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Abstract
The network approach became a widely used tool to understand the behaviour of complex systems in the last
decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial
rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explain-
ing allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity.
Finally, we show the importance of the balance between functional flexibility and rigidity in protein^protein inter-
action, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts
of flexibility and rigidity can be generalized to all networks.

Keywords: structural/combinatorial rigidity; protein structure; thermostability; cytoskeleton; functional flexibility;
cellular networks

INTRODUCTION
The network concept
Various types of networks (represented by weighted,

directed, coloured graphs) became widely applied

to describe complex systems in the last decade.

Modelling a complex system as a network is appro-

priate and practical, when it is built up from similar,

but distinct objects (represented by nodes/vertices

of the graph) and decisively pair-wise interactions

(represented by edges/links). However, especially

in biological systems, where data coverage often

has technical difficulties, not all of the possible inter-

actions are strong enough to take them into account.

The complex functions are usually related to net-

work structure. Most self-organized networks (and

biological networks in particular) are small worlds

with scale-free degree distribution [1, 2]. It is import-

ant to note, that for the functional analysis of the

complex system, network topology is not enough,

but network dynamics has to be also included.

In dynamic network models, quantities assigned to

nodes and/or edges may vary, and/or the back-

ground topology itself may also change, where the

latter phenomenon is commonly referred as ‘net-

work evolution’.

The fact that biological sciences use more and

more network models is not accidental. Biological

entities can endure evolutionary selection, if they

can cooperatively interact [3]. Therefore, networks

form a hierarchy from molecular level to societies

[4]. In many of these networks, nodes represent in-

dividual physical units, such as amino acids of protein

structural networks [5–7]. Other networks are ab-

stract conceptualizations, such as the gene regulatory

network [8, 9], where nodes represent DNA seg-

ments, and their connections are often indirect rep-

resenting the interactions between the transcriptional

processes of the corresponding genes. Definition of

the most important biological networks can be found

in several papers and books [4, 10, 11]. However, it

is important to note that network definition may

represent a rather difficult problem itself. The

Merse E. Ga¤ spa¤ r is a research fellow in the Department of Medical Chemistry, Semmelweis University. He is a physicist, his PhD

thesis was written in the field of general relativity. As a member of the LINK-Group, his main interests are in structural rigidity theory

and its applications, percolation phenomena, random walks and pebble game on weighted graphs.

PeterCsermely is a professor in the Department of Medical Chemistry, Semmelweis University. He established the multi-disciplinary

network science LINK-Group (www.linkgroup.hu) in 2004. His main interests are the topology, dynamics and function of complex

networks, including their critical transitions and the application of this knowledge to understand aging, disease states and enrich drug

design.

Corresponding author. Peter Csermely, Department of Medical Chemistry, Semmelweis University, Tu
00
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definition of the entities representing nodes, their

connections representing edges and especially the

weight of the interaction may not be straightforward.

In most cases, edge weights refer to the strength or

probability of the interaction [12–14]. However, in

numerous studies edge weights are neglected.

Rigidity and flexibility
Rigidity and flexibility have a lot of meanings in

everyday life and in science as well. We can talk

about rigidity of materials, frameworks or behav-

iours. The properties: stability, stiffness, robustness

are often used together with the concept of rigidity.

In this article, rigidity and flexibility are used as prop-

erties, which characterize the possible states that can

be reached by the system under certain type of ex-

ternal influences. This concept implies that flexibility

also measures the internal degree of freedom and its

distribution in the system. Corresponding to the

above definition, two kinds of rigidity/flexibility

concepts are used in the literature: (1) structural

and (2) functional rigidity/flexibility. We talk about

the structural rigidity of networks, when the net-

work represents the geometrical structure of a com-

plex system. This means that the network is a

framework, which is embedded in a metric space.

In simplest cases, this can be studied by the so-called

mathematical theory of structural rigidity, which was

born with the early paper of Maxwell written on

constraint counting in 1864 [15]. This theory is

introduced in the next section, followed by its ap-

plications studying protein flexibility. Closing the

sections on structural rigidity, properties of cytoskel-

etal network will be reviewed in conjunction with

the biotensegrity concept [16], because it plays an

important role in the structure and dynamics of the

cell.

Contrary to structural rigidity/flexibility, in the

case of functional rigidity/flexibility, the network

has to be dynamic (or has to undergo evolution),

but the network need not to be embedded into

metric space. As both network dynamics and the

external influence provoking this dynamics depend

on the actual problem studied, there is no general

theory of functional rigidity/flexibility. Moreover,

introducing dynamics makes the solution both con-

ceptually and computationally more difficult.

Therefore, much less studies deal with functional ri-

gidity than those on structural rigidity. It is important

to note that the concept of internal degree of free-

dom is valid for both structural and functional

rigidities, because functional rigidity means that the

system or living organism has few possible responses

to an external influence. For example, if there is

no internal degree of freedom, the system (or its

behaviour) is said to be totally rigid in both cases.

However, complex systems (including biological sys-

tems) can be flexible/adaptive and rigid/stable/

robust at the same time, usually on different time

scales. In neurophysiology, this is called as the stabil-

ity–flexibility dilemma [17], but achieving the ap-

propriate balance between rigidity and flexibility is

a key question for all biological networks at all levels.

The most important factor in this problem is the

connection between the topological structure and

the functional flexibility properties of the system

[18]. We will conclude the review by the summary

of functional rigidity/flexibility studies for the most

common cellular networks and neuronal networks as

well as by listing a few major perspectives of the field.

STRUCTURALRIGIDITY THEORY
INA NUTSHELL
Structural rigidity theory deals with networks, in

which, (1) nodes are physical objects embedded in

a metric space in a natural way, and (2) links repre-

sent geometrical constrains. The simplest model in

structural rigidity theory is the bar-joint framework

in Euclidean space [19]. The bar-joint framework

represents a graph where nodes (joints) are

embedded as points (without expansion) in the

space, and edges (bars) represent distance constraints,

with fixed distance, between the connected joints.

If distance constraints are allowed to be inequalities

instead of strict equalities, we get the so-called ten-

segrity generalization. The physical representation of

this latter model consists of rods, cables (which

cannot be compressed) and struts (which may have

negative stress) [20–22].

The framework is said to be rigid, if continuous

motions (allowed by the constraints) are trivial

congruencies. The dimension of the space is an im-

portant parameter for rigidity. N points in the d-di-

mensional space has d�N degrees of freedom, and the

number of isometries is equal to d�(dþ 1)/2, there-

fore sufficient condition for rigidity in three dimen-

sion is that the number of bars� 3N– 6. This is

called Maxwell counting rule [15].

Infinitesimal rigidity is a stronger condition,

which means that the framework has only trivial in-

finitesimal flexes [19, 23]. An infinitesimal flex (small
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arrows in Figure 1) is a continuous infinitesimal

motion of the framework, in which the displacement

vectors of the nodes are perpendicular to the

rods. Therefore, rods cannot act with force against

the infinitesimal displacement. In practice, this means

that an infinitesimally rigid framework cannot

wobble.

Nontrivial infinitesimal flexes usually exist in case

of special geometric situations (e.g. collinear joints,

the most left framework in Figure 1). A framework is

said to be generically rigid, if we can get a rigid

framework introducing a minor change to its coord-

inate values [19, 24]. In this case, only the underlying

graph topology is important instead of the geometry

and the framework lacks any special symmetry.

However, rigid systems with special symmetries

have an increasing importance e.g. in the field of

crystallization [25, 26] (including protein crystals

[27]), and in the recently improved theory of infinite

frameworks [28]. For further rigidity and stability

properties for finite frameworks, see [21, 29].

Generic rigidity or rigidity of the graph can be

studied by combinatorial graph theory. However, in

the last decades it became clear that matroid theory,

an axiomatized theory of independence sets, is the

best tool studying generic rigidity [30, 31]. This is

because only independent constrains may decrease

the degrees of freedom of the system. If an inter-

action is added to an already rigid region of the net-

work (called as redundant edge), the region becomes

over-rigid (or stressed), but this does not modify the

rigid cluster decomposition of the network, which is

the main problem of rigidity theory.

A complete combinatorial characterization of

graph rigidity is given by Laman’s theorem for two

dimensions, which states that the graph is rigid, if and

only if, it is (2,3)-critical [32]. However, this result

has not been generalized to three dimensions for

bar-joint frameworks yet. It is of note that for

body-bar-hinge frameworks (where ‘body’ is an ex-

tended object with six degree of freedom in three

dimensions) the Laman theorem can be generalized

[33, 34]. In this case, the necessary and sufficient

condition of the theorem is that the underlying

multi-graph has to be (6,6)-critical, in which a

hinge is represented by five multiple edges (loss of

five degrees of freedom), because a hinge allows only

the rotation around one axis (see Figure 2 for further

explanation).

Combinatorial graph theory has a lot of polyno-

mial algorithms [35, 36], but the most widely used

algorithm is the so called pebble game algorithm

[37, 38] performing rigid cluster decomposition

and determining redundant edges and the internal

degree of freedom.

RIGIDITYAND FLEXIBILITYOF
PROTEIN STRUCTURES
Rigidity and flexibility of proteins, if properly placed,

play an important role in protein function [39–42].

To describe protein rigidity properties, mathematical

Figure 1: Rigidity properties illustrated by two-dimensional bar-joint frameworks. Arrows show non trivial flex for
infinitesimally not rigid examples. Note, that in the generically rigid set each example has the same graph. As, one
of them is infinitesimally rigid, this means that the graph is said to be rigid. A very similar map is presented in [19].
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structural rigidity theory is a useful tool, because pro-

teins are real molecular frameworks. However, inter-

actions between atoms cannot be considered as

simple geometrical constrains, because they may

fluctuate. Thus, rigidity analysis of protein structures

provides information on the phase space of collective

motions of protein segments. However, local flexi-

bility/mobility properties of protein structures at the

atomic level are also very important, and require

other methods of protein dynamics for their study

not reviewed here.

Structural rigidity analysis of proteins
Computer programs are available for the rigid cluster

decomposition of proteins using three-dimensional

protein structures. Figure 3 illustrates the two pos-

sible major ways of modelling molecular frameworks

on the ethane molecule. The first method uses the

bar-joint model, in which, each atom is represented

by a joint, and distance constraints of bonds are rep-

resented by bars. For modelling angle constraints of

rotating bonds, such as single covalent bonds, add-

itional bars connecting next nearest neighbours

(shown by dashed lines on Figure 3B) have to be

added to the model. Torsional constraints of

double covalent (or peptide and resonant) bonds

can be fixed by introducing third-nearest distance

constraints. The resulting network is the so called

bond-bending network used and analysed by

MSU-FIRST software [38].

In the body-bar-hinge model, local rigid groups

of atoms are represented by rigid bodies. For ex-

ample, in the ethane molecule (C2H6) both carbons

with their four bonds form a rigid tetrahedron

(Figure 3C), and the rotating single covalent bond

between the carbons is modelled by a hinge. Double

covalent bonds between carbons do not allow any

rotational freedom, therefore an ethylene molecule

(C2H4) itself is a rigid body. Weaker interactions can

be modelled by specifying a number of bars (from 1

to 6), each one removing one degree of freedom.

The body-bar-hinge model is implemented in by the

KINARI web server [43]. The default model of

KINARI uses hinges for modelling single covalent-,

disulphide- and strong hydrogen bonds, six bars for

double covalent- and resonant bonds, and two bars

for hydrophobic interactions.

As a hinge can be modelled by five general bars,

an equivalent body-bar model (Figure 4 in [34]) can

also be used, which is implemented in the later ver-

sions of FIRST (see ASU-FIRST [44]). Both FIRST

and KINARI use the pebble game algorithm. It

is also possible to set the energy cut-off value for

bonds and interactions included to the analysis. For

KINARI, this selection can be performed separately

for different type of bonds. KINARI has the other

great advantage, that it has an online visualization

plug-in for studying the results of the rigidity analysis

(http://kinari.cs.umass.edu). Both FIRST and

KINARI give the rigid cluster decomposition of

Figure 2: Illustration of body-bar-hinge frameworks and their multi-graph representation. Numbered tetrahe-
drons represent rigid bodies in the body-bar-hinge framework on the left. However, rigid bodies may have any kind
of shapes. Bars (dashed red lines) can connect any points belonging to rigid bodies, but here vertices of the tetrahe-
drons are used. Hinges (solid blue lines) are located at common edges of tetrahedrons.We note that, in the generic
case, lines belonging to bars and hinges may not be parallel. In the associated multi-graph (right) bodies, bars and
hinges are represented by nodes, (dashed) edges and five (solid) edges (connecting nodes belonging to the interact-
ing bodies), respectively. The above example of a body-bar-hinge framework is minimally rigid (having no redundant
bars or hinges) corresponding to the fact that its associated multi-graph is (6,6)-critical, which means that it has
exactly 6c� 6 edges, and its sub-graphs have maximum 6c0 � 6 edges, where c and c0 are the numbers of nodes in
the graph and sub-graphs, respectively.
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the protein and a number of calculated rigidity meas-

ures, such as the widely used rigidity order parameter

meaning the relative size of the largest rigid cluster

as compared with the whole structure. It is also pos-

sible to classify each interaction in terms of its con-

tribution to the overall rigidity using redundancy

analysis [43].

Rigid cluster decomposition methods have also

been applied for other macromolecules, such as

for RNA [45–47]. As molecular dynamics calcula-

tions producing individual pathways in protein fold-

ing are computationally very expensive, the much

faster rigid cluster decomposition methods are used

to reduce the conformation space efficiently and im-

prove dynamical simulations [48–52].

Rigid cluster decomposition is a very useful tool,

but it is important to note its limitations.

� In both molecular framework models, we have to

decide, which bonds and interactions are treated as

a strict and exact integer number of constraints,

and all other forces are completely ignored.

� To make this decision, energy cut-off values have

to be introduced, but there is no clear method-

ology how to choose adequate cut-off values, as

well as compare and interpret the results obtained,

because rigidity is a non-local property, and rigid

cluster decomposition is very sensitive to the

cut-off values [53].

� Generic rigidity depends on the network topology

and not on the geometry. In reality, the possibility

that the framework is not generic is close to zero,

but there are always lots of nodes near degenerate

position (e.g. arranged in a straight line), which

can be important, because real chemical bonds

have dispersion in length and dihedral angles.

The arguments mentioned earlier suggest that

for real structures rigidity can be characterized

more likely with the help of probabilistic quantities,

rather than by definite cluster decomposition. The

recently developed generalization of the pebble

game algorithm by Gonzalez et al. [54] offers a very

helpful solution to this problem. This generalization

is called as ‘virtual pebble game’, and represents a

non-integer probabilistic constraint counting algo-

rithm running on weighted interaction networks.

This algorithm can be combined with the method-

ology of making a dilution plot [53], where rigidity

parameters are calculated as a function of energy

cut-off values, instead of analyzing only a single

static configuration of the protein with a fixed

energy cut-off value.

At the end of this subsection, we have to mention

that there are plenty of algorithms performing a par-

tial structural rigidity analysis, e.g. detecting only a

dominant hinge or hinges. Part of them uses add-

itional information from comparison and alignment

Figure 3: (A) Molecular framework models are illu-
strated with the help of the ethane molecule having a
rotating single covalent bond between carbon atoms.
(B) In the bond-bending network, nodes represent
atoms, solid lines represent distance constrains belongs
to central forces, dashed lines represent additional dis-
tance constraints to model angle constraints of rotating
bonds. (C) In the body-bar-hinge representation, rigid
bodies are set of atoms rigidly attached to each
others. Rotational degree of freedom of a single cova-
lent bond is modelled as a hinge, shown by dashed
(white) line in the figure. The associated multi-graph
(for definition see Figure 2) is used for rigidity analysis.
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of similar protein structures (Table I in [55] for an

excellent summary). Other computer programs assess

rigid cluster decomposition, but without complete

accuracy, e.g. RIBFIND [56] performing neigh-

bourhood based clustering, or applying rigid cluster

decomposition based on local flexibility properties

[57]. Modelling protein flexibility docking simula-

tions is also crucial for drug design (Tables II and

III in [55]).

Local flexibility measures of protein
structures
The most widely used local flexibility index is the

temperature B-factor (Debye–Waller factor) deter-

mined by X-ray crystallography [58]. The atomic

B-factor describes the mean square displacement of

an atom. An averaged B-factor value belonging to

the �C atom can be used to describe the mobility of

a residue. A very detailed study on B-factors is done

by Bhalla et al. [59], who studied B-factors for all

secondary structure elements separately. Their results

are organized by organisms, molecular functions and

cellular localization. In general, the mobility of atoms

or residues is not isotropic, but anisotropic.

Anisotropic B-factors having six parameters can be

measured only with resolution typically better than

1.5 Å [60]. A more generalized description, the

so-called TLS (translation/libration/screw) model

[61, 62], involves description of statistical transla-

tional, rotational displacements and screw motions

(involving 20 parameters). It is well known that crys-

tal contacts significantly reduce atomic fluctuations

[63]. Moreover, the measured B-factors also contain

the effect of lattice defects and lattice vibrations [60].

Therefore, flexibility indices based on dynamic

models are also very important, especially for native

states. As there are segments in many proteins, which

move on a much larger scale than the rest of the

protein, the normalization of B-factors is important

and can be helped by structural rigidity analysis [64].

Correlation coefficients between NMR and X-ray

measurements and four different kinds of models

are summarized by Livesay et al. [65].

Beyond the mean square displacement, other

physical quantities are also useful in describing local

protein flexibility. It was shown that both hydropho-

bicity and distance from protein surface play an im-

portant role in determining residue mobility [66].

Amino acid volume is inversely proportional to the

atomic B-factor [67]. The hydrophobicity–volume

product gives an even better description [68].

Number of close contacts also gives a very simple

and good description of local flexibility [69]. All

the measurements, models and quantities which

can measure local flexibility of proteins are summar-

ized in Table 1 [38, 59, 60, 62, 65, 67–80]. It is

important to note that the number of rotating

bonds of amino acids and their side-chain flexibility

properties are not equal to each other. Flexibility/

mobility order of amino acids was described in sev-

eral publications [81, 82].

Rigidity and flexibility in protein
function
There are several interesting results and hypotheses

describing a possible role of rigidity and flexibility in

protein function. Both theory and measurements

show that active site residues tend to be locally less

flexible/mobile than others [42, 70]. Moreover,

active sites usually occur in global hinge centres indi-

cating a low mobility [83]. Analysis of protein struc-

ture networks and elastic network models indicate

that active centres usually have non-redundant,

unique connections, and often behave as ‘discrete

breathers’ displaying a unique mobility pattern as

compared with the rest of the protein. Discrete

Table 1: Local flexibility plots of proteins in the
literature

Method Quantity References

Measurements
X-ray crystallography Temperature B-factor [59, 68, 70]
NMR spectroscopy Order parameter [69, 71]
Neutron scattering Force constant [72]

Correlating quantities
Volume [67]
Hydrophobicity-volume

product
[68]

Contact number/density [67, 69, 73, 74]
Disorder probability [75]

Model References
Calculated mean square values from protein models

GNM (Gaussian
network model)

[76, 77]

ENM (elastic network
model)

[73, 78]

TLS [60, 62, 79]
FIRST (flexibility index) [38]
DCM (distance
constraint model)

[65]

Brownian dynamics
(force constant)

[80]

448 Ga¤ spa¤ r and Csermely
 by Peter C

serm
ely on N

ovem
ber 30, 2012

http://bfg.oxfordjournals.org/
D

ow
nloaded from

 

http://bfg.oxfordjournals.org/


breathers occur at the stiffest regions of proteins, and

may display a long-range energy transfer [84–87].

On the contrary, increased flexibility of some activa-

tion segments may contribute to inactive, zymogen

structures of protease enzymes [88] and differential

flexibilities of the activation domains may also

govern substrate-specific catalysis in the trypsin/

chymotrypsin family of proteases [89].

The mechanism of allosteric changes attained a lot

of attention in the last century [85, 90–95], but its

major molecular mechanisms are still not completely

understood. Current molecular mechanisms include

the propagation of a ‘frustration front’ [96], where

frustration means that certain residues have accumu-

lated a tension, which prompts their unusually large

dislocation, once the allosteric ligand triggered the

release of this tension. A recent study [41] on 51

pairs of proteins in active and inactive state using

the FIRST algorithm [38] found that rigid paths

connect the effector and catalytic sites in 69% of

the data set. An increased rigidity in active state rela-

tive to the inactive state has also been observed.

However, 31% of the studied structures failed to

follow this trend [41]. Currently, we do not have a

coherent picture of the involvement of flexibility/

rigidity changes in protein function, which prompts

further studies of this exciting field.

Rigidity as a stability factor in
thermophilic proteins
Proteins from thermophilic organisms usually show

high thermostability. Plenty of structural parameters

contribute to thermostability including rigidity [39],

but there is no unique factor determining thermo-

stability [97]. A remarkable study of Radestock and

Gohlke [98] using the FIRST algorithm [38] ana-

lyzed not only the static structural rigidity, but also

simulated increasing temperatures by breaking the

weakest interactions as the temperature increased.

From the dilution plot a critical temperature was

determined, where the rigid cluster of the protein

structure became fragmented. It is important to

note, that this study can only be performed on pro-

teins, which have a large rigid backbone. A similar

phase transition study [99] was accomplished for 12

pairs of proteins using the CFinder clustering algo-

rithm [100] looking for changes in densely con-

nected k-cliques in protein structure networks.

Additional properties of thermophilic proteins may

also increase their rigidity such as the existence of

aromatic clusters, which were indeed found to be

relatively rigid regions [101]. Rigidity analysis re-

mains an important tool to understand the structure

of thermophilic proteins. However, due to the com-

plexity of interactions, the inclusion of a neural net-

work model may be useful as exemplified by the

comparative study of mesophilic and thermophilic

proteins using amino acid sequences [102].

RIGIDITYAND FLEXIBILITY
OF THE CYTOSKELETAL
NETWORK
The combinatorial rigidity analysis is applicable for

protein complexes, where the 3-dimensional struc-

ture or at least the interaction network is known. For

larger protein structures, such as polymer networks,

where the filaments and the network structure are

formed statistically, statistical models may be used.

The cytoskeletal network is a highly complex poly-

mer network containing actin, tubulin and inter-

mediate filaments and their complex connection

structures.

When modelling a single polymer filament the

rotational freedoms along its length are not strictly

free, because bending requires energy. Therefore in-

stead of a freely joined chain model (analogous to a

bar-joint model), the continuous worm-like chain

(or Kratky-Porod) model [103, 104] is more ad-

equate. In the worm-like chain model, the rigid-

ity/flexibility property of the filaments is described

by the so-called persistence length. This is the cor-

relation length of the tangent vector along the poly-

mer path (proportional to the average curvature and

depending on the temperature [105]). Experimental

values for the persistence length of one-dimensional

biological filaments vary from 2 nm for the giant

protein, titin [106] through 50 nm for double-

stranded DNA, 10mm for actin filaments up to the

millimetre-range for microtubules.

When persistence length is comparable with

other length scales appearing in the polymer net-

work, such as the total contour length of polymers,

or distance of crosslinks or branch points, the

so-called semi-flexible polymer network model

has to be applied. This is the case for actin filament

network in the cytoskeleton [107, 108], but similar

semi-flexible networks can be formed by segments

of DNA [109], of aggregated amyloid fibrils [110],

or of self-assembled peptide nanotubes [111]. A

semi-flexible polymer network shows more com-

plex properties than conventional ones. This
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improved complexity seems to be needed for the

regulation of the cytoskeletal network [112]. On

the one hand a striated muscle cell has an extremely

structured actin cytoskeleton. On the other hand

motile cells, like leukocytes or fibroblasts, have a

very dynamic cytoskeleton. A semi-flexible net-

work phase space with four expected regions

has been found for these latter, more complex,

dynamic systems having an affine entropic, an

affine mechanical, a non-affine and a rigid region

(Figure 6 in [113] or Figure 3 in [114]). The cyto-

skeletal F-actin filaments seem to be at the

cross-over regime between the non-affine and

affine entropic regimes; therefore, the network

may shift from a large linear-response of the

non-affine regime to the strain-hardened affine en-

tropic regime.

The cytoskeletal network ensures the mechanical

resistance and shape of the cell [115], but it should

also give an opportunity to change cellular shape,

which is critical in cellular movements. To accom-

plish this complex task, the cytoskeletal network

forms a tensegrity structure [116]. Microtubules con-

stitute a compression structure and actomyosin net-

work itself can act like a tensegrity structure.

Actomyosin tensegrity structure is formed once a

global balance between local contraction and neigh-

bouring bond stretching is achieved. This tensegrity

structure provides interplay between local force gen-

eration and collective action [117]. Moreover, ten-

segrity structures are organized in a hierarchical

manner having a core, giving the opportunity to

communicate with the nucleus of the cell through

the intermediate filaments. The nucleus itself also has

its own tensegrity system [116]. The hierarchy of

tensegrities are present both in lower scale, where

the viscoelastic properties of stress fibres can be mod-

elled as a multi-modular tensegrity structure [118]

and in higher scales spanning from tissues up to the

skeleton, where bones represent the compression

elements, while muscles, tendons and ligaments rep-

resent the tension elements of the tensegrity structure

[116].

FUNCTIONALRIGIDITYAND
FLEXIBILITYOF COMPLEX
BIOLOGICALNETWORKS
The complexity and hierarchical nestedness of bio-

logical networks infers several specific properties of

these networks at the systems level. Most biological

networks exert their functions as a part of a higher

level biological system. Therefore, the interaction of

these networks with their environment has a pro-

found effect on their structure. As a sign of this,

biological systems often show a bimodal character

being either rigid/stable/robust or flexible/adaptive

according to their actual environment, and the dy-

namics of environmental changes. Many biological

networks display a cyclic dynamics, where the above

two states (and others) are changed periodically.

However, most biological systems have to be rigid

(stable) and flexible at the very same time. Therefore,

biological systems had to develop a highly complex

regulatory mechanism to set the proper state of rigid

or flexible states [4]. The bimodal character is related

by the emergence of stable attractors of the phase

space, e.g. in cell differentiation or in the develop-

ment of cancer [119, 120]. How exactly the network

bimodality (or generally: network structure) is

related to changes in the attractor structure is not

known yet, and opens an exciting field of studies.

Biological networks usually develop a modular

structure. Modules help the separation of functional

units and their interaction offers an easy, but com-

plex way to regulate the stability (rigidity) and adapt-

ability (flexibility) of the system [121]. Modules also

participate in building the hierarchical nested struc-

ture of biological systems. Extreme modular struc-

tures (such as almost completely separated, very rigid

modules, or over-confluent, too flexible modules)

cause extreme behaviours leading to unadaptive or

hyperadaptive systems, with extremely large or neg-

ligible ‘memory’, respectively. An optimal balance

ensures both the capability for adaptation and

the preservation of beneficial adaptive changes

(Figure 4 [122]).

Structural rigidity is defined for networks

embedded in a metric space. Most biological net-

works discussed in this section are conceptual net-

works lacking a real metric space in their

connection structure. However, using the concept

that flexibility describes the internal degrees of free-

dom, structural rigidity/flexibility and functional ri-

gidity/flexibility may be connected. The degrees of

freedom in a functional response of a living system are

represented in its microstructure. Giving an example

to this relationship, let us think about learning process

in a neuronal network. If the structure of the neuronal

network remains unchanged, because it has no in-

ternal freedom, its response to an external influence

remains the same, i.e. its behaviour is repeating itself,
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and said to be rigid. Despite of these emerging con-

ceptual links, the delineation of relationships between

the structural properties and the dynamical behaviour

of a complex network remains a very big challenge.

Functional rigidity and flexibility of
protein^protein interaction networks
Using the in-house developed ModuLand program

package [123, 124] to identify extensively overlap-

ping network modules, it was recently showed that

yeast protein–protein interaction networks displays a

stratus to cumulus type of change when responding

to a large variety of stresses [121]. In this change,

the interactome modules became more condensed

after heat shock, and the number of inter-modular

links decreased. The partial disappearance of inter-

modular connections proved to be useful, because

it (a) spared links and thus energy; (b) slowed

down the propagation of damage; (c) allowed a

larger independence of modules and thus a larger

exploration radius of their adaptive responses.

Importantly, residual bridges between modules

were often composed by proteins playing a key

role in cell survival [121].

Functional rigidity and flexibility of
metabolic networks
Metabolic networks are directed networks based on

metabolic pathways. It is possible to express all

possible steady-state flux distributions of the network

as a nonnegative linear combination of the so-called

extreme pathways. These conically independent ex-

treme pathways are edges of the steady-state solution

cone in the high-dimensional flux space, were each

axis corresponds to a directed edge (flux) in the net-

work [125]. This method is appropriate to compare

pathway redundancy between different metabolic

networks [126, 127], therefore gives a possible quan-

tification for the rigidity properties of the network.

Importantly, the bimodal distribution of rigid and

flexible network structures [4, 122] mentioned in

the introduction of this chapter is also displayed by

metabolic networks [124]. In their seminal review,

Bateson et al. [128] described small and large pheno-

types of human metabolism resembling to the rigid,

cumulus-like and to the flexible, stratus-like systems,

respectively.

In case of overproduction metabolic networks

have to provide a flexible redirection of fluxes.

This enables the definition of metabolic rigidity/

flexibility which was reviewed by Stephanopoulos

et al. [129]. Nodes involved in dynamic flux

re-partitioning to meet metabolic demands were

called as flexible nodes. Metabolites of flexible

nodes had similar affinities for their enzymes (repre-

senting edges of the network) and reaction velocities

were also of similar magnitude. The flux through

each branch was controlled by feedback inhibition

Figure 4: Bimodal behaviour of modular complex systems. Structure of complex systems often shows a bimodal
behaviour, where the system is either composed of highly coherent, rather rigid communities having a low overlap
resembling of a cumulus cloud (see left side of figure, ‘Separated’) or has rather flexible communities, having a high
overlap resembling to a stratus cloud (right side of figure, ‘Overlapping’). Extremely rigid systems have difficulties
to adapt, to ‘learn’. However, once they have changed, they preserve the change (they have ‘memory’). On the con-
trary, extremely flexible systems may change easily (they ‘learn’ well). However, these systems cannot preserve the
change: they have no ‘memory’. The optimalçand most complexçsolution is a simultaneous development of net-
work flexibility and rigidity (middle panel, ‘Balanced’) [122].
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by the corresponding terminal metabolite. A node

was said to be strongly rigid, if the split ratio of

one or more of its branches was tightly controlled.

This was commonly achieved by a combination of

feedback control and enzyme trans-activation by a

metabolite in an opposite branch [129].

Functional rigidity and flexibility of
gene regulatory networks
Interactions among genes have a key role in the real-

ization of any phenotype. Flexible relationships

among nodes are a major source of robustness against

mutations in genetic networks [130], and cause the

emergence of new properties [131, 132]. The results

of Swinderen and Greenspan [133] imply a consid-

erable flexibility in Drosophila gene interaction net-

work. In yeast, gene regulatory networks hubs were

found both as repressed and repressors, the

intra-modular dynamics were either strongly activat-

ing or repressing, whereas inter-modular couplings

remained weak. The main contribution of the re-

pressed hubs was to increase system stability, while

higher order dynamic effects (e.g. module dynamics)

mainly increased system flexibility. Altogether, the

presence of hubs, motifs and modules induced few

flexible modes sensitizing the network to external

signals [134, 135]. From the point of view of cell

differentiation, which is governed by the dynamical

alteration of the complex gene regulatory network

and the transcriptome, next to adaptivity to the en-

vironmental effects, stability of the attractor is also

essential for a directed transition and not to turn

into an abnormal ‘cancer attractor’ [119, 120].

Functional rigidity and flexibility of
neuronal networks
A neuronal network is a set of interconnected neural

cells. The most important segment of the neuronal

network is the ‘active sub-network’ of the simultan-

eously active neural cells. Changes in activity patterns

provide an extreme flexibility at this network level.

Learning and memory formation play a key role in

the remodelling of neuronal networks in both their

‘active sub-network’ and persistent structure level

[136]. Parts of the neuronal system have to be ex-

tremely stable, like the neuronal network that con-

trols breathing [137]. But in general, neuronal

systems must show a highly complex multitude of

simultaneous stability and flexibility. In conjunction

to this, brain functions have to be noise tolerant to a

certain level, which may be ensured by a certain level

of rigidity in the underlying network. However, dy-

namic flexibility after a certain threshold becomes

crucial to respond to emergency situations.

Therefore, the function of cortical networks is dir-

ectly linked to the interplay between stability/rigidity

and flexibility. This ability to switch between states

or tasks is a key point of flexible behaviour [138].

Given a fix amount of resources, there is always a

necessary balance between resources devoted to the

current task and resources devoted to monitoring

non necessary relevant information. This is a balance

between accuracy and quickness of the current task,

and the ability to switch to a different task, which has

the so-called switch cost [139]. Computer simula-

tions showed that a regulated complex neurody-

namics, which can shift its balance between

sensitivity and stability, can result in an efficient in-

formation processing [17]. Moreover, a recent excel-

lent study uncovered that flexibility, defined as the

change in the association of a node to different mod-

ules of the human brain, predicts the capability of

learning [140]. The inclusion of complex network

features assuring the delicate balance between rigidity

and flexibility will become an important topic in the

further development of artificial neural networks sol-

ving even more complex learning tasks than those

helped by these systems today.

Key Points

� An appropriate balance between rigidity and flexibility is crucial
for proper functioning of complex biological systems.

� Structural rigidity and functional rigidity lay often rather close
to each other in our everyday thinking but were approached by
differentmethodologies so far.

� Combinatorial graph theory proved to be a useful method in
the characterization of structural rigidity/flexibility. However,
the use of information and matroid theories may provide novel
generalizations of these key properties.

� Dimension-independent generalizations of structural rigidity on
weighted networks will be essential for future progress.

� Using the concept that flexibility describes the internal degrees
of freedom, structural rigidity/flexibility and functional rigidity/
flexibility may be better connected in the future. However,
currently this poses a large challenge for us in the field.

FUNDING
This work was supported by research grants from the

Hungarian National Science Foundation [OTKA

K83314], by the Hungarian National Research
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References
1. Barabási AL, Albert R. Emergence of scaling in random

networks. Science 1999;286:509–12.

2. Watts DJ, Strogatz SH. Collective dynamics of ‘small--
world’ networks. Nature 1998;393:440–2.

3. Whitty A. Cooperativity and biological complexity.
Nat Chem Biol 2008;4:435–9.

4. Csermely P. Weak Links: AUniversal Key for Network Diversity
and Stability. Heidelberg: Springer-Verlag, 2006.

5. Bagler G, Sinha S. Network properties of protein structures.
Physica A 2004;346:27–33.

6. Krishnan A, Zbilut JP, Tomita M, et al. Proteins as net-
works: usefulness of graph theory in protein science. Curr
Protein Pept Sci 2008;9:28–38.

7. Sun W, He J. From isotropic to anisotropic side chain rep-
resentations: comparison of three models for residue contact
estimation. PLoSONE 2011;6:e19238.

8. Karlebach G, Shamir R. Modelling and analysis of gene
regulatory networks. Nat RevMol Cell Biol 2008;9:770–80.

9. de Jong H. Modeling and simulation of genetic regulatory
systems: a literature review. J Comput Biol 2002;9:67–103.

10. Bachmaier C, Brandes U, Schreiber F. Biological Networks.
In: Roberto T (ed). Handbook of Graph Drawing and
Visualization. Boca Raton, FL: CRC Pressin press, 2012.

11. Zhu X, Gerstein M, Snyder M. Getting connected: analysis
and principles of biological networks. Genes Dev 2007;21:
1010–24.
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54. González LC, Wang H, Livesay DR, et al. Calculating en-
semble averaged descriptions of protein rigidity without
sampling. PLoSONE 2012;7:e29176.

55. Andrusier N, Mashiach E, Nussinov R, et al. Principles of
flexible protein-protein docking. Proteins 2008;73:271–89.

56. Pandurangan AP, Topf M. Finding rigid bodies in protein
structures: application to flexible fitting into cryoEM maps.
J Struct Biol 2012;177:520–31.

57. Potestio R, Pontiggia F, Micheletti C. Coarse-grained de-
scription of protein internal dynamics: an optimal strategy
for decomposing proteins in rigid subunits. Biophys J 2009;
96:4993–5002.

58. Trueblood KN, Burgi HB, Burzlaff H, et al. Atomic dis-
placement parameters nomenclature. Acta CvstalogrA 1996;
52:770–81.

59. Bhalla J, Storchan GB, MacCarthy CM, et al. Local flexibil-
ity in molecular function paradigm. MolCellProteomics 2006;
5:1212–23.

60. Schneider TR. What can we learn from anisotropic tem-
perature factors? Proceedings of the CCP4 Study Weekend.
Daresbury, UK: SERC Darsbury Laboratory, 1996.

61. Schomaker V, Trueblood KN. On the rigid-body motion
of molecules in crystals. Acta Cryst 1968;B24:63–76.

62. Kuriyan J, Weis WI. Rigid protein motion as a model for
crystallographic temperature factors. Proc Natl Acad Sci USA
1991;88:2773–7.

63. Eastman P, Pellegrini M, Doniach S. Protein flexibility in
solution and in crystals. J Chem Phys 1999;110:10141.

64. Smith D, Radivojac P, Obradovic Z, et al. Improved amino
acid flexibility parameters. Protein Sci 2003;12:1060–72.

65. Livesay DR, Dallakyanb S, Wood GG, et al. A flexible ap-
proach for understanding protein stability. FEBS Lett 2004;
576:468–76.

66. Rose GD, Gierasch LM, Smith JA. Turns in peptides and
proteins. Adv Protein Chem 1985;37:1–109.

67. Halle B. Flexibility and packing in proteins. Proc Natl Acad
Sci USA 2002;99:1274–9.

68. Ragone R, Facchiano F, Facchiano A, et al. Flexibility plot
of proteins. Protein Eng 1989;2:497–504.

69. Huang SW, Shih CH, Lin CP, et al. Prediction of NMR
order parameters in proteins using weighted protein
contact-number model. Theor ChemAcc 2008;121:197–200.

70. Yuan Z, Zhao J, Wang ZX. Flexibility analysis of enzyme
active sites by crystallographic temperature factors. Protein
Eng 2003;16:109–14.

71. Richarz R, Nagayama K, Wüthrich K. Carbon-13 nuclear
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