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Abstract

Biomarkers with high reproducibility and accurate prediction performance can contribute to comprehending the underlying
pathogenesis of related complex diseases and further facilitate disease diagnosis and therapy. Techniques integrating gene
expression profiles and biological networks for the identification of network-based disease biomarkers are receiving
increasing interest. The biomarkers for heterogeneous diseases often exhibit strong cooperative effects, which implies that
a set of genes may achieve more accurate outcome prediction than any single gene. In this study, we evaluated various bio-
marker identification methods that consider gene cooperative effects implicitly or explicitly, and proposed the gene cooper-
ation network to explicitly model the cooperative effects of gene combinations. The gene cooperation network-enhanced
method, named as MarkRank, achieves superior performance compared with traditional biomarker identification methods
in both simulation studies and real data sets. The biomarkers identified by MarkRank not only have a better prediction ac-
curacy but also have stronger topological relationships in the biological network and exhibit high specificity associated with
the related diseases. Furthermore, the top genes identified by MarkRank involve crucial biological processes of related dis-
eases and give a good prioritization for known disease genes. In conclusion, MarkRank suggests that explicit modeling of
gene cooperative effects can greatly improve biomarker identification for complex diseases, especially for diseases with
high heterogeneity.
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Introduction

Complex diseases such as cancer, Alzheimer’s disease and dia-
betes mellitus have received widespread public and research
interest in the past decade. Cancer has become one of the most
lethal diseases worldwide, and cancer-related deaths increased
dramatically in recent years [1]. It is well accepted that cancer is
a complex disease involving many pathways [2, 3], and the
underlying pathogenesis resulting from high heterogeneity,
rapid proliferation and metastasis is still not clearly known.

With the rapid development of genomics technologies, the
available big data allow comprehensive characterization of can-
cers and unbiased identification of specific biomarkers for
understanding the disease mechanisms and improving the
diagnosis and therapies. Many molecular biomarkers have been
revealed in recent decades. For example, Botling et al. [4] identi-
fied that CADM1 was significantly associated with survival of
non-small lung cancer by conducting meta-analysis. Gentles
et al. [5] built a nine-gene molecular prognostic index for
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non-small lung cancer. VEGF and related proteins were widely
studied as predictive biomarkers for renal cell carcinoma [6].

With the appearance of systems biology as well as advanced
technologies generating high-throughput omics data, the types
of disease biomarkers have gradually changed from individual
genes to network-based disease biomarkers [7, 8]. Individual
biomarkers may be powerless to overcome the high heterogen-
eity of complex diseases. But network-based biomarkers can ex-
ploit the cooperativity among genes, which are expected to
shed fresh light into the disease mechanisms and further im-
prove the diagnosis and treatment of diseases. Various biolo-
gical networks obtained from large-scale experimental
techniques [9–12], e.g. protein–protein interaction (PPI) net-
works, have been used to improve the identification of
network-based biomarkers for complex diseases, which show
high reproducibility and provide deep insights into the molecu-
lar mechanisms of diseases [13–17].

During the past years, numerous methods that integrate the
information from gene expression profiles and biological net-
works have been developed to identify biomarkers for various
diseases [18–24]. For example, Chuang et al. [14] and Li et al. [19]
defined scoring functions for subnetworks and searched discrim-
inative subnetworks using heuristic optimization algorithms.
Winter et al. [24] developed a network-based ranking method
NetRank to discover the cancer biomarkers. Compared with the
network-based biomarker identification methods that search
most discriminative subnetworks, the ranking-based approaches
relax the hard constraint of connected subnetwork to a soft con-
straint that marker genes are close to each other in the network.
This relaxation dramatically reduces the computational com-
plexity of network-based biomarker identification. On the other
hand, the relaxation might also improve the effectiveness of dis-
covering biomarkers for heterogeneous diseases, as the disease
genes may involve two or more distinct (and disconnected) path-
ways because of the high heterogeneity of complex diseases.

However, the existing network-based gene ranking
approaches [17, 24] do not explicitly consider the cooperative ef-
fects of gene combination. The biomarkers for heterogeneous dis-
eases often exhibit strong cooperative effects that the gene
combination can achieve more accurate outcome predictions
than any individual gene in the combination [14, 17]. Owing to
the heterogeneity, the disease samples may be classified into sev-
eral subtypes, each of which has different mechanism and can be
predicted by a few different marker genes. Then, the marker
genes from all subtypes constitute cooperative biomarkers with
better overall performance. In essence, biomarker identification
is a feature selection problem in the perspective of machine
learning [25]. Many hybrid and wrapper feature selection meth-
ods based on meta-heuristics, such as genetic algorithm and ant
colony optimization algorithm, can be applied for identifying
the cooperative biomarkers for heterogeneous diseases [26].
However, it is not easy for these optimization-based methods to
explicitly and properly integrate the biological network informa-
tion (e.g. the node importance calculated by random walk model)
into their evaluation frameworks. On the other hand, although
the biological networks might implicitly include the information
of gene cooperation to some extent, the lack of explicit consider-
ation and evaluation of gene cooperative effects may greatly hin-
der the effectiveness of network-based gene ranking methods.

To evaluate this issue, in this study, we proposed the gene
cooperation network to model the cooperative effects of gene
combinations and compared the gene cooperation network-
enhanced biomarker identification method with the traditional
biomarker ranking techniques. Our study suggests that explicit

modeling of gene cooperative effects can greatly improve bio-
marker identification for complex diseases, especially for dis-
eases with high heterogeneity. The gene cooperation network
proposed in this study provides a tool to enhance the existing
network-based biomarker ranking techniques.

Related work

In this study, we focused on the ranking-based approaches for
identifying biomarkers. The traditional biomarker ranking
methods only use the expression profile to identify the related
biomarkers. In this study, the following popular methods were
evaluated to compare their performance: (i) the mutual infor-
mation (MI) of single-gene profile with the sample label. MI was
computed using the R package mpmi as in MarkRank; (ii) the
Student’s t-test of the expression values on normal samples
with disease samples. The genes were ranked using the P-val-
ues of t-test in ascending order; (iii) the Pearson correlation co-
efficient (PCC) of gene expression with the sample label; (iv) the
Spearman correlation coefficient (SCC) of gene expression with
the sample label; (v) fold change (FC), as defined by the ratio of
average expression values in normal over disease samples.

Many network-based gene ranking techniques have been
widely used in the field of bioinformatics, for example random
walk-based algorithms [17, 24, 27, 28], topological properties-
based methods [29–31], differential kernel scheme [32], Bayesian
methods [33, 34], Markov random field [35] and order statistics
[36]. Briefly speaking, in network-based gene ranking approaches,
all candidate genes are first scored and ranked based on a scoring
scheme integrated both prior information (e.g. known disease
genes or most discriminative genes) and biological network.
Then, the top ranked genes are identified as the most potentially
‘important’ genes. However, most studies in literature focused on
the problem of disease gene prioritization [29–33] instead of bio-
marker identification [17, 24]. Although these two problems are
closely related, there exist major differences between two prob-
lems in the goals and the evaluation criteria. The disease gene
prioritization often used the known disease–gene association
database such as OMIM [37] as a gold standard, while the bio-
marker identification emphasized the prediction capability of
genes on the samples of related disease. NetRank is a popular
network-based biomarker ranking method, which was success-
fully applied on many cancer data sets to predict diagnosis and
prognosis outcome [17, 24].

To investigate the merit of explicitly modeling gene coopera-
tive effects, we developed an enhanced biomarker ranking
method, named as MarkRank, by integrating a gene cooperation
network into the NetRank model. The workflow of MarkRank is
shown in Figure 1. MarkRank first constructs a gene cooperation
network from given gene expression profiles to explicitly model
the gene cooperative effects. An edge in the gene cooperation
network indicates a possible cooperative gene pair that will im-
prove the prediction power of biomarkers. The gene cooperation
network integrates the discriminative power of single genes
and the cooperative effects of gene combinations. MarkRank
then uses a modified random walk algorithm on two networks
to rank candidate genes. Sorting the genes by MarkRank scores,
the top ranked genes can be used for many downstream ana-
lyses such as diagnosis prediction, survival time prediction, dis-
ease gene prediction and drug target prediction.

MarkRank has been implemented in the R package Corbi,
publicly available at the CRAN Web site (http://cran.r-project.
org/web/packages/Corbi/), which can be readily installed and
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used in R. Additional Materials (including the open-source
codes, original data sets and functional enrichment results) are
available at http://doc.aporc.org/wiki/MarkRank.

In the framework of random walk-based ranking such as
NetRank and MarkRank, it is expected that one node’s score is
high if its neighbors in the network have high scores. This intui-
tive interpretation consists of the guilt by association assump-
tion of gene interactions during disease progression, which could
benefit the biomarker identification. The special innovation of
MarkRank is that we integrated the biological network and the
gene cooperation network to discover the most cooperative and
discriminative genes, which makes MarkRank distinct from the
traditional random walk-based ranking methods [17, 24, 27, 28].

Results
Explicit consideration of gene cooperative effects
facilitates effective identification of biomarkers
for both homogeneous and heterogeneous
diseases in simulation

We first compared the performance of MarkRank with
NetRank [17, 24], in a series of well-designed simulated data
sets. The simulation study was designed to test whether
MarkRank can prioritize the preset target genes on the top of
the ranking list. The workflow of simulation studies is shown
in Figure 2A. In detail, we first extracted a global network G
from a real PPI network, after which one (to simulate homoge-
neous diseases and simple heterogeneous diseases) or two
(to simulated complicated heterogeneous diseases) fixed size
subnetworks Si from G were randomly extracted, and the
nodes in Si were regarded as the target marker genes.
Subsequently, we generated a simulated gene expression data
set, where the expression values of the above target marker

genes had the desired biological characteristics, which will be
described below. Finally, we computed the MarkRank and
NetRank scores and compared their ranking results for preset
target genes (positive genes) and the remaining genes (nega-
tive genes) through sufficient replicates.

We simulated three different expression patterns. In the first
scenario (Figure 2B), we simply simulated a situation, where the
overall expression values of the oracle biomarker genes in dis-
ease samples were upregulated. All the disease samples are
homogeneous and no subgroup existed. In the second scenario
(Figure 2C), we simulated the disease heterogeneity via allowing
that each target gene was not significantly differentially ex-
pressed. However, when they were integrated together with
other target genes and functioned as a module, their overall de-
gree of differential expression was noteworthy. We upregulated
the expression values of one cluster of target genes only in a sub-
set of disease samples. Different gene clusters shared little sam-
ple overlap with each other. In the third scenario, we assumed
that a sole subnetwork or pathway may not have significant dis-
criminative power, but integrating several subnetworks together
may reach a prominent improvement in a holistic perspective.
Therefore, we simulated two disjoint subnetworks that exhibited
complementary differential expression patterns. These three
types of simulation studies, taking both homogeneity and het-
erogeneity into consideration, provided a series of benchmark
data sets to evaluate the performance of biomarker identification
methods from different perspectives. More details about the
simulation studies can be found in the Supplementary Materials.

Results on the simulated data sets are shown in Figure 3.
The performance of MarkRank was excellent for identifying bio-
markers for homogenous diseases. As measured by the aver-
aged area under the receiver operating characteristic curve
(AUC), MarkRank demonstrated superior performance over
NetRank and had a smaller variance (Figure 3A). In the second

Figure 1. The workflow of the gene cooperation network-enhanced biomarker identification method MarkRank. Data sets in the left dashed box, a microarray expres-

sion matrix and a mapped biological network, are the model inputs of MarkRank. The key steps for MarkRank are the construction of a novel gene cooperation net-

work G2 and a random walk-based method for scoring potential biomarkers (middle dashed box). The users could execute the related downstream analyses, such as

the classification of unknown samples or the clinical outcome predictions, using the sorted gene list (right dashed box).
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scenario with disease heterogeneity, MarkRank showed a prom-
inent improvement when the degree of differential expression
increased, whereas NetRank did not exhibit an obvious rising
trend and became stabilized at AUC values of 0.7–0.75
(Figure 3B). This result is consistent with our expectation, as
MarkRank not only exploits the structure information of the PPI
network but also considers the cooperation potential of gene
combinations, which helps to identify the heterogeneous bio-
marker genes. Further, in the third scenario, MarkRank still out-
performed NetRank (Figure 3C).

We also compared the averaged MI score between the com-
bined subnetwork and the individual connected subnetworks.
With the complementary effect of two subnetworks, the score
of the combined subnetwork gradually increased and offered
distinct advantages over individual ones (Figure 3D). For a better
illustration, we calculated and ranked the MI scores of all indi-
vidually connected subnetworks within a threshold size using
an enumerative algorithm. The results showed that two target
subnetworks were ranked from several thousands to millions
(Figure 3D). These individual subnetworks generally cannot be
identified through conventional algorithms because of their
lower MI scores and ranks. However, the combined subnetwork
did contain discriminative potential in a holistic perspective as
shown by its high MI scores. These results showed that
MarkRank not only has excellent performance for identifying
biomarkers of homogeneous diseases but also can identify bio-
markers for the diseases with heterogeneity.

The gene cooperation network-enhanced biomarker
identification method outperforms traditional gene
ranking methods on various real data sets

To test the efficiency and effectiveness of MarkRank in realistic
situations, we used six microarray data sets of different com-
plex diseases to execute real data set analysis, including lung

cancer, ulcerative colitis, cervical cancer, renal cell carcinoma,
bladder cancer and gastric cancer. We executed the Monte Carlo
cross-validation procedure on the lung cancer and the ulcera-
tive colitis data sets to compare MarkRank with other existing
biomarker identification methods (see the ‘Methods’ section
and Supplementary Materials). Based on the observation that
classes in cervical cancer and renal cell carcinoma data sets are
much easier to classify (Supplementary Figures S5, S10 and
S11), we did not test the classification performance of
MarkRank on these two data sets via the Monte Carlo cross-
validation procedure. The bladder cancer and gastric cancer
data sets were used to further validate the classification per-
formance of MarkRank (Supplementary Figure S7).

After mapping the common genes present in both PPI network
and each of the six expression profiles, we further restricted our
study to the largest connected component of the refined network.
The summary of the used data sets is shown in Table 1, and
more details about the data sets and preprocessing can be found
in the ‘Methods’ section and Supplementary Materials.

The following biomarker ranking methods were tested in the
Monte Carlo cross-validation: (i) MI, (ii) Student’s t-test, (iii)
PCCs, (iv) SCCs, (v) FC, (vi) NetRank and (vii) MarkRank. In add-
ition, random gene selection was also taken into consideration
as a control method. For each method, a random forest classi-
fier was trained using the top 10 ranked genes as signatures,
and the performance was evaluated using the averaged AUC
computed from sufficient quantity of repeats.

MarkRank, which had a superior averaged AUC, outper-
formed the traditional methods on both lung cancer and ulcera-
tive colitis data sets (Figure 4). The superior performance of
MarkRank was independent on the classifier algorithms and the
number of selected genes. The performance of MarkRank with
the top 30 ranked genes as signatures and other classifiers
(Support Vector Machine and Naı̈ve Bayes) can be found in
Supplementary Figures S3 and S4. Notably, our method was

Figure 2. The workflow of simulation comparison and sketch maps of data sets for three simulation scenarios. (A) The workflow of simulation comparison. (B–D) The

sketch maps of simulated data sets in three scenarios. The heat maps were plotted using column normalized ðl ¼ 0; r ¼ 1Þ expression data sets, and the bar plots

represent the MI of corresponding genes. These simulation patterns had biological sense and focused on different perspectives.
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prone to identify the key genes with strong discriminative
power when the selected gene number was limited.

It is noteworthy that we also used the PPI networks ex-
tracted from two other biological molecular network databases,
BioGRID [38, 39] and STRING [40, 41], to test the influence of the
network on the performance of MarkRank. The details about
these two networks can be found in the Supplementary
Materials. The performance of MarkRank was consistently su-
perior to other ranking methods on each biological network and
was less affected by the selection of biological networks
(Supplementary Figure S6). Principal component analysis using
the identified signatures (Supplementary Figures S8 and S9)

showed that the MarkRank algorithm was an effective method
for ranking genes and had a more robust performance than
traditional approaches.

Biomarkers identified via MarkRank are more
disease-specific and highly connected to
each other on the PPI network

In the following exploration of the MarkRank method, we first
ranked the genes of four real disease data sets described above.
The top gene set selected via MarkRank contained nodes that
were either hub nodes in the PPI network (high-degree nodes in

Figure 3. The results of simulation studies. The averaged AUC plus/minus 1-fold SD of MarkRank and NetRank at different degrees of gene expression upregulation in

(A) first, (B) second and (C) third simulation scenarios is illustrated. The results of MarkRank are drawn in the curve with squares, and those of NetRank are shown in

the curve with dots. (D) The bar plot represents the averaged MI of three subnets with 1-fold SDs. The line chart represents the median of ranking position after a log2

transformation. For clarity, we recorded the subnets with lower and higher MI scores in each iteration and computed the related statistical properties.

Table 1. The description of the expression data sets used in this study

Expression data set Samples Original genes Common genes LCC genes

Lung cancer 187 12 493 7608 7244
Ulcerative colitis 135 10 506 5055 4244
Cervical cancer 57 12 494 7608 7244
Renal cell carcinoma 46 20 108 8859 8539
Bladder cancer 92 20 514 8729 8381
Gastric cancer 94 20 514 8729 8381

Notes: Common genes are the overlapped genes between the expression data set and PPI network. LCC genes are common genes in the largest connected component

of the PPI network.
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G1) or nodes prone to make an improvement to its neighbors in
the gene cooperation network (high in-degree nodes in G2). The
detailed information about the full gene list can be found in the
Additional Materials (http://doc.aporc.org/wiki/MarkRank).

We plotted the Venn diagram of the top 100 genes from four
data sets (Figure 5A). Genes selected via MarkRank showed a
strong disease specificity: there were no common genes in four
diseases, and there were few common genes between any two
diseases. On the contrary, 62 common genes in four diseases
were identified by NetRank, with few disease-specific genes,
which will bring difficulty to the interpretation of gene ranking
results, as shown by the functional enrichment analysis results
in Additional Materials (http://doc.aporc.org/wiki/MarkRank).
From this perspective, the expression dataset was not fully used
by NetRank, as the PPI network dominated the result of random
walk algorithm, which was verified by the results on the PPI net-
works from different databases (Supplementary Figure S6).

The top 10 genes identified by MarkRank in each type of dis-
ease contain many known biomarkers. For example, UBQLN4,
P4HA2, RABAC1, ARCN1 and P4HB have close relationship with
lung cancer in literature. Dong et al. [42] performed a GWAS
analysis and identified P4HA2 as a novel susceptibility locus for
lung cancer. RABAC1 is one of the invasion-associated four-
gene signature identified by Hsu et al. [43] in non-small cell
lung cancer. ARCN1 is on a list of the top 25 predictive genes se-
lected for the weighted-voting outcome classifier for lung can-
cer [44]. For the ulcerative colitis, MAPKAPK2 is a candidate
gene of inflammatory bowel disease (IBD) SNP (rs3024505) [45].
EWSR1 was proved that it can fused to the N-terminally trun-
cated and C-terminally intact active domain of NFATc2, which
are related with the development and metastasis of cancer [46].
For the cervical cancer, KRT13 has been reported as a marker
gene in the diagnosis of human cervix carcinomas [47]. The
chromosomal position 11q22.3-q23.1, at which CRYAB located,
was previously reported to be frequently lost in cervical can-
cers [48]. SPRR3, HSPB8 and SPINK5 were identified as three
novel differentially expressed genes by >2-FC for cervical can-
cer [49]. CALB1 was reported as a differentially expressed gene
for renal cell carcinoma [50]. SPAG4 was identified as a novel
HIF-1 target and was reported as a novel biomarker gene for
renal cell carcinoma [51].

To explore whether the identified genes are located closely
in the PPI network, we visualized their network topological rela-
tionship (Figure 5B–E). Based on the distance matrix of selected
nodes and the derived minimum spanning tree (MST), edges
were grouped into three categories (see Supplementary
Materials). To obtain an explicit and succinct view, we used the
top 30 genes to illustrate their relationship. The network views
of the identified genes clearly showed that several connected
components exist and most genes are close to the connected
components. These locally tight connection structures are cru-
cial to identify novel disease-related pathways.

We further quantitatively compared these locally tight con-
nection structures of MarkRank with that of the traditional meth-
ods. We tested the statistical significance of gene connectivity for
each ranking method by random sampling (see Supplementary
Materials). The number of gene pairs with shortest path distance
k � 3 was significantly larger than expected by chance for the
top genes ranked by MarkRank for the lung cancer, ulcerative
colitis and cervical cancer data sets (largest P-value 0.03673,
Supplementary Figure S12, Supplementary Tables S2–S5). A simi-
lar result was obtained for renal cell carcinoma for k � 2 (largest
P-value 0.00791). However, the top genes ranked by traditional
methods did not show a consistent statistical significance in any
data set except that the genes identified via NetRank were al-
ways prone to gather together in the PPI network.

We also analyzed the topological properties of the genes iden-
tified via MarkRank from the viewpoint of complex networks.
Two main categories, node importance indexes (degree, betwe-
enness centrality) and module importance indexes (clustering
coefficient, the number of connected components), were selected
as the measurements of each identified gene set. The complex
network indexes showed that the network-based methods, com-
pared with the traditional gene-based methods, can identify the
key genes in the PPI network, which have a relatively higher im-
portance in network structure (Supplementary Figures S13–S16).

In summary, MarkRank appropriately balances the discrim-
inative power of gene combinations and the information of bio-
logical networks, and the identified genes not only had superior
classification accuracy and strong disease specificity but also
had significant network connectivity and topological import-
ance in the PPI network.

Figure 4. Comparative results of various biomarker identification methods for the (A) lung cancer and (B) ulcerative colitis data sets in terms of classification power. All

gene signatures selected by related approaches were subjected to the Monte Carlo cross-validation procedure. The averaged AUC was computed using a random forest

classifier trained by the top 10 genes. The number in brackets after the NetRank method legend stands for different selections of parameter a. The results showed that

the MarkRank method had a more robust classification performance and was superior to all other ranking methods.

Note: MI, mutual information; FC, fold change; PCC and SCC, Pearson and Spearman correlation coefficients, respectively.
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Functional enrichment analyses of MarkRank
biomarkers reveal crucial biological processes of related
diseases

The top 10 enriched gene ontology (GO) terms in the MarkRank
biomarkers of each data set were shown in Supplementary
Tables S6–S9. For lung cancer, the enriched GO terms of
MarkRank genes were mainly for cell death, apoptosis and sev-
eral key protein metabolic processes, which had been proven to
have close relationships with oncogenesis [52, 53]. As for ulcera-
tive colitis, the top functional terms were the regulation of
phosphate, phosphorylation and response to stimulus.
Interleukin-13 (IL-13) has been shown to be a key Th2 cytokine
in ulcerative colitis, inducing the phosphorylation of STAT-6, a
key transcription factor, in colonic epithelial cells and having
further effects on epithelial tight junctions, apoptosis and cell
restitution [54, 55]. In addition, IL-13 caused rapid phosphoryl-
ation of the three of four members of Janus family of kinases

(JAKs) and phosphorylated insulin response substrate-1, IL-4R
p140, JAK1 and Tyk2 in human colon carcinoma cell lines [56].
The MarkRank identified gene set from the cervical cancer data
set was enriched in ‘epithelial cell’ and ‘epidermal cell differen-
tiation’ functions, which is consistent with the histological
characteristic of human papillomavirus and cervical carcinoma
[57–59]. MarkRank genes of renal cell carcinoma were enriched
in ‘excretion’ and ‘chemical homeostasis’ functions, which are
the main functions of renal tissue [60]. The results showed that
the top genes identified via MarkRank involved crucial biolo-
gical processes of the related diseases.

We further evaluated whether the known important disease-
specific pathways or genes are significantly prioritized for each
data set by performing the Kolmogorov–Smirnov test (K-S test).
In this study, five specific gene sets [four from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and one
from the Molecular Signatures Database of Broad Institute

Figure 5. Comparative results for four real disease data sets in terms of network properties. (A) The Venn diagrams of the top 100 genes selected via MarkRank and

NetRank in four data sets. UC and RCC indicate ulcerative colitis and renal cell carcinoma, respectively. (B–E) Network views of the top 30 identified genes in lung can-

cer, ulcerative colitis, cervical cancer and renal cell carcinoma. Edges were grouped into three categories based on the derived MST. The red line represents directly

connected nodes. The blue line and the gray dash dot line represent the distance of node pairs in PPI network ‘equal to 2’ and ‘larger than 2’, respectively. The node

size is proportional to the MarkRank score.
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(MSigDB)-c2] are the most relevant to the corresponding diseases.
The descriptions of the five gene sets and the full ordered gene
lists can be found in the Additional Materials (http://doc.aporc.
org/wiki/MarkRank). P-values for each data set are shown in
Figure 6 and Supplementary Figure S17.

The K-S test P-values of the MarkRank method exhibited ex-
cellent overall enrichment performance, while genes sorted by
Student’s t-test and FC had the worst performance. Although all
methods in this study have high classification accuracy on cer-
vical cancer and renal cell carcinoma data sets (Supplementary
Figures S5, S10 and S11), several traditional gene-based ranking
methods, such as MI, Student’s t-test and FC, failed to signifi-
cantly prioritize the known important disease genes. Compared
with traditional gene-based ranking methods, MarkRank and
NetRank, which integrate the biological network information,
showed a preferable performance and good balance for biolo-
gical explanation and classification accuracy. Both MarkRank
and NetRank had significant enrichment in three of four data
sets. Notably, only the MarkRank genes were significantly en-
riched in the lung cancer data set (P¼ 0.0108), while the lowest
P-value of the other methods was P¼ 0.4041. MarkRank did not
produce significant enrichment in the ulcerative colitis data set
(P¼ 0.1966), noted that ulcerative colitis is only a specific type of
IBD, and other subtypes of this disease family (such as the
abundant Crohn’s disease) may introduce a bias to the KEGG
pathway. In general, the results of pathway enrichment tests re-
vealed that MarkRank gave a good prioritization for known
disease-related genes.

Discussion and conclusion

In this article, we introduced and compared the ranking-based
biomarker identification approaches, including traditional rank-
ing methods and network-based ranking methods. Traditional
ranking methods only use the gene expression data, and their
results may be not reliable because of the high noise and het-
erogeneity in gene expression data. The network-based bio-
marker ranking methods such as NetRank and MarkRank
improve the reliability and reproducibility by integrating the
complicated relationships between genes involved in the devel-
opment of complex diseases.

The main difference between network-based biomarker
ranking methods and other network-based approaches that

identify the subnetworks or modules as biomarkers is that
ranking-based methods relaxed the constraint that one single
connected gene set accounts for one target biomarker. On one
hand, the inevitable shortcomings of the biological technical
capabilities, such as measurement errors and noise, resulted in
the incompleteness of current PPI networks. With limited know-
ledge of the proteome, PPI networks are generally incomplete
not only in their edges but also in their nodes. On the other
hand, the major assumption that key disease genes gather to-
gether in a small connected subnetwork may conflict with dis-
ease heterogeneity because key genes may involve two or more
distinct (and separate) pathways because of the high heterogen-
eity of complex diseases. The efficacy of identifying individual
connected subnetworks may be restricted, as they rarely over-
lap with multiple pathways. Instead, network-based ranking
methods permitted the existence of several connected compo-
nents scattered on the PPI network, which is important in the
identification of novel disease-related pathways and is not af-
fected by the incompleteness of the PPI network or other specif-
icities in disease mechanisms.

In this study, we further enhanced the network-based bio-
marker ranking method by explicitly considering the cooperative
effects of gene combination. The advantages of MarkRank can be
briefly summarized as follows. First, MarkRank has a higher clas-
sification capability than existing methods, which is independ-
ent from the selection of classifier, the training feature number
and the biological molecular network. Second, MarkRank can dis-
cover disease biomarkers for complex diseases with or without
heterogeneity. Third, the biomarkers identified by MarkRank ex-
hibit both strong disease specificity and significant network con-
nectivity. Finally, the biomarkers identified by MarkRank involve
crucial biological processes of related diseases, and MarkRank
gives a good prioritization for known disease genes.

Compared with other network-based ranking approaches
such as NetRank, explicit modeling the cooperative effects sig-
nificantly improves the classification accuracy and the disease
specificity. Compared with the traditional ranking approaches,
subtle integration of the biological network and the gene
expression data to take both source of information into con-
sideration makes the identified biomarkers much more reli-
able and biologically meaningful as shown by the statistical
tests. Last but not least, the modified random walk model
offers a flexible framework to integrate different source of
information.

Figure 6. Pathways enriched in the top ranked list of each biomarker identification method for four real data sets. The black dotted line represents the P¼ 0.05 signifi-

cance level. The results showed that the MarkRank method had significant P-values in the K-S test and gave a good prioritization for known important disease-specific

genes when compared with all other ranking methods. The abbreviations for each method are the same as in Figure 4.
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The key component of MarkRank is the gene cooperation
network that reflects the cooperative effects of gene pairs. We
followed the subnetwork scoring function as in previous studies
of network-based biomarker identification and used the MI in-
crement as the weight of related edge in the gene cooperation
network. This scoring function is relatively simple and could
not identify the cooperation between a pair of negative corre-
lated genes, as their effects will cancel each other. An appropri-
ate scoring function that could discover both positive and
negative correlated gene pairs may further improve the per-
formance of MarkRank. Using the bi-clustering approaches in
the construction of gene cooperation network is also an alterna-
tive solution. The popular bi-clustering methods such as Plaid
[61], QUBIC [62] and FABIA [63], can not only handle the positive
and negative correlations but also identify the strong–weak cor-
relations between genes. We can first use the bi-clustering tool
to identify gene modules, which embed the information of gene
correlations. The genes belong to the same module might share
similar biological functions, and these modules can serve as
several meta-genes. Then, we can replace the genes by meta-
genes in the construction of gene cooperation network, which
might simplify the networks, improve the performance and
more importantly reduce the computation time. Another pos-
sible improvement of scoring function is directly modeling the
changes of classification accuracy instead of estimation using
MI. However, the classification accuracy depends on the se-
lected classifier, and unbiased estimation needs complicated
and time-consuming cross-validation.

The execution time and memory usage of MarkRank on real
data sets are shown in Supplementary Tables S10–S11. As ex-
pected, the construction of the gene cooperation network takes
long time, as it needs to compute MI for all pairs of possible
genes. However, the time complexity for computing all MI is poly-
nomial (quadratic) on the number of genes and thus acceptable
for large data sets. In practice, it may be time-consuming when
compared with other computation steps such as random walk it-
eration. Alternatively, we designed another two alternative
approaches to reduce the computation time. The one simplified
the calculation in the gene cooperation network construction by
using a fast ordering of single-gene MI and another one added an
additional parameter d to obtain a similar effect (see
Supplementary Materials). However, the former method neglects
the combined effects of cooperative genes diverging from our ori-
ginal motivation, and the latter one simplifies the calculation at
the cost of missing cooperative information of genes with long
distance in the PPI network. Therefore, to fully use the informa-
tion from the expression data set, we recommended the version
introduced in the ‘Methods’ section.

The gene cooperation network in this study is mainly based on
two gene combinations. Although the gene cooperation network
contains higher-order combination effects to some extent, there
may be limited effectiveness on overall performance. It is insuffi-
cient to identify a crucial combination of three or more genes by
using just the gene cooperation network based on two-gene com-
binations. In fact, the scoring function itself can evaluate any
number of genes. But modeling an appropriate higher-order com-
bination effect may need more complex calculation and suffer the
curse of dimensionality. It may require a new modeling perspec-
tive to exquisitely generalize MarkRank to high-order cooperation,
which is one of the goals of our future research.

The computational framework of MarkRank itself is more
flexible than traditional random walk-based methods for inte-
grating multiple sources of biological data. In this work, only
two types of data, PPI networks and gene expression profiles,

were used to discover disease biomarkers. Instead of using the
gene expression data in both gene cooperation network and
prior information, the performance of MarkRank might be im-
proved by incorporating other information from multiple sour-
ces into the model. On the other hand, the construction of a
gene cooperation network and prior information in this frame-
work can be adapted flexibly in terms of the data available to
achieve the goal of the study. The prior information, for in-
stance, can be determined by other independent sources such
as known disease genes [64] extracted from the literature and
databases (e.g. OMIM [37]) or the driver genes inferred from
somatic mutation data [65] to settle the corresponding biolo-
gical problems. The gene cooperation network can also be
refined by exploiting better evaluation function and more infor-
mation. For example, the exclusivity between mutated genes is
often considered as the main source of cancer heterogeneity
[66, 67], which might be used to discover and validate inform-
ative links in the gene cooperation network.

In conclusion, the random walk-based MarkRank algorithm
that we proposed in this article to discover disease biomarkers
integrates multisource information including biological net-
works, prior information about related diseases and the dis-
criminative power of cooperative gene combinations, and
achieved a superior performance compared with existing meth-
ods in both predesigned simulation studies and real data sets.
Moreover, MarkRank exhibited high specificity associated with
the related diseases. Our studies suggest that MarkRank is a
promising, ease-to-use R package tool to explore the underlying
pathogenesis of complex diseases from a new perspective.

Methods
Microarray data sets

In this study, six microarray expression data sets were down-
loaded from the Gene Expression Omnibus (GEO) repository
http://www.ncbi.nlm.nih.gov/geo/ (accession numbers GSE4115,
GSE11223, GSE9750, GSE36895, GSE31189 and GSE64951) for real
data set analysis. The related human complex diseases of these
datasets are lung cancer, ulcerative colitis, cervical cancer, renal
cell carcinoma, bladder cancer and gastric cancer, respectively.
These data sets are all based on Affymetrix Human Genome
U133 Plus 2.0 arrays. We averaged the expression values of the
probes mapping on the same gene. The first four data sets were
used in all analyses except that the third and fourth data sets
were not used in Monte Carlo cross-validation. The last two
data sets were used to further validate the classification per-
formance of evaluated methods in a broader perspective. More
information including the preprocessing procedure can be
found in Supplementary Materials.

Biomolecular networks

In our work, three PPI networks were extracted from the HPRD
[68], BioGRID [39], STRING [41] databases, respectively. The
HPRD network was used to perform the main analyses, while
the BioGRID and STRING networks were used to test the influ-
ence of PPI networks and the robustness of the network-based
methods. The preprocessing procedure of PPI networks can be
found in Supplementary Materials.

MarkRank

The whole workflow of MarkRank is shown in Figure 1. Briefly,
the model inputs of MarkRank are a PPI network G1 and a
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mapped microarray mRNA expression data set, with expression
values of n genes across m samples. The procedure to identify
the cooperative biomarker using MarkRank mainly constitutes
two steps, which were described in next sections: the construc-
tion of the gene cooperation network G2 and the random walk-
based scoring system to rank all candidate genes.

Gene cooperation network

Based on the gene expression data set, MarkRank constructs a
directed weighted gene cooperation network G2 following an
information-theoretic scheme proposed by Chuang et al. [14].
Denote eðiÞ is the expression profile of gene i across all samples,
and y is the binary (0-1) vector indicating the phenotype of each
sample. y ið Þ ¼ 1 means that the i-th sample is diagnosed with
disease, and y ið Þ ¼ 0 marks the opposite case. Chuang et al.
defined an evaluation function of discriminative power for a se-
lected gene set S by computing the MI of the aggregated activity
of genes in S and the label y. Precisely, denote xi 2 0; 1f g is the
indicator variable to reflect whether the i-th gene is selected in
S, which defined as xi ¼ 1 if i 2 S and xi ¼ 0 if i 62 S. Using the
above symbols, the evaluation function is computed as:

f x1; x2; . . . ; xnð Þ ¼ MI y;
X
i2S

e ið Þffiffiffiffiffiffi
Sj j

p
!
;

where jSjmeans the size of selected gene set S. Specially, f ðxi ¼ 1;
others ¼ 0Þ denotes the MI of i-th gene MIðe ið Þ; yÞ. In this study,
the MI was computed using the R package mpmi (version 0.41
from https://cran.r-project.org/web/packages/mpmi/).

The gene cooperation network G2 has the same node set as
the PPI network G1. The weight of directed edge ði; jÞ is defined
as the potential improvement of discriminative power when
gene j is added:

wi;j ¼max 0; f xi ¼ 1; xj ¼ 1; others ¼ 0
� �

� f ðxi ¼ 1; others ¼ 0Þ
� �

:

That is, only if the integration of gene j can make an
improvement to the MI of gene i, the directed edge ði; jÞ from
node i to j and the weight of this edge wi;j is retained. In this
way, G2 approximately evaluates the combined effects of gene
combination i; jf g over a single gene if g using the MI-based
evaluation function, and the edges in this network would cap-
ture the cooperation potential of related genes.

Modified random walk model

Random walk is one of the most fundamental types of stochas-
tic processes and plays an important role in network science
[69]. In the past few decades, many modified versions of ran-
dom walks were produced, with extensive applications to many
problems, such as network searching [70], nodes or edges
centralities ranking [71, 72] and community structure detection
[73, 74].

MarkRank takes both the PPI network and the gene cooper-
ation network into consideration for ranking genes. Denote ri as
the biomarker score of gene i, which indicates the possibility
that gene i is selected as a biomarker. It is expected that ri is
high if the neighbors of gene i in the PPI network have high
scores. If gene i is selected as a biomarker (the score ri is high)
and there is a directed edge from gene i to j in the gene cooper-
ation network, rj is assumed to be high, as adding gene j into
the gene combination may improve the classification capability.

Therefore, the biomarker scores are required to satisfy the
following equation, which is essentially the random walk model
with restart in two networks:

ri ¼ 1� að Þei þ a k
X

u2N1 ið Þ

1

deg1 uð Þ
ru þ 1� kð Þ

X
u2N2

in
ið Þ

wuiP
j2N2

out uð Þwuj
ru

2
4

3
5:

Here, ri denotes the score of gene i, and ei is the prior infor-
mation (i.e. distribution of seed nodes). In this study, the abso-
lute value of PCC between a gene’s expression profile and the
disease/control label y in the training data set is used as prior
information.

Parameter a 2 ½0; 1� is the restart probability of random walk
and balances the effect of prior information ei and the influence
of networks, whereas parameter k 2 ½0; 1� is the retain probabil-
ity in the PPI network and balances the importance of the two
networks. Larger k inclines to lay more emphasis on G1, i.e. the
PPI network. The results of the performance of parameter set-
tings can be found in Supplementary Figure S2. In this study, we
set a ¼ 0:8 and k ¼ 0:2 as default parameter setting.

Denote E ¼ ½e1; . . . ; en�T . A1 is the symmetric adjacent matrix
of G1 and A2 is the weighted adjacent matrix of G2. D1 is a diag-
onal matrix, where the elements are the degrees of correspond-
ing nodes in G1. D2 is another diagonal matrix, where the
elements are the sum of weights of outgoing edges of corres-
ponding nodes in G2. The MarkRank score can be computed
iteratively using the matrix format:

R kð Þ ¼ 1� að ÞEþ a kAT
1 D�1

1 þ 1� kð ÞAT
2 D�1

2

� �
R k�1ð Þ;

where ð�ÞT means matrix transposition, and RðkÞ ¼ ½rðkÞ1 ; . . . ; rðkÞn �T

is the MarkRank scores in k-iteration.

NetRank

NetRank [24] is a representative of network-based biomarker
ranking method based on the Google’s PageRank algorithm [71]
and propagates the gene values to their neighbors through the
biological network. The rank rðkÞj of gene j in the k-th iteration is
updated using the following formula:

rðkÞj ¼ 1� að Þej þ a
XN

i¼1

mij

degðiÞ r
ðk�1Þ
i ;

where parameter a is the damping factor and selected using an
additional inner cross-validation loop. mij is the related element
in N� N adjacent matrix M. The prior information ej for
NetRank was the same as for MarkRank as mentioned above.

Evaluation of classification performance

In this work, we used several different evaluation procedures to
compare the classification performance of biomarker identifica-
tion methods. In the simulation studies with preselected truth
biomarkers, each method was directly evaluated using the AUC.
The goal of the simulation studies was to test whether each
method can discriminate the preset biomarker genes from the
remaining genes.

For the real data sets where the truth biomarkers are not
known, a Monte Carlo cross-validation procedure [24] was
adopted to test the classification power of the top ranked bio-
marker genes as the effectiveness measurement of the corres-
ponding biomarker identification method. In this work, the
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random forest, support vector machine and Naı̈ve Bayes classi-
fiers were trained to classify the samples. Note that both the
gene cooperation network and the prior information were con-
structed only based on the training data in each iteration of the
cross-validation to avoid the evaluation bias because of infor-
mation leakage. See Supplementary Materials for more details.

Functional enrichment analyses

In this study, we used two different enrichment approaches to
evaluate the marker genes identified by MarkRank:

1. The hypergeometric test-based functional enrichment ana-
lyses. We used the Cytoscape plugin BiNGO [75] to perform
the enrichment analysis of GO categories. We would like to
assess if the degree that a gene list (here the top 100
MarkRank genes) related to a GO category is any better than
that observed by chance alone.

2. The K-S test-based gene set enrichment analyses. The K-S test
is used for testing whether a given gene set (e.g. disease path-
way) is significantly prioritized in a ranked full gene list. The
K-S test does not require a strict cutoff. We adopted the
GSEAPreranked tool of the GSEA software [76] with a
correlation-weighted K-S test. Notably, we selected four specific
gene sets from the KEGG [77] pathway database and one from
the MSigDB curated gene sets (c2, CGP: chemical and genetic
perturbations) [78], which are the most relevant to related dis-
eases. See Supplementary Materials for more details.

Key Points

• The biomarkers for heterogeneous diseases often ex-
hibit strong cooperative effects. A set of genes may
achieve more accurate outcome prediction than any
single gene.

• We proposed the gene cooperation network to evaluate
the gene cooperative effects on biomarker identification.

• The biomarkers identified by the gene cooperation
network-enhanced biomarker identification tool
MarkRank not only have a better prediction accuracy
but also have stronger topological and functional rela-
tionships in the biological network and disease settings,
providing important guidance and tools for practical
usage.

• This study suggests that explicit modeling of gene co-
operative effects can greatly improve biomarker identi-
fication for complex diseases, especially for diseases
with high heterogeneity.

Supplementary data

Supplementary data are available at BIB online.
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