember the outcome of only the 
last step (‘memory-one’) but that of both players (‘memory-two’). 
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Table S3. Effect of innovation on cooperation 
 
Type of 
innovationa 

Effect on 
cooperation 

Networks; 
games; strategy 
adoption rules 

Agents 
(players) 

References 

Topological 
irregularities 
(empty sites = 
‘sterile defectors’, 
small-world 
shortcuts, hubs) 

Mostly help (see Table 
1, block the spread of 
defection, however high 
degree inhibits 
cooperation and 
irregularities make it 
sensitive for strategy 
adoption rules) 

Lattice, small-
world; HD, PDb  

Simulation 49, 102 and Table S1 

Low noise (random 
noise, errors, 
mistakes, the 
‘trembling hand’) 

Helps (at low levels 
resolves deadlocks, at 
high levels inhibits 
cooperation) 

Evolutionary 
language learning 
game, ultimatum 
game 

Simulation 42, 98 

High noise (random 
noise, errors, 
mistakes, the 
‘trembling hand’) 

Inhibits (PD game is 
noise-sensitive, 
especially on lattices, 
where noise makes 
cooperator boundaries 
irregular) 

Lattice; PD Simulation 52, 102–104 

Pink noise (chaotic 
changes in 
environment 
affecting payoff) 

Mostly helps (smaller, 
but reliable payoffs 
become more attractive) 

Lattice; PD Simulation 105 

Random elements 
in strategy 
adoption rules 
(strategy selection, 
payoff 
determination, etc.) 

Help (at low levels 
resolve deadlocks, at 
high levels inhibit 
cooperation)  

Lattice, random, 
small-world; HD, 
PD 

Simulation 48, 50, 55, 106, 107 

Random extra 
cooperation in 
strategy adoption 
rules 

Helps Lattice; PD; 
Generous tit-for-tat, 
‘double-generous-
tit-for-tat’ 

Simulation 65, 108 

Mutation of 
strategy adoption 
rules 

Helps (may re-introduce 
cooperation)  

Lattice; PD Simulation 66 

Extra loner 
strategy adoption 
rulec 

Helps (even for large 
temptation values) 

Lattice, small-
world; PD, public 
good game 

Simulation 107, 109–112 

Quantum 
probabilistic 
strategies 

Help (ancillary quantum 
bits, ‘qubits’ enable to 
use ‘mixed’ strategies) 

Quantum minority 
game, quantum PD 

Simulation 95 

Random elements 
in strategy 
adoption rules 

Help (increased when 
playing games)  

matching pennies 
game, PD and other 
social dilemma 
games 

Simulation, 
humans, 
primates 

34–37, 113 

Mixed strategies Help (reputation 
building is 
supplemented with 
costly punishment)  

PD Humans 114 

Egalitarian 
motives 

Help (help the 
development of 
reciprocity)  

Public good game Humans 40 

aThe term ‘innovation’ is used here in the sense of irregularities in the process of the game. Therefore, innovation 
here includes errors, mutations, mistakes, noise, randomness and increased temperature besides the senso stricto 
innovation of conscious, intelligent agents. 
bHD = Hawk-Dove (Snowdrift, Chicken) game; PD = Prisoner’s Dilemma game (please note that in this 
supplementary table we did not discriminate between conventional and cellular automata-type games, where in the 
latter simulating evolution agents ‘die’, and are occasionally replaced; in our simulations we used only 
‘conventional’ games, where agent-replacement was not allowed).  

cLoners do not participate in the game and share the income with the co-player. 
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Supplementary Figures 
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Figure S1. Variation of cooperation level using short-term, non-innovative strategy adoption rules in 
Hawk-Dove games on small-world and scale-free networks. The modified Watts-Strogatz small-world 
networks (Panels A, C and E) were built on a 50 x 50 lattice, where each node was connected to its 
eight nearest neighbors. The rewiring probability of the regular links was 0 (pale blue triangles), 0.05 
(green circles), 0.1 (red squares) and 1 (dark blue diamonds). The Barabasi-Albert scale-free networks 

(Panels B, D and F) also contained 2,500 nodes, where at each construction step a new node was added 
with m=1 (pale blue triangles), m=3 (green circles), m=5 (red squares) or m=7 (dark blue diamonds) 
new links attached to the existing nodes. For the description of the networks, Hawk-Dove games and 
the three different strategy adoption rules, the pair-wise comparison dynamics (Panels A and B), the 
proportional updating (Panels C and D) and the best-takes-over strategy adoption rules (Panels E and 
F), see Methods. For each strategy adoption rule and G values (representing the gain of hawk meeting a 
dove, see Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S2. Q-learning improves and stabilizes the cooperation of agents forming small-world 
and scale-free networks in Hawk-Dove games. A, The modified Watts-Strogatz small-world 
networks [2] were built on a 50 x 50 lattice, where each node was connected to its eight 
nearest neighbors. The rewiring probability of the regular links was 0.05. B, The Barabasi-
Albert scale-free networks [10] also contained 2,500 nodes, where at each construction step a 
new node was added with m=3 new links attached to the existing nodes. For the description of 
the Hawk-Dove games and the four different strategy adoption rules, pair-wise comparison 
dynamics (pale blue triangles), proportional updating (green circles), best-takes-over (red 
squares) and Q-learning (dark blue diamonds) see Methods. C, The rewiring probability of the 
small-world network of panel A was 0 (regular network, pale blue triangles), 0.05 (small-
world, green circles), 0.1 (small-world, red rectangles) and 1 (random network, dark blue 
diamonds). D, The number of nodes added to the existing nodes of the scale-free network of 
B was varied between 1 and 7. For each strategy adoption rule and G values (representing the 
gain of hawk meeting a dove, see Methods), 100 random runs of 5,000 time steps were 
executed. 
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Figure S3. Long-term learning strategy adoption rules help cooperation in Hawk-Dove games 
played on various networks. For the description of the small-world [2] and scale-free [10] 
networks, the Hawk-Dove game and the different strategy adoption rules, pair-wise 
comparison dynamics (pale blue open triangles and dashed line), proportional updating (green 
open circles and dashed line), best-takes-over (red open squares and dashed line), Q-learning 
(dark blue diamonds and solid line) pair-wise comparison dynamics long (pale blue filled 
triangles and solid line), proportional updating long (green filled circles and solid line) and 
best-takes-over long (red filled squares and solid line) strategy adoption rules see Methods. A,  
Long-term learning strategy adoption rules on small-world networks with a rewiring 
probability of 0.05. B,  Long-term learning strategy adoption rules on scale-free networks 
with m=3. For each game strategy adoption rule and G values (representing the gain of hawk 
meeting a dove, see Methods), 100 random runs of 5,000 time steps were executed.  
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Figure S4. Long-term learning strategy adoption rules help cooperation in Hawk-Dove games 
played on modular networks. In the modular networks described by Girvan and Newman [11] 
each network had a scale-free degree distribution, contained 128 nodes and was divided into 4 
communities. The average degree was 16. Panels A through D show the % of cooperation 
when playing on Girvan-Newman modular networks with levels 1, 5, 10 or 16, respectively, 
where ‘level 1’ means that for each node in the network, the expected number of links 
between a node and the nodes which are in other communities was 1. With increasing ‘level’ 
the community structure died down gradually. For the description of the Hawk-Dove game 
and the different strategy adoption rules, pair-wise comparison dynamics (pale blue open 
triangles and dashed line), proportional updating (green open circles and dashed line), best-
takes-over (red open squares and dashed line), Q-learning (dark blue filled diamonds and 
solid line) pair-wise comparison dynamics long (pale blue filled triangles and solid line), 
proportional updating long (green filled circles and solid line) and best-takes-over long (red 
filled squares and solid line) strategy adoption rules see Methods. For each game strategy 
adoption rule and G values runs on 100 Girvan-Newman-type modular networks of 5,000 
time steps were executed. 
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Figure S5. Long-term learning strategy adoption rules help cooperation in Hawk-Dove games 
on randomly mixed population and on repeatedly re-randomized networks. For the 
description of the Hawk-Dove game and the different strategy adoption rules, pair-wise 
comparison dynamics (pale blue open triangles and dashed line), proportional updating (green 
open circles and dashed line), best-takes-over (red open squares and dashed line), Q-learning 
(dark blue filled diamonds and solid line) pair-wise comparison dynamics long (pale blue 
filled triangles and solid line), proportional updating long (green filled circles and solid line) 
and best-takes-over long (red filled squares and solid line) strategy adoption rules see 
Methods. A, Games between two randomly selected agents from 100 total. For each game 
strategy adoption rule and G values, 100 random runs of 100,000 time steps were executed. B, 
Before each individual rounds of the repeated Hawk-Dove game, we generated a new random 
graph of the agents with a connection probability, p=0.02, where the number of agents was 
200. In this way for a specific agent, its neighbors changed in each round of game. For each 
game strategy adoption rule and G values (representing the gain of hawk meeting a dove, see 
Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S6. Long-term learning strategy adoption rules help cooperation in both canonical and 
extended Prisoner’s Dilemma games played on small-world and scale-free networks. The 
small-world (panels A  and C, [2]) and scale-free (panels B and D, [10]) networks were built 
as described in the Methods. For the description of the Prisoner’s Dilemma games and the 
different strategy adoption rules, pair-wise comparison dynamics (pale blue open triangles 
and dashed line), proportional updating (green open circles and dashed line), best-takes-over 
(red open squares and dashed line), Q-learning (dark blue filled diamonds and solid line) pair-
wise comparison dynamics long (pale blue filled triangles and solid line), proportional 
updating long (green filled circles and solid line) and best-takes-over long (red filled squares 
and solid line) strategy adoption rules see Methods. Panels A and B, extended Prisoner’s 
Dilemma games ( 0,0,1 === SPR  T was changed from 1 to 2; 1). Panels C and D, 
canonical Prisoner’s Dilemma games ( 0,1,3 === SPR  T was changed from 3 to 6; [6]). In 
the canonical Prisoner’s Dilemma games when using the Q-learning, the initial annealing 
temperature was set to 10,000 to extend the annealing process [115]). For each game strategy 
adoption rule and T values 100 random runs of 5,000 time steps were executed. 
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Figure S7. Comparison of innovative strategy adoption rules in Hawk-Dove games on small-
world and scale-free networks. The small-world (A and C blue symbols and dashed lines, [2]) 
and scale-free (B and C red symbols and solid lines, [10]) networks were built as described in 
the Methods. For the description of the Hawk-Dove game and the different strategy adoption 
rules, pair-wise comparison dynamics (pale blue filled squares, solid line), pair-wise 
comparison dynamics long (pale blue filled triangles, solid line), pair-wise comparison 
dynamics long innovative (pale blue filled circles, solid line), proportional updating (green 
filled squares, dashed line), proportional updating long (green filled triangles, dashed line), 
proportional updating long innovative (green filled circles, dashed line), best-takes-over (on 
panel A and B: red filled squares, on panel C: filled circles), best-takes-over long (on panel A 
and B: red filled triangles, on panel C: open circles), best-takes-over innovative (on panel C: 
filled squares), best-takes-over long innovative (on panel A and B: red filled circles, on panel 
C: open squares), and Q-learning (blue filled diamonds) strategy adoption rules, see Methods. 
For each game strategy adoption rule and G values (representing the gain of hawk meeting a 
dove, see Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S8. Comparison of different innovation levels of the best-takes-over long innovative 
strategy adoption rule in Hawk-Dove and extended Prisoner’s Dilemma games on small-
world and scale-free networks. The small-world (panels A and B, [2]) and scale-free (panels C 
and D, [10]) networks were built as described in the Methods. For the description of the 
Hawk-Dove game (panels A and C), extended Prisoner’s Dilemma game (panels B and D) and 
the best-takes-over long innovative strategy adoption rule, see Methods. The probability of 
innovation was changed from zero to 0.1 as described in the Figure legend. For each game 
strategy adoption rule and G values (representing the gain of hawk meeting a dove, see 
Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S9. Long-term learning and innovative strategy adoption rules extend cooperative 
network topologies in the Hawk-Dove game. The top middle panel shows the level of 
cooperation at different network topologies. small-world (spheres) and scale-free (cones) 
networks were built as described in the Methods. The rewiring probability, p of small-world 
networks was increased from 0 to 1 with 0.05 increments, the number of edges linking each 
new node to former nodes in scale-free networks was varied from 1 to 7, and the means of 
shortest path-lengths and clustering coefficients were calculated for each network. Cubes and 
cylinders denote regular (p = 0) and random (p = 1.0) extremes of the small-world networks, 
respectively. For the description of the games and the best-takes-over (green symbols); long-
term learning best-takes-over (blue symbols); long-term learning innovative best-takes-over 
(magenta symbols) and Q-learning (red symbols) strategy adoption rules used, see Methods. 
The left and right panels show the 2D side views of the 3D top middle panel using the same 
symbol-set. For each network 100 random runs of 5,000 time steps were executed at a fixed G 
value of 0.8. The bottom middle panel shows a color-coded illustration of the various network 
topologies used on the top middle panel. Here the same simulations are shown as on the top 
middle panel with a different color-code emphasizing the different network topologies. The 
various networks are represented by the following colors: regular networks – blue; small-
world networks – green; scale-free networks – yellow; random networks – red (from the angle 
of the figure the random networks are behind some of the small-world networks and, 
therefore are highlighted with a red arrow to make there identification easier). 
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Figure S10. Long-term learning and innovative strategy adoption rules extend cooperative 
network topologies in the extended Prisoner’s Dilemma game. The top middle panel shows 
the level of cooperation at different network topologies. small-world (spheres) and scale-free 
(cones) networks were built as described in the Methods. The rewiring probability, p of small-
world networks was increased from 0 to 1 with 0.05 increments, the number of edges linking 
each new node to former nodes in scale-free networks was varied from 1 to 7, and the means 
of shortest path-lengths and clustering coefficients were calculated for each network. Cubes 
and cylinders denote regular (p = 0) and random (p = 1.0) extremes of the small-world 
networks, respectively. For the description of the games and the best-takes-over (green 
symbols); long-term learning best-takes-over (blue symbols); long-term learning innovative 
best-takes-over (magenta symbols) and Q-learning (red symbols) strategy adoption rules used, 
see Methods. The left and right panels show the 2D side views of the 3D top middle panel 
using the same symbol-set. For each network 100 random runs of 5,000 time steps were 
executed at a fixed T value of 1.8. The bottom middle panel shows a color-coded illustration 
of the various network topologies used on the top middle panel. Here the same simulations 
are shown as on the top middle panel with a different color-code emphasizing the different 
network topologies. The various networks are represented by the following colors: regular 
networks – blue; small-world networks – green; scale-free networks – yellow; random 
networks – red (from the angle of the figure the random networks are behind some of the 
small-world networks and, therefore are highlighted with a red arrow to make there 
identification easier).  
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Figure S11. Both hawks and doves become isolated in extreme minority, when they use the 
innovative Q-learning strategy adoption rule in Hawk-Dove games on small-world and scale-
free networks. The small-world [2] and scale-free networks [10] were built, and Hawk-Dove 
games were played as described in the Methods using 225 agents. Networks showing the last 
round of 5,000 plays were visualized using the Kamada-Kawai algorithm of the Pajek 
program [116]. Blue and orange dots correspond to hawks and doves, respectively. Green, 
orange and grey lines denote hawk-hawk, dove-dove or dove-hawk contacts, respectively. 
Arrows point to lonely hawks or doves using the respective colors above. A,  Small-world 
network with a rewiring probability of 0.05, G=0.15. B,  Small-world network with a rewiring 
probability of 0.05, G=0.95. C,  Scale-free network with m=3, G=0.1. D,  Scale-free network 
with m=3, G=0.98. We have received similar data when playing extended Prisoner’s 
Dilemma games (data not shown). 
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Figure S12. Hawks, and especially doves are not extremely isolated in extreme minority, 
when they use the non-innovative best-takes-over strategy adoption rule in Hawk-Dove 
games on small-world and scale-free networks. The small-world [2] and scale-free networks 
[10] were built, and Hawk-Dove games were played as described in the Methods using 225 
agents. Networks showing the last round of 5,000 plays were visualized using the Kamada-
Kawai algorithm of the Pajek program [116]. Blue and orange dots correspond to hawks and 
doves, respectively. Green, orange and grey lines denote hawk-hawk, dove-dove or dove-
hawk contacts, respectively. Arrows point to lonely hawks or doves using the respective 
colours above. A,  Small-world network with a rewiring probability of 0.05, G=0.15. B,  
Small-world network with a rewiring probability of 0.05, G=0.75. C,  Scale-free network with 
m=3, G=0.1. D,  Scale-free network with m=3, G=0.8. We have received similar data using 
other non-innovative strategy adoption rules, such as pair-wise comparison dynamics, or 
proportional updating, as well as when playing extended Prisoner’s Dilemma games (data not 
shown). 
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