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Overview

Network theory as part of complex systems theory has over the past decades developed 
powerful tools to analyze and make sense of the enormous amounts of molecular interac-
tion data obtained by modern molecular biology methods at the DNA, RNA, and protein 
levels. These complex network models of intracellular molecular interactions (from here 
on: cellular networks) can reveal aspects of cellular function and overall molecular interac-
tion behavior that cannot be described by other means. We will give here a brief introduc-
tion into the general logic of such network models and how we can gain novel, biologically, 
and medically relevant insights from applying them to the cancer context. This chapter 
describes network- based adaptive mechanisms that bring about the “creativity” of cancer 
cells to survive and expand in the unpredictable, often hostile, environments of tumor 
tissues. First, we describe the dominance shift from “business- as- usual” processes driven 
by the core of cellular molecular interaction networks to changes in the network periphery 
that lead to “creative” shortcuts between distant network regions and thus allow the 
network to respond to novel challenges.1 This forms a general adaptation/learning mecha-
nism that characterizes the initial stages of cancer development.2 Such adaptive changes 
may change the topology of cellular networks from a rigid to a plastic state. Rigid networks 
have a dense core, disjunct modules (network groups), prominent hierarchy, low network 
entropy and so- called sink dominance. Rigid networks have only a few dominant attractors 
(i.e., stable states to where the network converges). Plastic networks have a fuzzy core, 
overlapping modules, less hierarchy/more loops, high network entropy, and source domi-
nance. Plastic networks have many attractors, which are often dispersed. Alternating 
changes of network plasticity and rigidity help to encode novel information into the 
network structure, thus remodeling the network core and developing novel system attrac-
tors.3 Cancer stem cells are characterized by exceptionally high evolvability involving 
rapid alternations between plasticity and rigidity.4 Plastic and rigid networks (character-
izing early and late- stage tumors, respectively) require conceptually different drug design 
strategies. Plastic networks (which dissipate stimuli very well) should only be attacked 
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with a “central hit,” targeting hubs, bridges, and bottlenecks. If they were attacked at the 
network periphery, the effect of the drug would never reach the center of the network due 
to efficient stimulus dissipation. In contrast, rigid networks (which transmit stimuli without 
much dissipation) may become “overexcited” by “central hit” attacks, leading to unwanted 
side effects such as adverse drug reactions. Rigid networks require the “network influence 
drug design strategy” targeting the neighbors of their hubs and central nodes.5 “Network 
influence targeting” of neighbors of key network nodes increases the precision of the 
intervention by targeting only certain functions of the key, neighboring network node. The 
chapter will conclude with the outline of network dynamics- based, personalized multitar-
get drug design strategies as a promising perspective for future therapies.

6.1 Network Science Provides Important Insights into Complex Cell 
Behaviors, Including Cancer

6.1.1 Definition of Cellular Networks

The term “cellular networks” encompasses many types of interaction networks inside a 
cell, such as protein- protein interaction networks (interactomes), signaling networks, gene 
transcription networks, and metabolic networks. Recently, additional types of intracellular 
networks have also been outlined, such as cytoskeletal networks, cellular organelle net-
works, and chromatin networks. However, currently we do not have enough information 
on most of these latter networks to include them into a detailed analysis of network adap-
tation processes of cancer cells.6 Importantly, a rapidly emerging area of network science 
is the assessment of intercellular networks, which gives insight into the interactions of 
heterogeneous cancer cell types within the tumor, stromal cells, and immune cells.7 The 
analysis of these networks has to date not yet yielded enough information to be included 
into this review, but their adaptation processes are an exceptionally interesting area of 
future study.

6.1.2 The Core- Periphery Learning Mechanism in Biological Systems

Three discoveries in the field of complex systems theory provided important insights into 
general adaptation mechanisms of complex systems.

a) Network core and periphery distinction. Starting with the work of Steve Borgatti 
and Martin Everett in 1999, a number of studies showed that most complex networks can 
be dissected down to a core and a periphery.8 The network core refers to a central and 
densely connected set of a few network nodes, where connection density is often increased 
further by large edge (i.e., network node interaction) weights, which reflects the larger 
probability of the functional use of these interactions at the center of the network. In 
contrast, the network periphery consists of nodes that are noncentral, are sparsely con-
nected, and attach preferentially to the core.9 Importantly, some networks that have a 
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well- developed modular structure and small module overlap possess multiple cores, which 
correspond to the cores of their modules; such module cores can be defined by several 
algorithms.10 Nodes of a network core are (evolutionarily) conserved and shielded from 
the environment of the network by the periphery.11 Peripheral nodes are often sources of 
innovation, since they have a large degree of freedom (which is, for example, described 
in social networks as a lack of social pressure12).

b) Attractors of complex systems are deepened by learning. In 1969, Stuart Kauffman 
described that random genetic control networks develop a surprisingly small number of 
attractors.13 Later studies of William Little, Gordon Shaw, and John Hopfield showed that 
attractors are deepened, or stabilized, during learning processes of networks of real or 
artificial neurons.14

c) Attractors of complex systems are encoded by core nodes of their network repre-
sentation. Recent studies by Reka Albert, Bernold Fiedler, Atsushi Mochizuki, and their 
coworkers showed that attractors are encoded by overlapping node subsets of the strongly 
connected network region, which is the core of directed, bowtie networks.15 These node 
subsets are both necessary and sufficient to determine the given attractor of the network.

6.1.2.1 The core- periphery learning theory
Based on the above three key observations and on several other studies described in 
Csermely,16 the following general core- periphery learning theory for complex networks 
was conceived (figure 6.1). In most cases, a stimulus first affects peripheral nodes, since 
they are much more numerous than core nodes, and core nodes are often shielded by 
peripheral nodes from the network environment. The stimulus propagates then rapidly 
from the periphery to the core, since peripheral nodes are preferentially connected to core 
nodes. Once the stimulus signal has reached one node within the network core, it becomes 
rapidly shared/distributed throughout the entire core of the network by a fast process, since 
core nodes are densely connected, and their connecting edges (interaction paths) have a 
large weight, or “importance” or “preference,” compared to other interactions (see the 
solid lines of figure 6.1).

After these initial steps, one of the following three scenarios may happen.18

Scenario 1. Activation of a previously encoded attractor. If the incoming stimulus had 
been experienced by the complex system several times before, a subset of core nodes has 
already formed a subgroup within the core that is even more densely interconnected than 
the rest of the core and also has already well- established connections with the “sensory” 
nodes of the periphery. This subgroup of network core nodes drives the complex system 
quickly to an attractor (outcome system response) that gives an adequate response to the 
formerly experienced stimulus. If now the same stimulus is repeated again, it is channeled 
immediately to this subgroup of core nodes, which drive the system to the very same 
attractor/response (figure 6.1A). This mechanism results in a fast, reliable, and robust 
response of the whole complex system.19
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Scenario 2. Initial development of a new attractor. If the stimulus is a consequence of 
a novel, unexpected situation (figure 6.1B), it may be incompatible with any of the existing 
attractors encoded by the current core of the complex network. As a consequence, this 
novel stimulus may provoke conflicting core responses, inducing the complex system to 
fluctuate between its original attractors. This prolongs the time during which the stimulus 
cannot be dissipated by the system. During this extended period of time, the stimulus may 
have the chance to propagate back to the weakly connected peripheral nodes of the 
network, which form the majority of nodes in most networks and are not connected to 
each other, and therefore can only be accessed via the core. This process stabilizes the 
system (by modifying the position, size, saddles, or depth of the attractor basins in the 

A. Stimulus is compatible
with a previously set attractor

of the network core

Stimulus
transferred fast
to the rigid core

Stimulus
provokes
conficting

core responses

Repeated
stimuli

Fast
system response

Slow
system response

Emerging novel
system response

Scenario 1:
Pre-set response of some
core nodes is activated
transferring the system
to its respective attractor

Scenario 2:
System fluctuates
between attractors +
stimulus propagates
to the periphery

Scenario 3:
Repeated stimuli
reconfigure the
network core
encoding a new
system attractor

B. Stimulus is imcompatible
with previously set attractors

of the network core

C. Repeated stimuli set
a new attractor using

the contribution of
the network periphery

Figure 6.1
Description of the core- periphery learning mechanism of complex systems. (A) Scenario 1. The stimulus is 
rapidly channeled to the rigid core of the network (dark gray nodes) as a result of the central position of the 
core. It becomes “instantly” shared by core nodes due to their dense connections having large edge weights (solid 
lines). The stimulus (large arrow) is compatible with a previously set attractor of the complex system. This 
attractor is encoded by a subset of the core nodes (top figure, two- headed arrows) and provokes a fast, matching 
response (bottom figure, two- headed arrows), which rapidly dissipates the signal. (B) Scenario 2. The stimulus 
is incompatible with previously set attractors of core nodes (highlighted), provoking a fluctuation between 
attractors (vertical two- headed arrows). Consequently, the stimulus has enough time to spread back to the 
network periphery (nonhighlighted nodes), where it induces a slow, system- level, integrative response (bottom 
figure horizontal two- headed arrows). Here, a collective decision of the entire network emerges in a selection 
process of many, mostly stochastic steps (1). (C) Scenario 3. Repeated novel stimuli reconfigure the core 
(highlighted nodes) encoding a new system attractor (horizontal two- headed arrows). Reproduced with permission 
from Csermely.17
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complex system). The emergent periphery response is usually slow. This is partly because 
the reorganization of the periphery requires a large number of rather slow, mostly stochas-
tic steps.20 A key example of such a “learning step” of a complex system is the case of a 
“creative node,”21 which has a dynamic position in the network (often acting as a “date 
hub”22), and creates a shortcut between previously distant network regions, allowing an 
entirely novel combination of the information previously encoded in these network 
regions.23 In addition, the emerging system response is slow, because stimulus- driven 
periphery reorganization must often be attempted hundreds (if not thousands) of times 
before a new, adequate response is found.24

Scenario 3. Stabilization and encoding of the new attractor. In case the novel stimulus 
is repeated (many times), the peripheral network nodes, which were involved in “Scenario 
2,” may gradually reconfigure the network core adding nodes to it or exchanging its nodes 
(figure 6.1C). This process encodes the newly acquired response as a novel attractor of 
the system. Core reconfiguration may weaken or erase some of the earlier system attractors 
and thus may also serve as a “forgetting”/“erasure” mechanism.25

6.1.2.2 The core- periphery learning mechanism characterizes  
a wide range of complex systems
The core- periphery learning theory described above characterizes adaptation processes of 
a wide range of complex systems from protein structures to social networks.26 In case of 
proteins, a rigid core is often surrounded by intrinsically disordered protein domains, 
which may become at least partially ordered during signaling processes when interacting 
with other proteins, hence forming a “conformational memory,” which represents a learn-
ing process at the molecular level.27 Individual cells may “learn” by the modification of 
signaling pathway dynamics and, most important, by developing epigenetic, chromatin 
memory.28 (It will be a question of future studies whether these changes are initiated in 
the periphery of the signaling network and become part of its core.) Metabolic networks 
possess a reaction core containing all essential biochemical processes and have a large, 
adaptive periphery, which is switched on and off by transcriptional and regulatory pro-
cesses driven by the flow of nutrients and emerging needs of the cell or by its environ-
ment.29 In neuronal networks, peripheral nodes are becoming core nodes during the 
learning process. In social groups, “peripheral” individuals are not belonging to the social 
“elite,” are free of social pressure, do not have the intrinsic need to maintain the “status 
quo,” and thus may often become innovators. The collective action of peripheral (not 
well- connected) individuals is often called the “wisdom of crowds.”30

6.1.2.3 The core- periphery learning theory applied to cancer
To date, we have already a number of good examples demonstrating that cell behaviors 
as described by the core- periphery learning theory may also drive the development of 
cancer. The following observations support this notion. Determinant nodes of the attractors 
of the epithelial- mesenchymal transition reside in the strongly connected region of the 
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dynamic signaling network describing this process.31 Expression patterns of the strongly 
connected region of microRNA- mediated intergenetic networks had an efficient prognostic 
potential for breast and colorectal cancer patients.32 A recent study highlighted the impor-
tance of the first and second neighbors of cancer- related proteins in cancer development 
and their potential role in therapeutic approaches.33 For example, this study could show 
that first neighbors of cancer- related (i.e., mutated or differentially expressed) proteins 
in interactomes and signaling networks have a degree of between- ness, centrality, and 
clustering coefficient at least as high as cancer- related proteins themselves, indicating a 
previously unknown central network position. Furthermore, there are 223 marketed drugs 
already targeting first neighbor proteins but applied mostly outside oncology, providing 
a potential list for drug repurposing against solid cancers.34 It will be a task of further 
studies to prove or refute whether peripheral nodes of protein- protein interaction, signal-
ing, or metabolic networks play a distinctive role in the development of novel responses 
of cancer cells to carcinogenic stimuli, stressful changes in the microenvironment, or 
cancer drugs.

6.1.3 Alternating Network Plasticity and Rigidity as a Hallmark of Cancer Cells

Complex systems often reside in one of two major configurations: either plastic or rigid. 
Plasticity and rigidity may be defined as a functional term of the complex system and as 
a structural term of the network description of the complex system. Functional and struc-
tural plasticity and rigidity are not describing the same phenomenon, but they largely 
correlate in their occurrence.35 In the following, I will first introduce some general concepts 
concerning plastic and rigid networks and then give some examples of how these may 
apply to cancer.

6.1.3.1 Differences between functionally rigid and plastic complex systems
Functionally rigid systems have only few attractors, typically only one, and therefore have 
a very rough attractor landscape. (A rough attractor landscape means a set of attractors 
that are separated by large barriers.) A rigid object, such as a porcelain vase, is not able 
to change its state, unless it breaks, where this noncontinuous, nondifferentiable transition 
forms an entirely different system. In contrast, a functionally plastic system has a large 
number of attractors often associated with a smooth attractor landscape. (In a smooth 
attractor landscape, attractors are separated by very small barriers.) A plastic object, such 
as a paper clip, may adopt a large number of configurations, without an abrupt change. 
Consequently, rigid systems have a very poor adaptation (learning) potential, but they have 
an extremely good “memory” performing their dedicated task(s) with high precision and 
efficiency. On the contrary, plastic systems have an extremely good adaptation (learning) 
potential but have a very poor “memory,” so they can perform specific tasks with only a 
low precision and efficiency.36
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6.1.3.2 Differences between structurally plastic and rigid networks
Structurally plastic networks often have an extended, fuzzy core, where the network core 
cannot be easily demarcated and often contains most of the network nodes (instead of only 
a few). Plastic networks have fuzzy modules that also overlap to a large extent. Usually, 
plastic networks have little hierarchy, have more loops, and, if they have directionality, are 
source dominated. In contrast, structurally rigid networks have a small, dense core and 
disjoint, tightly organized, dense modules. Rigid networks are characterized by a strong 
hierarchy and, if they have directionality, by sink dominance (figure 6.237). In summary, 
plastic networks are periphery dominated, while rigid networks are core dominated. This is 
in good agreement with the finding that network attractors are encoded by core nodes,38 since 
the small and well- organized core of rigid networks encodes only a few attractors, where 
these attractors can be reached with a high probability and provide an optimized, highly 
efficient response. Plastic networks, on the other hand, have a large number of poorly defined 
attractors, which are encoded by a large number of poorly discriminated core nodes.

The novel stimulus, described in scenario 2 above, may “melt”/restructure part of the 
network core by decreasing the core edge weights. Note that this will also decrease the 
core rigidity, which leads to the destabilization of the original attractors and to an increase 
of learning potential to develop new attractors. Plastic network configurations can be 
induced and maintained by “soft spots,” that is, nodes that are highly dynamic and have 
multiple, weak connections (figure 6.2). Note that these “soft spots” are the same as the 
“creative nodes” mentioned in scenario 2 above and are the ones that have a dynamic 
position in the network and can create shortcuts between previously distant network 
regions, allowing an entirely novel combination of nodes to encode the same information 
that was earlier already encoded in these same network regions.44

If the novel stimulus is repeated, as described in scenario 3 above, it may encode a 
novel set of constraints into the network structure, establishing a new region of the network 
core. This core extension makes the network more rigid again.45 These rigid network 
configurations can be induced and maintained by “rigidity seeds,” that is, nodes that 
increase the size of densely connected network clusters, for example, by completing a 
larger complete subgraph (i.e., clique, where every node is interacting with every other 
node) in the network or by joining two densely connected network regions (figure 6.2).

6.1.3.3 Alternating plasticity and rigidity is a general adaptation mechanism
Plastic- rigid transitions characterize a large number of complex systems from protein 
structures to social networks. An example of a protein- level alternation between plastic 
and rigid states are molecular chaperones that have an ATP (adenosine- tri- phosphate) 
hydrolysis- driven “chaperone- cycle,” where they help the refolding of misfolded proteins 
by the physical extension of misfolded proteins, which is followed by their release from 
the chaperone cage. In their extended form, misfolded proteins become rigid, while after 
release, they are plastic again. If the misfolded protein folds to its native conformation, it 
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becomes more rigid, since it is stabilized in one conformation (attractor) instead of the 
competing many conformations (attractors) of the misfolded, at least partially disordered 
state. Such chaperone- driven extension- release (rigidity- plasticity) cycles iterate until the 
misfolded protein is refolded correctly again or becomes discarded by proteasomal 
degradation.46

Cell differentiation progresses via an initial “disorganization” phase of the gene expres-
sion networks in progenitor cells. This can be measured by (a) measuring the similarity 

Plastic network:
periphery dominance
• extended, fuzzy core
• fuzzy modules
• no hierarchy
• source-dominated

Rigid network:
core dominance
• small, dense core
• disjunct, dense modules
• strong hierarchy
• sink-dominated

Soft spots
creative nodes, prions

(Q/N-rich proteins), chaperones
Rigidity seeds

rigidity promoting nodes

Figure 6.2
Properties of plastic and rigid networks. Network structures may adopt structurally plastic or rigid39 network 
configurations. Plastic networks often have an extended, fuzzy core, where the network core cannot be easily 
discriminated and the core often contains most of the network nodes (instead of only a few). In addition, plastic 
networks have fuzzy modules with a large overlap. Usually, plastic networks display little hierarchy, have more 
loops, and, if they are directed, are source dominated.40 In contrast, rigid networks have a small, dense core and 
disjoint, tightly organized, dense modules. Rigid networks are characterized by a strong hierarchy and, if they 
have directionality, by sink dominance.41 In summary, plastic networks are periphery dominated, while rigid 
networks are core dominated. Plastic network configurations can be induced and maintained by “soft spots,” that 
is, nodes that have highly dynamic and multiple, weak connections, such as creative nodes42 exemplified by 
molecular chaperones, prions, or prion- like, Q/N- rich proteins.43 In contrast, rigid network configurations can 
be induced and maintained by “rigidity seeds,” that is, nodes that increase the size of densely connected network 
clusters, for example, by completing a larger complete subgraph (clique) in the network or by rigidly joining 
two densely connected network regions.
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of gene expression profiles using symmetrized Kullback- Leibler distances, (b) applying a 
hierarchical clustering algorithm and calculating the giant component of the network, and 
(c) comparing the size of the giant component to that of the complete gene expression 
network. This final measure shows the level of organization of transcriptional processes. 
The initial “disorganization” is followed by the development of the much more “orga-
nized” gene expression network of the differentiated cell. In agreement with a transient 
increase of system plasticity during the cell differentiation process, the heterogeneity of 
the cell population increases considerably after the start of the differentiation process 
compared to the progenitor cells. As differentiation advances further, the heterogeneity of 
the cell population then markedly decreases, usually much below that observed within the 
progenitor cell population.47 In addition, most terminally differentiated cells are highly 
specialized, which means they have often simple, hierarchical, rigid networks.

There are several other studies showing that plasticity- rigidity changes within neuro-
nal networks can be observed during a large number of learning processes, such as bird 
song learning or infant speech learning. Human creativity consists of alternating “blind 
variation” and “selective retention” processes corresponding to more plastic and rigid neu-
ronal states, respectively. Plasticity- rigidity cycles also characterize organizational learn-
ing processes.48

6.1.3.4 Plasticity- rigidity changes in carcinogenesis and cancer progression
The initial stages of cancer are characterized by an overall increase in network entropy of 
cellular networks49 due to an increased number of stochastic processes (noise50) and loops,51 
as well as by increased phenotypic plasticity.52 All these changes contribute to the increase 
of cellular phenotypic heterogeneity of cancer cells within a developing tumor (figure 6.353). 
Higher- degree entropy of signaling networks was found to correlate with lower survival of 
prostate cancer patients.54 A detailed investigation of normalized local and intermodular 
signaling network entropies revealed increased entropies in benign adenomas when com-
pared to that of healthy colon epithelial cells. Importantly, colon carcinoma cells showed 
decreased entropies when compared to that of benign adenoma cells.55 Similar changes 
showing transiently higher entropy were observed in early stage B- cell lymphoma and early 
hepatocellular carcinoma,56 as well as in the more plastic, early stage proliferative pheno-
types, compared to lower entropy levels in gene expression signatures of remodeling phe-
notypes of various late- stage cancer types.57 This is a pattern of changes in system disorder 
remarkably similar to the one observed during cell differentiation.58 Cells, which start from 
healthy attractors, develop during cancer initiation and progression a specific set of attrac-
tors, called “cancer attractors.”59 The change of the attractor landscape from the initially, 
relatively “rough” surface, which defines the healthy attractor(s), through a much “smoother” 
attractor landscape, where novel attractors arise and/or may become accessible, to the final 
stage of advanced tumors, where a well- developed and relatively stable set of cancer attrac-
tors becomes occupied and stabilized, corresponds very well to the observed increase and 
then decrease of signaling network entropy.60
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6.1.3.5 Cancer stem cell– like cells display a high degree of evolvability  
of plasticity/rigidity changes
Cancer stem cells possess the capacity to self- renew and to repeatedly rebuild the hetero-
geneous lineages of cancer cells that comprise a tumor in a changing tumor microenvironment. 
They can assume both plastic and rigid network structures and cellular phenotypes. The 
plastic phenotype is rapidly proliferating and characterized by symmetric cell divisions. 
The rigid phenotype is characterized by not so frequent, asymmetric cell divisions and by 
increased invasiveness. A highly increased ability of plasticity modulation (which results 
in an increased level of evolvability) may prove to be a major discriminatory hallmark of 
cancer stem cells. In cancer development, cancer stem cells are repeatedly selected for high 
evolvability and become “adapted to adapt.” Importantly, this increased plasticity modula-
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Figure 6.3
Conceptual summary: Cancer as an adaptation process of increasing and decreasing plasticity that requires 
corresponding, different drug- targeting strategies. The figure summarizes literature data61 showing that cancer 
progresses by an initial increase of system plasticity followed by a late- stage decrease of plasticity. The plastic 
to rigid transition of network structure during cancer development requires distinctly different drug- targeting 
strategies in early versus late tumors. While at the early phase of carcinogenesis, central hits of hubs (“1”), 
intermodular bridges (“2”), or bottlenecks (“3”) may be a winning strategy, at later stages of cancer progression, 
the more indirect means of a “network influence strategy,” such as multitarget (“4”), edgetic (“5”), or allo- 
network drugs (“6”), should be used.62 Unfortunately, most anticancer drug tests use cancer cell lines that have 
more plastic networks resembling those of the “early stage tumor- like” cells, while most patients are diagnosed 
with late- stage tumors with rigid cellular networks. Importantly, the heterogeneous cell populations of tumors 
may harbor early and late- stage cells at the same time.63 Moreover, cancer stem cells may have the ability to 
change their plasticity from that of early to late- stage tumor cells and vice versa.64 Therefore, multitarget, 
combinatorial, or sequential therapies using both central hit–  and network influence– type drugs may provide a 
promising therapeutic modality. (Reproduced with permission from Gyurkó et al.65)
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tion ability may be a key reason why anticancer therapies often induce new cancer stem 
cells, instead of killing or transforming them. Such behavior was observed in non– small 
cell lung carcinoma after conventional chemotherapy (paclitaxel) or targeted therapies 
(Erlotinib) in breast cancer after taxane or anthracycline treatment or in hepatocellular 
carcinoma after carboplatin treatment. In these examples, network plasticity was increased 
by induction of specific transcription factors, such as Sox2 or Oct3/4, SRC, or IGFR 
signaling and epigenetic changes.66

6.2 Different Drug Design Strategies Are Required against Early  
and Late- Stage Tumors

Plastic and rigid networks require completely different drug- targeting strategies. Plastic 
networks have a rich and rather undifferentiated contact structure, which is able to dissipate 
“unexpected” external stimuli rather well. Drug treatment can be perceived as an “unex-
pected” intervention toward which the cancer cell has not developed an adequate response 
yet. Targeting noncentral nodes in a periphery- dominant plastic network would result in 
a fast dissipation of the intervention. Thus, plastic networks require a “central hit” that 
targets their central nodes, such as hubs, intermodular bridges, or bottlenecks (see labels 
13 in figure 6.3, respectively). Rapidly dividing bacteria are typical examples of more 
plastic cellular networks. Not surprisingly, many antibiotics target central nodes of bacte-
rial networks (with the notable exception of “choke point drugs,” which target enzymes 
producing a key molecule for bacterial survival).67 Rapidly proliferating cells of early stage 
cancers, as well as the rapidly proliferating, symmetrically dividing phenotype of cancer 
stem cells, have plastic networks, since the continuous changes of rapid cell division can 
be more adequately served by a contact- rich, noncentralized network structure. But it is 
also possible that rapid cell division is often a consequence of rapid changes in the tissue 
microenvironment that may initiate the switching to a plastic network structure; once 
network plasticity is increased, then more proliferation becomes possible as restrictive 
context is reduced. It can then become one further strategy to adapt by generating more 
cells that produce a microenvironment that supports cancer cell survival. Thus, “central 
hit”– type drugs may be more efficient against plastic phenotypes of cancer cells of early 
stage tumors. In agreement with the “central- hit” strategy, targets of anticancer drugs are 
often hubs.68 Moreover, intermodular interactome hubs were found to associate more often 
with carcinogenesis than intramodular hubs.69

Rigid networks have a well- differentiated, centralized, hierarchical, modular structure, 
which is specialized to perform certain functions very efficiently. Rigid structures do not 
dissipate unexpected, random signals very well, since they were optimized for the rapid 
and efficient dissipation of only certain, previously experienced signals. As a consequence, 
rigid structures transmit signals rather well. This may cause rigid networks that are exposed 
to “central hits” to “overshoot,” whereby not only the intended reaction but also unintended 
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side effects may emerge. Cells forming a stable, cooperating community, such as cells of 
a tissue, have most of the time rigid networks. This makes the network influence strategy 
a key strategy in most diseases, such as diabetes or neurodegenerative diseases. As an 
example, the p62/SQSTM1 protein, which is a neighbor of raptor, the regulatory protein 
of mTOR (the mammalian target of rapamycin protein complex), is emerging as a novel 
target in both diabetes and cancer.70 Late- stage tumors contain often “highly experienced 
cells,” which have already been organized as a part of a community either in the original 
tumor or in metastases. The “overshoot” of “central- hit” targeting of cancer cells with 
rigid networks may result in the secretion of molecules that increase drug resistance of 
neighboring cells or cause necrosis instead of apoptosis, inducing various survival pro-
grams in their neighboring cells. Thus, instead of “central hits,” the more indirect means of 
the “network influence strategy” should be used when targeting the rigid networks of 
late- stage tumors. The “network influence strategy” may target (first or second) neighbors 
of key network nodes.71 Drugs for such a targeting method have been called “allo- network 
drugs” (label 6 in figure 6.3). This may allow the excitation of only a subset of the signal-
ing pathways related to the central network node, which gives a much larger specificity 
to the intervention. (Such fine- tuning is close to impossible in extremely plastic networks, 
where the rich interaction structure channels the intervention to any direction, and thus 
the “fine- tuned” intervention becomes soon dissipated). “Network- influence targeting” 
may also be achieved by multitarget or combination therapies, which may use a combina-
tion of submaximum doses and may reach their goal by superimposing two (or more) 
actions at specific nodes of the network in a specific way, mobilizing again only a subset 
of the signaling pathways related to that particular node (label 4 in figure 6.3). Both 
neighbor- targeting and combination targeting may actually behave as “edgetic drugs” 
(label 5 in figure 6.3), which are targeting not an entire node but only one of its interac-
tions, that is, one edge (interaction) of the signaling network. Edgetic targeting was used 
in the case of the superhub mTOR72 or by inhibiting the p53/MDM2 connection by 
nutlins.73 Neighbors of cancer- related proteins were found as widespread targets of drugs 
mainly used in diseases other than cancer and were suggested as candidates for potential 
repurposing efforts.74 Several candidates for potential combination therapies were initially 
discovered by network- based identification.75

Most anticancer drug tests are currently performed on cancer cell lines, which are 
rapidly proliferating cells that have developed a plastic network, and from this point of 
view resemble more the phenotype of early stage tumors. Unfortunately, most patients are 
first diagnosed with late- stage tumors that have already more rigid cellular networks. 
Importantly, the heterogeneous cell populations of tumors may at the same time harbor 
cells that have both plastic and rigid networks.76 Moreover, as described in the previous 
section, cancer stem cells have the ability to change their networks from a plastic to a rigid 
state and vice versa.77 Cancer stem cells follow Nietzsche’s proverbial saying “what does 
not kill me makes me stronger.” Thus, conventional anticancer therapies may actually 
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provoke cancer stem cell development.78 In such scenarios, multitarget, combinatorial, or 
sequential therapies using both central hit–  and network influence– type drugs may provide 
a more promising therapeutic modality.

6.3 Conclusions and Perspectives: Toward Personalized Drug Design 
Based on Insights from Network Science

This chapter introduced two key network- based cellular adaptation mechanisms that might 
play important roles in cancer. Both mechanisms modulate the evolvability of cancer cells 
to help their survival in an unpredictable tumor tissue environment. The first network- 
based adaptation mechanism is based on the “core- periphery learning theory.”79 Responses 
to previously experienced stimuli are encoded by node sets in the core of the network, 
while peripheral nodes are needed to “invent” novel responses to unexpected environmen-
tal changes. Thus, peripheral nodes are expected to play a major role in early stages of 
cancer development. Late- stage tumor cells may have already encoded several successful 
survival mechanisms into the core of their networks. The exploration of these ideas needs 
future studies. The second network- based adaptation mechanism was the alternation 
between plastic and rigid network states.80 Alternating changes in network plasticity and 
rigidity help to encode novel information to the network structure by remodeling the 
network core and therefore developing novel system attractors. Cancer stem cells utilize 
this mechanism to develop and maintain an exceptionally high evolvability.81

Importantly, plastic and rigid networks (mainly characterizing early and late- stage 
tumors82) require conceptually different drug design strategies. Plastic networks require 
“central hits” targeting their hubs, bridges, and bottlenecks. On the contrary, rigid networks 
require the “network influence drug design strategy” targeting the neighbors or edges of 
their hubs and central nodes.83

Although the above suggestions have been formulated as a result of integrating a number 
of individual experimental studies listed in references 1 through 6, they require further 
experimental evidence to establish their precise limits and possibilities. A few of these 
important areas of future research are as follows:

1. Further studies are needed to characterize the core- periphery mechanism and plastic/
rigid alternations of progressing cancer cell and cancer stem cell networks.
2. Systematic studies must show differences in the efficacy of targeting various network 
positions in early and late- stage tumors.
3. Systemwide studies (such as total gene expression/complete exome data preferably at 
single cell level) are needed to clarify the network consequences of multitarget, combinato-
rial, or sequential targeting therapies.
4. The above areas require extension to intercellular network interactions as to date only 
a few studies have been performed.84
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5. Both intra-  and intercellular networks may be “personalized” and/or “localized,” taking 
into account the location of the hosting cells within the tissue, building in the functional 
(e.g., signaling) consequences of the specific profile of mutations and epigenetic changes 
of the given tumor and subsequent modification of network nodes and edges according to 
the transcriptome and proteome of the given tumor. Importantly, due to the heterogeneity 
of tumors and the complexity of chromatin modifications, this task may be much more 
complex than initially thought.
6. Last but not least, most of the above considerations involved mainly structural changes 
of cellular networks and have not taken into account the dynamic analysis of cellular networks 
in order to determine, predict, and modify the changes in their attractor landscape structure. 
Several important recent studies85 have established the novel area of “cancer attractor rede-
sign.” The aim of such approaches is to develop multitarget drugs and drug combinations, 
which (a) do not allow the dominance of proliferation, invasiveness, and so on attractors of 
cancer cells; (b) act as “differentiation therapies” guiding cancer cells back to their healthy 
attractors86; and (c) might lock cancer stem cells into their plastic or rigid phenotype.

The author is very optimistic that a paradigm shift is about to emerge that will lead to 
a change in the design strategies for anticancer therapies, such that the primary goal will 
be cancer cell “reeducation” and guidance toward the healthy state, instead of their mass 
murder, a strategy that does not work so well, as many decades of clinical outcome data 
have shown. The emerging knowledge on network adaptation mechanisms in complex 
molecular interaction networks will certainly be very useful in guiding and driving these 
efforts. From a network science perspective, it is quite clear that simplistic, linear, mutation- 
centric concepts, such as looking for “the” cancer genes and/or mutations, cannot solve 
the entire puzzle of successful cancer therapies. Such a “systems view of cancer” requires 
novel strategies that have to be drastically different from the current “mutation fishing” 
approaches. The author hopes that complex network theory and its applications, presented 
in this chapter, will contribute to a systems- level understanding of cancer and to the devel-
opment of system- based anticancer therapies.
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This book is published at an important juncture in the history of cancer research. Never 
before have we known so much about the individual cancer cell, yet never before has it 
been so unclear how to translate this knowledge into treatment success. This book is also 
published over a year into the global COVID-19 pandemic. Apart from its many other 
devastating consequences, the pandemic has caused many millions of cancer patients to 
have not been treated or diagnosed. Moreover, cancer research spending has dropped 
significantly. In October 2020 the UK’s National Cancer Research Institute released figures 
projecting a 24 percent drop in the UK’s overall cancer research spending, driven by a 46 
percent fall in charity sector funding. The impact of the pandemic on cancer patients and 
cancer research will be felt for years to come, and will make it all the more important to 
determine what to focus on with the funds available. 

Great technological progress over the past four decades has enabled earlier diagnosis, better 
surgery, disease monitoring, and follow- up, and it just begins to show in the cancer survival 
statistics. What is still hard to show is any significant extension of life span after treatment 
of late- stage disease, the real measure of our ability to effectively cure cancer. This is urgently 
needed, however, in the face of a worldwide, rapidly increasing cancer incidence. It seems 
that we are still waiting for the progress that was promised at the time of the “genomics revo-
lution” by the sequencing of the first human genome twenty years ago.

The early 2000s were a time of great optimism in biomedical research, as it was generally 
assumed that once we know every single human gene, applications would be easy to engi-
neer, and tangible benefits for human health would inevitably follow. But cures based on 
this “complete” knowledge of our genetic blueprint have remained largely elusive. Targeted 
therapy, as in precision cancer medicine (PCM), is still only applicable to small subsets of 
patients, and treatment outcomes are often not as expected. Cancer immunotherapy, after 
fifty years of basic research, could finally be translated into clinical practice during the last 
decade, but is so far successfully applicable to only a few types of cancer. Over the same 
time span, precise manipulation of the genome has become even easier than anybody would 
have thought back then. In addition, novel computational methods have enabled in- depth 
analysis of vast amounts of genomics data, be it at the single cell or tumor level, or in large 

Preface
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cohorts of cancer patients, with the aim to uncover the genes and molecular pathways that 
cause cancer. The genomics era was characterized by a sense of relief, as one was under the 
impression that finally the protocol for understanding and manipulating life had truly arrived. 
It appeared that with a few minor technical optimizations, any problem in biology, including 
in humans, would become solvable, at least “in principle.”

In the second decade of the twenty- first century, however, it has become clear that simple 
correlations between genes, mutations, and cancer that have diagnostic or therapeutic value 
are not to be found exclusively at the DNA sequence level. It seemed that we had reached 
“peak genomics.” Even among cancer systems biologists, consensus started to build that 
understanding cancer as a perturbation in a complex multimodal, molecular network will 
not lead to straightforward actionable treatments, despite impressive recent advancements 
in computational powers and single- cell analysis methods. What these approaches have 
uncovered instead is enormous heterogeneity at the genomic level, often presented as “com-
plexity”: not only between different cancers but also of the same cancer type in different 
patients, and even between the individual cancer cells within a single tumor in one patient. 
This ubiquitous observation has led to the declaration of a “complexity crisis” in the cancer 
genomics field. On the one hand, this admission has relativized the significance of the large 
amounts of cancer data that have been accumulated and was often used to explain the failures 
of new cancer drugs in the clinic; on the other hand, the implicit understanding was that 
doubling down on the acquisition of DNA sequence data and on throughput of analysis (using 
artificial intelligence) will lead to important breakthroughs in the foreseeable future.

Despite the persistence of the central causal narrative in cancer biology, which holds 
that cancer is caused by mutations in certain genes, many researchers have begun to doubt 
that DNA- level information is sufficient for understanding the cancer phenotype and have 
moved on to cancer epigenomics and other kinds of - omics. Hence, there is now wide-
spread commentary about the arrival of the “postgenomics era” in cancer research. Origi-
nally, this term had an optimistic connotation, supposed to mean that things will be easier 
from then on, say with the ability to personalize treatments, and to tailor therapies to the 
exact specifications of a patient’s disease. Although indeed technically achievable, it now 
appears very unlikely that these approaches can ever become standard of care due to their 
enormous complexities and thus inevitable diagnostic and therapeutic uncertainties, not to 
mention the high costs of the methodologies involved. Meanwhile, data on the success 
rates of “targeted” drugs based on genomic information show that these drugs have overall 
been far less successful in the clinic than expected.

Perhaps, “postgenomics” really is meant to announce a reboot: we have tried genomics, 
with only modest success in curing cancer, and now need to move on to something else— 
but where to? This is what this book is about.

Applying loosely a historical framework as presented by Thomas S. Kuhn in his 1962 
book The Structure of Scientific Revolutions, it appears that an increasing number of sci-
entists would agree today that the current consensus that defines what is considered 
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“normal science” in cancer research, or its contemporary scientific “paradigm” in Kuhn’s 
terminology, has been insufficient to answer basic questions about carcinogenesis.

Emerging from this wider historic perspective and from the very concrete results of our 
own scientific work and that of others, the following two premises motivated the creation 
of this volume:

1) The current paradigm, namely that a number of specific genes, when mutated or mis-
regulated, cause cancer, has not by itself led to a cure for cancer— a failure clearly not due 
to lack of financial investments or intellectual effort. Therefore, a new theoretical frame-
work for causally understanding and treating cancer is required. (We are not criticizing 
the general understanding of how genes function and their causal role in biology.)

What went wrong? We believe that first and foremost, we have applied an incomplete 
or incorrect theoretical framework in our attempts to explain carcinogenesis. This concerns 
specifically how a simplistic understanding of the causal role of individual genes has been 
applied to cancer.

2) Several lines of evidence, supported by comprehensive data over the past two decades, 
can be identified that challenge the current paradigm. These are now converging toward a 
more widely accepted systems view of cancer and are presented in this volume along dif-
ferent “dimensions” of cancer. This view has, however, not yet led to a change in research 
practices or to fundamentally new experimental approaches in mainstream cancer research.

At the core of this premise is the understanding that models of linear causation, based 
on single (mutated) genes or networks thereof, “in principle” cannot explain the cancer 
phenotype and therefore cannot be used to formulate a cure. This view is now increasingly 
supported by the very data that were initially collected with the aim to find simple answers. 
However the logical structure of most current cancer research efforts still appears to follow 
a mind- set that wants to find the few most relevant cancer genes for a given tumor or the 
corresponding drug that targets such genes in a precise manner— while it is becoming 
more and more obvious that cancer is certainly more complex than that. To change this 
mind- set, we believe, requires active concerted efforts in order to translate alternative 
concepts into scientific practice— instead of waiting for “linear” science to take its course, 
while hoping that the relevant breakthroughs will emerge eventually “anyway.” From the 
patients’ perspective, that is certainly not good enough value for research money.

This volume aims to reemphasize the point that it is primarily novel conceptual or theo-
retical thinking that is required to drive progress in cancer research. Ultimately, only a 
clearly detectable change in research practices and funding policies will tell whether new 
thinking has arrived. New thinking becomes particularly important as currently, an increasing 
number of formerly “solid” fundamental concepts that are still constituting elements of the 
current paradigm, such as “oncogene,” “clonal expansion,” “tumor suppressor gene,” and 
“driver mutation,” to name a few, are becoming increasingly “softened” and attached with 
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various disclaimers regarding their explanatory power, often by the very scientists who 
introduced them earlier. It seems therefore rather surprising that this has not led to a frantic 
search for additional conceptual building blocks, if not new frameworks.

This highlights also one central issue with theoretical thinking in cancer research: the 
fact that novel concepts emerge mainly in the basic sciences where they can be dynamic 
and evolving, but cancer clinicians remain suspended in the tension between their own 
empirical insights based on clinical practice and the concepts from the basic sciences they 
apply (usually with some delay) to the cancer context in humans. When clinical outcomes 
are not in agreement with the prevailing paradigm, for instance, when no plausible “cancer 
mutations” are found in a tumor, or rationally designed, target- selective drugs do not work 
as expected or even make the tumor more aggressive, then clinicians usually assume that 
the principles established in cell culture, animal models, or small cohorts may not apply, 
because humans might be just too complex and too diverse. They would certainly not ques-
tion the scientific foundations that guide clinical practice, let alone assume flaws therein 
that needed addressing. Despite the fact that the number of clinician- scientists (MD- PhDs) 
is increasing, and integration between clinical and basic sciences is steadily improving, it 
seems by now quite clear that beyond such logistical advancements, theory- driven cancer 
biology needs to lead the way with conceptual innovation.

Over the past four decades, the dedication to explain cancer exclusively from the gene 
level up has been so all- encompassing that even trying to conceptualize alternative ideas 
has become difficult for at least two generations of cancer scientists. It has also discouraged 
research into other causally relevant processes beyond the single cancer cell level, depriving 
us of not only the theoretical but also the experimental tools to study them. But where do 
we start if we are to create a new theory framework, and what would its conceptual build-
ing blocks be?

Here we have gathered contributions from a number of theory- minded cancer scientists 
who present ideas and results that are covering many different aspects of cancer but are 
united by the view that it is paramount to revise the current somatic mutation paradigm if 
we are to make more progress in finding a cure for cancer. Their thinking comes from 
different areas of basic cancer cell biology, clinical research, and theoretical investigation, 
but they share a systemic and dynamic understanding of cancer that goes well beyond the 
idea that specific mutations in certain genes cause cancer and that assembling them into 
linear schemes of causation would be sufficient to explain carcinogenesis.

We are aware that this volume had to remain incomplete, as many colleagues who have 
contributed over the years with their work and theoretical thinking to a possibly emerging 
new paradigm could not be included here because of time and space constraints. In particular, 
the areas of inflammation and cancer immunology, two of the most dynamic fields in recent 
cancer research, are not explicitly represented, although references to relevant findings in 
these areas are made repeatedly by contributing authors throughout the book.
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We believe that not only has sufficient solid evidence accumulated to warrant a change 
of the current paradigm based on scientific reasoning, but also that over the past decade the 
readiness for change has increased within the scientific community— despite the fact that 
funding agencies and mainstream research efforts still largely adhere to outdated concepts.

In this volume, we do not argue yet another critique of current research practices as this 
has been done by some of the authors and others in the past. Instead, we wish to present 
a number of conceptual stepping- stones that should lead the reader to a new vantage point 
from where a coherent new theory framework for cancer research might become visible.

The editors
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