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Abstract

Analysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we
introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large
networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality
measure: perturbation centrality. Hubs and inter-modular nodes proved to be highly efficient in perturbation propagation.
High perturbation centrality nodes of the Met-tRNA synthetase protein structure network were identified as amino acids
involved in intra-protein communication by earlier studies. Changes in perturbation centralities of yeast interactome nodes
upon various stresses well recapitulated the functional changes of stressed yeast cells. The novelty and usefulness of
perturbation centrality was validated in several other model, biological and social networks. The Turbine software and the
perturbation centrality measure may provide a large variety of novel options to assess signaling, drug action, environmental
and social interventions.
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Introduction

In the last decade the network approach became a widely used

methodology to study complex systems. As an example, protein

structure networks, where network nodes represent amino acids,

and edges symbolize their physical distance, are increasingly used

to describe conformational changes, formation of protein com-

plexes, drug binding and enzyme action [1–3]. Recently several

programs have been introduced for the construction of protein

structure networks from 3D structural data and for their analysis

[4,5]. Protein-protein interaction networks (interactomes) provide

a great help to understand the molecular mechanism of cellular

functions, the development of diseases and drug design [6]. In

protein-protein interaction networks such as BioGRID [7],

STRING [8], and DIP [9], nodes are proteins, and edges denote

their physical interactions.

Network dynamics is necessary to understand the changes of

complex systems, and therefore became a hot topic of network

studies [10,11]. A number of programs have been developed for

the calculation of certain aspects of network dynamics, such as

network simulation tools based on Boolean dynamics [12–16], the

random-walk based ITM-Probe [17], the law of mass action-based

PerturbationAnalyzer [18], or the biological system modeling tool,

BIOCHAM [19]. However, to our knowledge, no stand-alone

program exists, which can easily integrate any dynamical models

together with any types of starting perturbations, and can also

provide the complete time-domain simulation results, not only the

summative end-result. Recently the complex network dynamics

simulation tool, Conedy was introduced [20]. Conedy is a Python

extension enabling researchers already using computational

dynamics to add networks to their repertoire. However, a

complete toolkit is still missing having built-in algorithms, analysis

tools and visualization, to enable life and network scientists to add

network dynamics to their studies.

Our in-house developed program, Turbine, is able to accom-

modate a large variety of network dynamic simulations. Any real-

world network can be imported to the program and perturbations

can be introduced at any nodes or node-combinations at the

beginning, at any time during the simulation, individually,

repeatedly, or continuously. This allows the analysis of the effect

of different environmental changes on network dynamics. Com-

putational optimizations allow the simulation of large networks (in

the range of millions of nodes and edges) on a standard desktop-

grade computer. The initial phase of Turbine development was

mentioned in an earlier conference lecture summary [21]. Here

we introduce the fully developed program (freely downloadable

from here: http://turbine.linkgroup.hu), and show that its results

on the importance of hubs and inter-modular nodes in the

propagation of perturbations reflect well both our intuitive

expectations and former knowledge. We defined a new measure

of dynamic network centrality, and termed it as perturbation

centrality. Perturbation centrality correctly identified substrate

binding sites and amino acids participating in allosteric signaling in

protein structure network networks. Changes of perturbation

centrality were in agreement with the known functional changes of

the yeast protein-protein interaction network after stress. The

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e78059



novelty and usefulness of perturbation centrality was validated in

several other model, biological and social networks. Turbine is an

integrative and versatile tool to simulate network dynamics and to

predict the effects of environmental changes, signaling stimuli,

drugs or social interventions.

Results

In the simulations using our network dynamics program called

Turbine, we used a model termed ‘‘communicating vessels’’. The

basic idea behind this model was that intensive physical variables

(e.g. temperature) tend to perform an equalization-like dynamics

behaving like communicating vessels (see the detailed description

in Methods). The communicating vessels model gives an

exponential decay of perturbations (see Supplementary Re-
sults of Text S1), which is in agreement with several earlier

findings [22,23].

Modules limit perturbation propagation
The intuitive impression that modules limit the information

spread in complex networks was described in multiple papers, and

was shown in many simulations [24–27]. The equations of the

communicating vessels model (where every affected node dissi-

pates an equal amount of energy in every time-step of the

simulation) suggest that the more nodes are affected by a given

perturbation, the faster the perturbation becomes dissipated.

Taken together these two considerations, our expectation was that

a network with rather distinct modules (termed as pronounced

modules) will propagate and dissipate perturbations slower than a

network with tightly interconnected modules (termed as fuzzy

modules). To test whether the communicating vessels model of

Turbine shows this property, we used the benchmark graph

generating tool of Lancichinetti and Fortunato [28] to generate

unweighted and undirected scale-free, modular benchmark

networks (hereafter called as benchmark graphs) with different

ratios of inter-modular edges (Table S7 of Text S1). The

benchmark graph with pronounced or fuzzy modules had 5% or

40% of inter-modular edges, respectively. We have used a new

measure termed ‘‘fill time’’ for comparison. The fill time of node i

is the time needed to raise the energy level of 80% of the nodes

above 1 unit while continuously adding energy to node i.

Figure 1A shows fill times calculated on 7 random generations

of these benchmark graphs using the same perturbations starting

from each node in separate simulations. Fill times of all nodes and

all 7 benchmark graphs with different random seeds were

averaged. As expected, sparse inter-modular edges of the

pronounced modules delayed the propagation of perturbation,

resulting in a 4.8 times larger fill time as compared to those

observed in benchmark graphs with fuzzy modules (Figure 1A).

Supplementary Results in Text S1 show that fill time is highly

correlated with closeness centrality, making fill time useful as a

verification of the model rather than a novel centrality measure.

Next we assessed the propagation of single perturbations using

the same model, but adding a dissipation term to the communi-

cating vessels dynamics. Figures 1B through 1E are illustrations

of the propagation of dissipated perturbations using image

snapshots of the Turbine viewer program after 50 time-steps of

the simulation. The starting module of the benchmark graphs with

pronounced modules trapped the initial perturbation, if the size of

the perturbation was sufficiently high (1,000,000 units,

Figure 1D). This ‘module encapsulation’ effect was entirely

missing from the benchmark graphs with fuzzy modules

(Figures 1C and 1E), and was also not observable, when the

starting perturbation was low intensity (10,000 units). Thus,

roughly the same number of nodes was affected by the

perturbation in benchmark graphs having either pronounced

(Figure 1B) or fuzzy modules (Figure 1C) if the initial

perturbation was low-intensity (10,000 units). On the contrary, a

high-intensity starting perturbation (1,000,000 units) affected

much less nodes in benchmark graphs having pronounced

modules (Figure 1D) as compared to those having fuzzy modules

(Figure 1E). After applying a high intensity perturbation to

benchmark graphs with fuzzy modules almost all nodes became

perturbed after the 50 time-steps shown (Figure 1E).

The right two sets of bars of Figure 1A show the differences in

perturbation dissipation in a quantitative manner. Here a measure

termed ‘‘silencing time’’ was calculated as the first time step when

all nodes had an energy value less than 1. The same perturbation

was started from each node of the 7 random representations of

benchmark graphs in separate simulations, and their silencing

times were averaged for all nodes and for all the 7 graphs. Bars

with capital letters refer to the benchmark graphs shown on

Figure 1B through 1E. Benchmark graphs with pronounced

modules dissipated low intensity perturbations only slightly slower

than benchmark graphs with fuzzy modules (cf. bars ‘‘B’’ and ‘‘C’’

on Figure 1A). This is in agreement with the approximately same

number of nodes affected after 50 time-steps in the same pair of

simulations (cf. Figures 1B and 1C). On the contrary, high

intensity perturbations were dissipated dramatically (2.6 times)

slower by benchmark graphs with pronounced modules as

opposed to those with fuzzy modules (cf. bars ‘‘D’’ and ‘‘E’’ on

Figure 1A). These results clearly indicated that pronounced

modular structures trap perturbations in agreement with earlier

results [27]. The difference between the behavior of low-, and

high-intensity perturbations arises from the fact that perturbations

are decaying exponentially with the distance from their origin (for

a proof see the analysis of Text S1). Thus, when the perturbation

is of relatively low-intensity (compared to the size of the module

and the dissipation rate) it is dissipated without reaching the

boundaries of its module of origin. In the case of high-intensity

perturbations, a significant amount of energy transverses the

boundary of its module of origin, which makes the modular-

encapsulation effect observable. Module encapsulation of pertur-

bations was also tested using the random-walk based ITM-Probe

method [17], with very similar results (see Supplementary
Results, Table S7 of Text S1, and Figures S1 through S3 of

Text S1).

Definition of perturbation centrality as the reciprocal of
silencing time

Prompted by the utility of silencing time to characterize the

propagation and dissipation of perturbations (Figure 1), and

utilizing our former observation that the reciprocal of fill time was

correlated with closeness centrality (Table S1 of Text S1), we

defined a centrality-type measure for dissipated perturbations, and

termed it as perturbation centrality. Our aim was to conceive a

measure that takes into account both local (weighted degree) and

more global (modular position) perturbation properties. It was also

important that the measure should be easy to understand and

calculate, and that its properties should be almost independent of

the size of the network. As a result of our initial studies (Table S2
of Text S1) we have found that setting the initial perturbation

value to 10*n units (n being the number of nodes in the network)

achieves all of these goals. Thus, perturbation centrality of node i

was defined as the reciprocal of silencing time retrieved by using a

Dirac delta type starting perturbation of 10*n units, where n is the

number of nodes in the network, using a dissipation value of 1.

Silencing time of node i was the first time when all of the nodes

Novel Perturbation Centralty Measure by Turbine
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had an energy value less than a pre-set minimal threshold after an

initial perturbation started from node i. We selected this threshold

as ‘‘1’’, the minimum sensible value with the dissipation also being

set to 1 (note that the dissipation value is the minimal threshold,

since after reaching this value all energy of the network will be

dissipated in the next step).

Following the above definition, we have tried to find the

location of our newly conceived perturbation centrality measure

on the ‘‘centrality landscape’’ by testing its correlation with

established centrality measures in selected networks. We have

tested perturbation centrality against closeness centrality, which is

the average geodesic distance from the given node to all other

nodes; betweenness centrality, the number of shortest paths

between any two nodes passing through the tested node;

community centrality [29], a measure high in the cores of network

communities and PageRank, an iterative measure coined by Brin

and Page [30], where nodes ‘‘vote’’ on each other via their edges in

proportion with their degree. We have also tested the correlations

between perturbation centrality and degree (as well as weighted

degree), since these measures can also be interpreted as local

centrality measures. These correlations between perturbation

centrality and other centrality-type measures of different real-

world networks are shown in Table 1. There was a considerable

correlation between perturbation and closeness centralities.

However, the strength of this correlation was noticeably less than

that between the reciprocal of fill time and closeness centrality

(average correlations were 67% and 89.5%, respectively, with

explained change, R2 values of 45% and 80%, respectively). A

similarly high correlation was observable between perturbation

and community centralities, as well as between perturbation

centrality and weighted degree suggesting that nodes in key

community locations and/or hubs may be among the best

dissipators of perturbations. Correlations between perturbation

centrality and either PageRank or betweenness centrality were

smaller (but noticeable) than that between perturbation and

closeness centralities.

On one hand, data of Table 1 indicate that perturbation

centrality is a more local centrality measure than closeness

centrality. On the other hand perturbation centrality is a more

global centrality measure than weighted degree or PageRank.

Thus perturbation centrality is a novel, mesoscopic-type centrality

measure characterizing the information transfer capability of a

given node (or edge: see Supplementary Results and Figure
S10 of Text S1) in a network. A visual representation of the

relationship between perturbation centrality and the other

centrality measures shows a unique position of perturbation

centrality further supporting the novelty of perturbation centrality

(Figure S4 of Text S1).

Figure 1. Difference in perturbation propagation between benchmark graphs with pronounced and fuzzy modules. Two times 7
randomly selected scale-free, modular benchmark graphs [28] were generated as described in Supplementary Methods and Table S7 of Text S1
with ratios of inter-modular edges of 0.05 (,300 of ,6,000 edges were inter-modular) and 0.4 (,2400 of ,6,000 edges were inter-modular), termed
as ‘‘pronounced modules’’ and ‘‘fuzzy modules’’, respectively. Panel A: average fill times and silencing times, separately for the ‘‘fuzzy’’ and the
‘‘pronounced’’ group of networks. Fill times and silencing times were determined as described in Methods. Continuous perturbation intensity for fill
time was 10,000 units, while initial perturbation intensities for silencing times were 10,000 or 1,000,000 units at low intensity or at high intensity
perturbations, respectively. The three asterisk signs mark statistically significant differences with a= 0.001. Dark red bars and light blue bars represent
pronounced modules and fuzzy modules, respectively. Bar letter codes refer to Panels showing snapshots of perturbations with identical conditions.
Panels B through E show image snapshots created by the Turbine viewer after 50 time-steps of the simulation, using a heat-based color map. (The
order of colors marking the lowest to highest perturbation is: black R red R orange R yellow R white). Perturbation values were scaled
logarithmically. Panels B and C show the effect of low intensity starting perturbations (S = 10,000), while Panels D and E show the effect of high
intensity starting perturbations (S = 1,000,000). Panels B and D show benchmark graphs with pronounced modules, while Panels C and E show
benchmark graphs with fuzzy modules.
doi:10.1371/journal.pone.0078059.g001
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Hubs and inter-modular nodes have a central role in
perturbation dissipation

Next we investigated which types of nodes are best for

dissipating perturbations. On one hand, we observed large

differences in the average perturbation efficiency of modular

networks with differing ratios of inter-modular nodes (Figure 1).

On the other hand, hubs have been proven to have a high

information transmission efficiency [31,32]. Based on these

considerations we defined 4 node categories: 1.) intra-modular

non-hubs; 2.) intra-modular hubs; 3.) inter-modular non-hubs and

4.) inter-modular hubs. We defined hubs as nodes with degrees in

the top 10%, and inter-modular nodes as nodes with at least 40%

inter-modular edges. Intra-modular non-hubs correspond to roles

R1 and R2 (ultra-peripheral and peripheral nodes) in the previous

representation of Guimerà et al. [33]; intra-modular hubs

correspond to role R5 (provincial hubs), while inter-modular

non-hubs and inter-modular hubs correspond to roles R3/R4

(non-hub connectors and kinless nodes) and R6/R7 (connector

and kinless hubs), respectively. Figure 2 shows that, in agreement

with our expectations, inter-modular non-hubs had a larger

perturbation centrality than intra-modular non-hubs in bench-

mark networks with pronounced modules. Importantly, in

networks with pronounced modules inter-modular non-hubs had

larger perturbation centrality than intra-modular hubs. On the

contrary, in benchmark networks with fuzzy modules hubs in any

modular position had a larger perturbation centrality than non-

hubs. These observations are again in agreement with expectations

and earlier findings [27]. The explanation of these findings is that

in fuzzy modules the modular structure did not restrict the

propagation of perturbations, so it is not surprising that intra-

modular hubs dissipated perturbations faster than inter-modular

non-hubs.

Importantly, there was a large (87%) difference between the

perturbation centrality of intra-modular hubs versus the effect of

inter-modular non-hubs in a wide variety of real-world networks

(Supplementary Results and Table S8 of Text S1),

suggesting that from a perturbation perspective real-world

networks resemble the benchmark graphs with fuzzy modules

more, than the benchmark graphs with pronounced modules.

(Note that the same observation was obtained, when we compared

the low-intensity and high-intensity silencing times – see Table S2
of Text S1).

Perturbation centrality uniquely identifies all key regions
of Met-tRNA synthase

Prompted by the general applicability of the perturbation

centrality measure to characterize real-world networks, next we

compared the perturbation centralities with structural and

functional properties of nodes in two types of biological networks

in detail. The comparison of substrate-free with substrate-bound

forms of proteins gives an important system to study the changes in

perturbation differences in the respective protein structure

networks.

Figure 3 shows residues with top 20% increase of different

centralities upon substrate binding of Met-tRNA synthase. Red

and yellow symbols of Figure 3A represent residues with highly

increased perturbation centrality. Residues marked with yellow

symbols are within a distance of 4.5Å from the tRNAMet. Note

that perturbation centrality increase highlights the active site and

both binding sites of the tRNA. On the contrary, residues with

highly increased closeness centrality (Figure 3B) are smeared

around the active site, and residues with the highest increase of

betweenness centrality (Figure 3C) are scattered all around the

protein. The fact that perturbation centrality was increased most

at the two substrate binding sites of tRNAMet upon binding,

indicates that substrate-induced changes in protein structure help a

better spread of perturbations caused by substrate binding. This

self-amplification may be an important contributor to the

propagation of binding-induced conformational changes and

allosteric mechanisms.

Table 1. Correlation between perturbation centrality and other centrality measures.

Networksa
Closeness
centrality

Betweenness
centrality

Community
centralityb PageRankc Degree Weighted degree

Benchmark graphs with pronounced modules 0.79 0.31 0.30 0.08 0.26 0.26

Benchmark graphs with fuzzy modules 0.79 0.76 0.83 0.67 0.83 0.83

Substrate-free Met-tRNA synthetase protein structure network 0.86 0.44 0.26 0.16 0.38 0.34

Substrate-bound Met-tRNA synthetase protein structure network 0.87 0.44 0.25 0.18 0.41 0.37

Filtered Yeast Interactome 0.09 0.33 0.80 0.47 0.67 0.85

Database of Interacting Proteins yeast interactome (release 2005) 0.62 0.56 0.84 0.73 0.66 0.72

Database of Interacting Proteins yeast interactome (release 2010) 0.67 0.41 0.63 0.47 0.52 0.65

E. coli metabolic network 0.72 0.31 0.97 0.67 0.59 0.99

B. aphidicola metabolic network 0.70 0.40 0.98 0.78 0.72 0.99

School-friendship network 0.68 0.43 0.69 0.58 0.68 0.71

Mean and standard error 0.67 (0.063) 0.44 (0.043) 0.65 (0.090) 0.48 (0.081) 0.57 (0.056)0.69 (0.087)

Perturbation centrality was compared to other centrality measures calculated as described in Supplementary Methods of Text S1. Spearman correlations above
r = 0.7 are marked with bold letters, correlations below r = 0.3 are marked with italics. Highest correlations were observed between perturbation centrality versus
closeness centrality, community centrality [29] and weighted degree. This underlines the observations that besides geodesic distance (closeness centrality), modular
position and degree also contribute to good perturbation properties. Note that measured correlations between perturbation and closeness centralities are much
weaker than the correlations between the reciprocal of fill time and closeness centrality (mean is 0.895 in Table S1 compared to 0.67 here, p = 0.000487, Wilcoxon rank-
sum test; correlations with closeness centrality failed the Shapiro normality test with p = 0.0019)
aNetwork descriptions are given in Supplementary Methods and Table S7 of Text S1.
bCommunity centrality was calculated using the LinkLand community detection method of the ModuLand family as described by Kovács et al. [29].
cPageRank values were calculated using the algorithm of the igraph library [59].
doi:10.1371/journal.pone.0078059.t001
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The tight secondary structures of a-helices had larger pertur-

bation efficiency than the more flexible loops. Importantly,

perturbation centrality proved to be better at distinguishing

secondary structures, signaling amino acids, as well as amino acids

whose importance was proven experimentally than betweenness or

closeness centralities (Figures S6 through S8 and Table S9 of

Text S1).

Various stress types induce different perturbation
dissipating regions of the yeast interactome

As a continuation of the characterization of substrate-induced

changes in protein structure networks, we assessed perturbation

centralities in a well-characterized change of the interactome. In

our earlier studies stress-induced changes in mRNA expression

resulted in a marked re-configuration of yeast interactome

modules [34,35]. Here we calculated perturbation centralities for

all nodes in the Database of Interacting Proteins yeast interactome

(release 2005), using stress-induced mRNA changes [36,37] to

calculate the edge-weights of the stressed yeast interactome as

described before [35]. The observation of Mihalik and Csermely

[35] that communities of the interactome become more separated

under heat shock is expected to induce a lower average

perturbation centrality (due to the module encapsulation effect

shown before hindering the propagation of perturbations). Indeed,

a major change was observed: the average perturbation centrality

of the heat-shocked interactome was 6.07*1024, 40.5% lower than

the average perturbation centrality of the unstressed interactome

(1.02*1023, a= 0.05, p = 2.2*10216, Wilcoxon rank-sum test).

We also observed a marked difference of the proteins with

highest perturbation centrality in heat-shock compared to the

other stress types. Only 42 of the 100 unstressed top perturbation

centrality nodes appeared in the top 100 nodes of heat-shocked

cells. However, 65 of the unstressed top nodes appeared in the

oxidatively-stressed interactome, and 68 in the osmotically-stressed

interactome. At the same time, 77 of the top 100 perturbation

centrality nodes were the same in the oxidatively- and the

osmotically-stressed interactome, while the number of matching

nodes was only 30 and 34, when we compared the oxidatively- and

the osmotically-stressed interactome against the heat-shocked

interactome, respectively. These results are visualized in the

Venn-diagram of Figure 4. These data prompted us to perform a

Figure 2. Average perturbation centralities for different node types in benchmark graphs. Scale-free, modular benchmark graphs [28]
were created as described in Supplementary Methods and Table S7 of Text S1. Average perturbation centralities were calculated as described
in Methods using a starting perturbation of 40,000 units, since the benchmark networks contained 4,000 nodes. 4 node types were discriminated:
intra-modular non-hubs, inter-modular non-hubs, intra-modular hubs and inter-modular-hubs, where hubs were nodes having a degree in the top
10%, and inter-modular nodes were nodes with more than 40% inter-modular edges. Different letters on top of the bars mark significantly different
groups with a= 0.01 (Wilcoxon rank-sum test). Dark red bars show results obtained using 7 randomly selected benchmark graphs with the ratio of
inter-modular nodes set to 0.05, termed as pronounced modules, while light blue bars display data for 7 randomly selected benchmark graphs (with
the same seed nodes as the ones used for pronounced modules) with ratio of inter-modular nodes set to 0.4, termed fuzzy modules.
doi:10.1371/journal.pone.0078059.g002
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detailed investigation of the functions of the top perturbation

dissipator proteins in unstressed and stressed yeast interactomes.

Functional assessment of key perturbation dissipator
proteins in unstressed and stressed yeast interactomes

For the assessment of the function of proteins having the highest

perturbation centrality in the yeast interactome before and after

various types of stresses, we used the g:Profiler tool [38], which

performs a statistical enrichment analysis to find over-representa-

tion of Gene Ontology terms, biological pathways, or regulatory

DNA elements in a set of genes or proteins. Only those terms were

taken as significant, where the p-value was less than 0.05 after

applying Bonferroni correction. Using this method, the top 100

nodes having the largest perturbation centrality in the unstressed

interactome had 11 enriched terms, which was extended

differently in heat shock and oxidative/osmotic stress (Table S3
of Text S1).

The enrichment analysis on the nodes having the top 100

largest increase in perturbation centrality in heat-shock, oxidative

and osmotic stress resulted in 28, 22 and 34 enriched terms,

respectively. Carbohydrate metabolism, trehalose metabolic process and

glycogen metabolic process were upregulated in all types of stresses,

which is in agreement of previous findings [39]. Importantly, the

term response to stimulus appeared in all three types of stresses, and

response to stress appeared in heat-shock and osmotic stress (Table
S4 of Text S1). Assessment of the function of proteins having the

largest decrease in their perturbation centralities in various stress

conditions indicated the down-regulation of ribosome synthesis and

protein translation after stress (Table S5 Text S1), which are also

well-known changes in stress [40].

Our results on protein structure and protein-protein interaction

networks highlight the usefulness of perturbation centrality to

identify functionally important nodes in biological networks, and

show that the preferred way of comparing perturbation centralities

in two similar networks is to compare the largest changes rather

than the largest absolute values.

Discussion

We introduced a new method for the analysis of network

dynamics. This new software called ‘‘Turbine’’ (http://turbine.

linkgroup.hu) substantially extends the preliminary version of the

program published as a conference summary [21]. A dynamic

model termed ‘‘communicating vessels’’ was created to assess the

propagation of perturbations in networks. To characterize network

properties, two new measures were defined. ‘‘Fill time’’ charac-

terizes the propagation-efficiency of un-dissipated perturbations.

‘‘Perturbation centrality’’ of a node is defined as the reciprocal of

the time characterizing the dissipation of a perturbation starting

from the given node in the network. Both the reciprocal of fill time

and perturbation centrality were shown to be centrality-type

measures. Fill time correlated well with closeness centrality. On

the contrary, perturbation centrality could not be substituted with

any standard network centrality measure. Perturbation centrality

correctly identified hubs and bridges (inter-modular nodes) as key

determinants of the speed of perturbation dissipation. Nodes

having a high importance in the information transmission in

protein structure networks and in protein-protein interaction

networks were also characterized by high perturbation centrality

values.

Network dynamics has already been assessed using a number of

computational tools. Boolean dynamics [12–16] is a binary model,

where every node can assume either an active or an inactive state,

making Boolean dynamics a generalization of cellular automata on

complex networks. Despite its simplicity, Boolean dynamics has

been very successful in modeling cellular signaling networks, and

Figure 3. Substrate binding-induced perturbation centrality changes mark important residues of E. coli Met-tRNA synthetase.
Protein structure networks of the substrate-free and substrate-bound forms of E. coli Met-tRNA synthetase protein were generated as described in the
Supplementary Methods of Text S1. Perturbation centralities and the underlying protein structure network of Met-tRNA synthetase were
calculated and visualized by the Turbine program as described in Methods, and were overlaid on the 3D image of the substrate-bound form of the
protein (and its tRNAMet complex) generated with PyMOL [58] using ray-tracing. The bottoms of the images show the structure of tRNAMet. The
purple molecule in the middle of the protein structure is the substrate Met-AMP marking the active site of the enzyme, the white sphere on the right
is the Zn2+ ion. Red signs of Panels A, B and C mark amino acids having the highest increase of perturbation, closeness and betweenness centralities
(top 20%) of the substrate-bound form compared to the substrate-free form, respectively. Yellow signs mark those contact amino acids, which are
directly bound to the tRNAMet, evidenced by an atomic distance of less than 4.5Å between any atom of the residue and the tRNAMet, excluding
hydrogens. To avoid overcrowding the image, only those contact amino acids are shown, which have a high increase of their centrality. A separate
image showing all tRNAMet-binding amino acids is shown in Figure S9 of Text S1. Note that red-labeled amino acids having the largest increase of
perturbation centrality upon substrate binding (Panel A) are clustered around the active site and around both tRNA-binding sites, thus successfully
discriminate all important parts of the protein. Amino acids showing the highest change in closeness centrality (Panel B) are smeared around the
active site (which also occurs to be near the geometric center of the protein). Amino acids showing the highest change in betweenness centrality
(Panel C) are scattered all around the protein.
doi:10.1371/journal.pone.0078059.g003
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identifying underlying causes of pathogenic responses [13,41].

However, there are also a handful of programs for non-Boolean

dynamics. ITM-Probe [17] is based on random-walks; Perturba-

tionAnalyzer [18] is a Cytoscape plug-in using the law of mass

action; BIOCHAM [19] and Conedy [20] are more complex

network dynamic tools. Turbine combines several advantages of

the former options with large versatility, richness of output data,

efficient use of memory and fast running time enabling the analysis

of large networks (Table S6 of Text S1). Turbine is able to

accommodate a large number of other dynamical models than the

communicating vessel model used in this paper. Turbine can

handle multiple, repeated or continuous perturbations introduced

at the beginning of the simulation or at any later time-steps.

Moreover, the network structure may also be changed during the

simulations.

Despite its apparent simplicity, the communicating vessels

model well recapitulated the expected dissipation pattern of hub

and inter-modular node perturbations on modular, scale-free

benchmark graphs (Figures 1 and 2). These results were in

agreement with the early assumption of May in 1972 [42] that

modular patterns retain the information within a single module

and minimize its impact to other modules thus stabilize networks,

and they were also in agreement with data published later [24–27].

Encouraged by these findings, we defined a novel type of

dynamic centrality measure, and termed it as perturbation

centrality. Perturbation centrality of node i is the reciprocal of

the silencing time of node i with a starting excitation of 10*n,

where n is the number of nodes in the network, setting both the

dissipation and the silencing threshold to 1. Furthermore, the

silencing time of node i is the time needed to dissipate the

perturbation starting from node i at every node below a low

residual perturbation threshold. The perturbation centrality

measure has a rather straightforward centrality-type meaning.

Intuitively thinking, the more central node i is, the more nodes are

reached by the perturbation started at node i. Thus perturbation

started from a more central node is dissipated faster – since every

node dissipates an equal amount of energy in each step – and so

has a smaller silencing time than a perturbation started from a less

central node.

Silencing time is not a continuous measure thus the precision of

perturbation centrality has a lower bound. However, the

parameters of the simulations were set achieving a rather good

compromise between calculation speed and the resolution of

perturbation centrality. Typical perturbation centrality values

ranged from 0.33 (highest) to 0.0001 (lowest) depending on the

analyzed network. These values corresponded to silencing times 30

and 10000. Note that the lowest perturbation centrality one can

get depends on the number of simulated time-steps, i.e. the lowest

perturbation centrality in an experiment with 2000 time steps is 1/

2000 = 0.0005. The n*10 starting energy (where n is the number of

nodes) and the 1 dissipation rate parameters of the perturbation

centrality were chosen in order to achieve that nodes in most

networks can be characterized by silencing time values between 10

and 10000 steps. This translates to a perturbation centrality value

between 0.1 and 0.0001 Thus, these parameters made a good

Figure 4. Visualization of the difference among the three top 100 sets of proteins having the highest perturbation centrality in the
DIP (2005) yeast interactome. Perturbation centralities were calculated for three stressed variations of the DIP (2005) yeast interactome according
to Methods. The properties of the network as well as the method of generating its stressed versions are described in the Supplementary
Methods. The sizes of the different areas of the diagram are roughly proportional to the number of proteins in the respective combination of the
three sets. Numbers also show the number of proteins in different sets. This quantitative Venn diagram was generated using the Google Charts API.
(https://developers.google.com/chart/image/docs/gallery/venn_charts). The red, green and blue circles show the sets of top 100 proteins having the
highest perturbation centrality in the heat-shocked, osmotically- stressed and oxidatively- stressed networks, respectively. This figure illustrates the
fact mentioned in the Section ‘‘Various stress types induce different perturbation dissipating regions of the yeast interactome’’ that the most
important proteins in heat shock are substantially different from the most important proteins in the other two tested stress types (i.e. in osmotic and
oxidative stresses).
doi:10.1371/journal.pone.0078059.g004
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compromise between the total time of simulation and the

resolution of the perturbation centrality measure.

All correlations between perturbation centrality and other

centrality measures were weaker than the high correlation between

the reciprocal of fill time and closeness centrality (cf. Tables 1
and Table S1 of Text S1; see Figure S4 of Text S1 for a

graphical representation). Thus perturbation centrality may

capture novel dynamics-related features of central nodes (or in a

very similar fashion, edges: see Supplementary Results and

Figure S10 of Text S1). In several case studies on protein

structure networks and yeast protein-protein interaction networks

we showed that this indeed may be the case. The distribution of

perturbation centrality values was different in different networks,

which may give an additional layer of network characterization

(Figure S5 of Text S1).

Perturbation properties of protein structures revealed by the

Turbine model were in agreement with intuitive insights. The tight

secondary structures of a-helices had large perturbation efficiency,

while the more flexible loops had a lower efficiency of propagating

and dissipating perturbations (Figure S6). Perturbation centrality

discriminated secondary structures slightly better than closeness

centrality and much better than betweenness centrality (Figures
S7 and S8 of Text S1). Moreover, perturbation centrality,

uniquely of the three tested centralities, highlighted all important

segments of Met-tRNA synthase. The substrate binding-induced

local increase in perturbation centralities may indicate a self-

amplifying cycle, where substrate-induced changes might help a

better spread of perturbations caused by substrate binding. Amino

acids involved in allosteric communication in Met-tRNA synthe-

tase [43], as well as amino acids with experimentally verified

importance in its function [43] had significantly higher than

average perturbation centrality in the protein structure network of

the enzyme (Figure S6; p = 6*1028 and 9.5*1028 for amino acids

involved in communication; bound and free conformation,

respectively; p = 0.0018 and 0.0022 for amino acids with

experimentally verified importance; bound and free conformation,

respectively using Wilcoxon rank-sum test, a= 0.0125 adjusted

with Bonferroni correction). These findings are in agreement with

a number of earlier studies suggesting that perturbation efficiency

plays a key role in intra-protein allosteric signaling, as well as

showing that both binding sites and inter-domain, bridging amino

acids play an especially important role in this process [44–47].

Differences between perturbation centralities in the interac-

tomes of unstressed and stressed yeast (Tables S4 and S5 of

Text S1) were in agreement with our earlier data on the modular

rearrangements of the yeast interactome upon stress [34,35] and

with experimental data showing the down-regulation of yeast

ribosome biogenesis and mRNA translation [40], as well as the up-

regulation of carbohydrate metabolism [39] after stress.

Considering the above results, the Turbine network dynamics

tool and the perturbation centrality measure may have a number

of highly interesting future applications. Studies on perturbations

of various real world networks were used to assess network

robustness [48]. Perturbation analysis was used in the identifica-

tion of drug target candidates, including multi-target drugs or allo-

network drugs [11,49–52]. Sequential perturbations have been

suggested as a key modality of anti-cancer therapies [48]. Input

signals with different dynamical profiles cause several non-trivial

phenomena in signaling networks, such as kinetic insulation [53].

All these possibilities may be assessed by Turbine in the future and

can be extended to ecosystems, social networks (infection spread,

viral marketing) and engineered networks (power grids, Internet,

etc.).

In conclusion, here we introduced Turbine, a new method for

the analysis of network dynamics, and used it to study the

propagation of perturbations in modular benchmark graphs and

several types of real-world networks. We applied a dynamic model

based on the concept of communicating vessels, and defined a new

measure of dynamic network centrality, called as perturbation

centrality. Hubs, inter-modular bridges and signal transducing

amino acids were identified as nodes of high perturbation

centrality, and were in agreement with a large number of earlier

data. Changes of perturbation centrality in stressed yeast

interactomes well described known functional changes after stress.

The Turbine method and perturbation centrality open a large

variety of options for future studies on network robustness,

signaling mechanisms, drug design, as well as management of

ecosystems, social and engineered networks.

Methods

Brief description of the Turbine program
An in-house designed program package, Turbine (http://

turbine.linkgroup.hu) was used for the simulation of network

perturbations. Turbine is a MATLAB and R-compatible toolkit

for the analysis of network dynamics (including perturbations).

Turbine contains multiple sub-programs written in C++, and a

viewer written in C# to enable visual interpretation of the results.

The program is using its own binary data and network format for

performance reasons, but converters from multiple file formats,

such as the Pajek network format or the MATLAB/Octave data

format are also part of the default toolkit.

Turbine is based on a generalization of the systems theory

approach [54] to complex networks. In the program we assign a

state variable to all parameters of a network, which are expected to

change during the simulation. Every node or edge has a separate

value of every defined state variable. The effects of the state

variables on each other (the evolution of the system in time) are

determined by the particular network dynamics model used. In systems

theory, this model is a set of ordinary or partial differential

equations describing the change of the state variables in time,

taking into account the effects of other state variables on the

current component. In Turbine, any algorithm can be used as a

model, making the user capable of simulating virtually any

dynamics in any network. In the model, the user has to define the

values of the state variables for the next step based on the values in

the current step, which translates to creating a C++ function

named PerStep(), which should return the values of the state vector

for the (n+1)th time step given all preceding values in the 1st

through nth time steps. Of course, a model file may opt not to use

all this information, and indeed, the communicating vessels model

only uses the state vector of the previous, nth step, as it will be

described in the difference form of the model equations of the

communicating vessels model described in the following section.

Turbine models are stored as extendable and replaceable DLL

files. Multiple default models – such as ‘‘ripple’’ for testing wave-

like propagation, ‘‘gossip’’ for testing binary probabilistic infor-

mation spreading, and ‘‘XY’’ modeling the evolution of the

Prisoner’s Dilemma game in a network – are supplied with the

Turbine program package available at our website: http://

turbine.linkgroup.hu. Selecting a model for a given network

requires background knowledge on the nature of the dynamics of

the complex system represented by the network. In the future, we

plan to introduce more specialized dynamics such as ‘‘integrate-

and-fire’’ for neural networks to make model selection simpler.

For running a simulation, the user has to define the 1.) time of

the individual steps (called as step-time); 2.) the total analysis time,
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which together with the step-time determines the number of

performed iterations, and 3.) the starting values of the state

variables. It is also possible to introduce perturbations to the

system during the simulation. A perturbation can be applied to

every state variable, separately for each node or edge, and the

value corresponding to the perturbation at the current time step is

added to the current value of the node’s or edge’s instance of the

state variable. This way, any combination of node and edge

perturbations can be added to the system (e.g. single, multiple,

sequential or continuous), at any time, which allows the user to test

the response of the network to any environmental effects, such as

different drugs or drug-combinations, or any intrinsically gener-

ated effects, such as gene expression noise. The detailed

description of the Turbine program, its User Guide and freely

downloadable versions of Turbine, as well as their source codes are

available at our web-site: http://turbine.linkgroup.hu.

The communicating vessels model
In the simulations of this paper, a model with only one state

variable (energy) was used, to assess the dissipation of information

(e.g. physical perturbations) in complex networks. The basic idea

behind the model was that intensive physical variables (e.g.

temperature) tend to perform an equalization-like dynamics

behaving like communicating vessels. In the communicating

vessels model network nodes represent the vessels and edges

represent their connecting pipes. The algorithm of the model is as

follows: in each time-step, every node transfers a proportion of its

available energy through every available edge, proportional to 1.)

the duration of the time-step; 2.) the weight of the edge

(corresponding to ‘pipe diameter’); and 3.) the difference of the

state variables on the two ends of the edge (corresponding to ‘pipe

pressure’). There was a ‘vaporization’ effect, meaning that a

constant amount of the available energy of every node could be

dissipated in every step, which is an important property of most

dynamical systems including molecular networks. Based on the

above considerations, the differential form of the equation of the

communicating vessel model is the following:

dS

dt
~{

Xl

i~0

S{Si

2
wi

� �
{D0

where S is the value of the state variable (energy) of the starting

node of the edge, Si is the state variable (energy) of the node on the

other end of the current edge, wi is the weight of the current edge,

l is the number of edges (degree) of the current node, and D0 is the

dissipation coefficient, which is kept constant for all nodes.

The differential form is only equal to the discrete difference

equations which the algorithm uses if the step-time is infinitesimal.

However, analyzing differential equations are often much easier,

and this form is more familiar for systems theorists. For the sake of

completeness, we have also included the difference equation form

calculated by the algorithm below:

S tz1½ �~{
Xl

i~1

S t½ �{Si t½ �
2

wi

� �
{D0

Variable names match the ones of the differential form: S is the

value of the state variable (energy) of the starting node of the edge,

Si is the state variable (energy) of the node on the other end of the

current edge, wi is the weight of the current edge, l is the number

of edges (degree) of the current node, and D0 is the dissipation

coefficient, which is kept constant for all nodes. This difference

form of the equation shows an important criterion when choosing

edge weights: the (absolute value of the) sum of weighted out-

degrees should not exceed the reciprocal of the step-time (1/Dt) for

any node, otherwise more energy will be propagated outwards

than the amount contained in the node which – besides violating

the conservation of energy – can destabilize the whole simulation.

We have created a plugin for Turbine (normalize mflow) which can

normalize any network to meet this criteria, keeping relative edge

weights intact. This criterion can be summarized in the following

equation:

{1ƒDt
Xl

i~1

wiƒ1

The described equations (and the algorithm) of the communi-

cating vessels model can be naturally extended to directed graphs.

This modification can be attained by separating the energy

transfer on the inbound and outbound edges, like the following:

dS

dt
~{

Xo

j~1

S

2
wj

� �
z
Xi

j~1

Sj

2
wj

� �
{D0

where S is the value of the state variable (energy) of the current

node, o is out-degree of the node, wj is the weight of the current

edge, Sj is the state variable (energy) of the current neighbor, i is

the in-degree of the current node, and D0 is the (constant)

dissipation coefficient. This model also allows the assessment of

information propagation, silencing times and perturbation cen-

trality in directed real-world networks such as the Internet, citation

networks, or biological signaling networks.

This model provides a good starting point for the simulation of

most network dynamics, if more detailed information is not

available about the mechanism of the actual dynamic process. The

DLL file containing the communicating vessels model is included

with all Turbine packages, and is available on our web-site:

http://turbine.linkgroup.hu.

Turbine simulations
Scripts for running all simulations with the exact parameters

and networks used are downloadable from our web-site: http://

turbine.linkgroup.hu.

Calculation of fill time, silencing time and perturbation
centrality

Two types of tests were conducted on the target networks using

the communicating vessels model described above. In the

calculation of fill time one node was excited with 10,000 units of

energy in each time step, and a D0 = 0 constant dissipation was set.

The speed of the propagation of the perturbation starting at the

given node was characterized by the fill time of the network, which

was defined as the time during the simulation when more than

80% of the nodes in the network had an energy value larger than

1. The fill time measure was calculated for each node of the

network.

In the calculation of silencing time and perturbation centrality

one node was excited with a given amount of energy at the start of

the simulation, which was 10,000, 40,000 or 1,000,000 units as stated

in the individual simulations, and a D0 = 1 constant dissipation was

set. Silencing time was defined as the first time, when all of the

nodes had an energy value less than a pre-set threshold, which was
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1 in all of our experiments. The speed of the dissipation of the

perturbation starting at the given node was characterized by the

perturbation centrality, defined as the reciprocal of the silencing

time of an n*10 sized Dirac-delta-type perturbation, where n is the

number of nodes in the network, with the dissipation and the

threshold for the silencing time set to 1 (the reasons of this choice

can be found in Table S2 of Text S1). All measures were

calculated for each node of the network.

Turbine plug-ins to calculate the silencing time, the fill time, a

script to calculate the perturbation centrality measure, as well as

the User Guide can be downloaded from the web-site: http://

turbine.linkgroup.hu.

Generating protein structure networks from structure
information

Protein structure networks from the substrate-free and sub-

strate-bound form of methionyl-tRNA synthetase enzyme (Met

tRNA synthase [43]), as well as the substrate-free (1PO5, [55]) and

imidazole-bound (1SUO, [56]) form of rabbit cytochrome P450

2B4 were built with the RINerator software [5], using the PDB

files received from the authors of [43] in the case of MetRS, and

using the published 1PO5 and 1SUO structures from the Protein

Data Bank. The absolute value of interaction strengths was used

for network building, since the companion program of RINerator

called Probe returns negative interaction strengths for repulsive

interactions, but our perturbation propagation model is assumed

to only depend on the strength of the interaction rather than its

repulsive or attractive nature.

Characterization of proteins important in perturbation
propagation in resting and stressed yeast cells

For the functional characterization of proteins having the

highest perturbation centralities (or highest changes in perturba-

tion centralities) in resting yeast cells or yeast cells after various

types of stresses, term enrichment analysis was performed using

the R plugin of the g:Profiler [38] web service. g:Profiler uses terms

from Gene Ontology, KEGG, and several pathway databases.

Significant enrichment was stated when the p-value of a term was

strictly less than 0.05 after applying Bonferroni correction for

multiple testing.

Statistical methods
Statistical analyses including the calculation of means, medians,

standard deviations, Welch two-sample t-tests, Wilcoxon rank-sum

tests and correlation analyses were done using the R package [57].

Supporting Information

Text S1 This supporting information (Text S1) contains
10 Supplementary Figures, 9 Supplementary Tables,
Supplementary Results, Supplementary Methods as well
as 39 Supplementary References.

(PDF)
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Ágoston Mihalik (Computational Cognitive Neuroimaging Group, Uni-

versity of Birmingham, UK) for the stressed yeast interactome data and

members of the LINK-Group (www.linkgroup.hu) for their discussions and

help.

Author Contributions

Conceived and designed the experiments: PC KZS. Performed the

experiments: KZS. Analyzed the data: PC KZS. Contributed reagents/

materials/analysis tools: KZS. Wrote the paper: PC KZS.

References
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17. Stojmirovi A, Yu Y-K, Stojmirović A (2009) ITM Probe: analyzing information

flow in protein networks. Bioinformatics 25: 2447–2449.

18. Li F, Li P, Xu W, Peng Y, Bo X, et al. (2010) PerturbationAnalyzer: a tool for

investigating the effects of concentration perturbation on protein interaction

networks. Bioinformatics 26: 275–277.

19. Calzone L, Fages F, Soliman S (2006) BIOCHAM: an environment for

modeling biological systems and formalizing experimental knowledge. Bioinfor-

matics 22: 1805–1807.

20. Rothkegel A, Lehnertz K (2012) Conedy: a scientific tool to investigate complex

network dynamics. Chaos 22: 013125.
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Supplementary Figures 

 

Figure S1. Average perturbation centrality and “number of visited nodes” values plotted against 
the ratio of inter-modular edges.  
Scale-free, modular benchmark graphs [1] were generated as described in Supplementary Methods. 
Average perturbation centrality (black squares), average degree (red circles), the reciprocal of average 
fill time (green triangles, added perturbation: 10,000 units per step) and average “number of visited 
nodes” (blue diamonds) for a damping value of 0.85 were calculated from 3 randomly generated 
benchmark graphs with ratios of inter-modular edges ranging from 0.05 to 0.85 with steps of 0.05 as 
described in Methods of the main text for Turbine (with the change that a 95% threshold was used for 
the fill time – that is, 95% of the network had to have an energy value larger than 1 – since the 
benchmark networks were much more homogeneous than real-world networks) and in the 
Supplementary Methods for ITM-Probe [2]. Values were normalized using the scale function of the R 
package [3]. Note that the Spearman correlation between the various values was more than 0.95, 
except for the average degree. 
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Figure S2. Correlation of perturbation centrality, “number of visited nodes” and node degree.  
Scale-free, modular benchmark graphs [1] were generated as described in Supplementary Methods. Perturbation centrality and “number of visited nodes” 
measures were calculated from 3 sets of randomly generated benchmark graphs with ratios of inter-modular edges ranging from 0.05 to 0.85 with steps of 0.05 
as described in Methods of the main text and in Supplementary Methods for ITM-Probe [2], respectively. Spearman correlations were calculated using the R 
package [3]. Panel A shows correlation of perturbation centrality versus node degree, Panel B shows the correlation of number of visited nodes versus the 
node degree, and Panel C shows the correlation of perturbation centrality and number of visited nodes. The data in Panel A reinforces the observation in the 
main text that the degree becomes more important in the determination of the silencing time as the modules become more and more fuzzy and overlapping. 
Interestingly, results from ITM-Probe behave in an exactly opposite way: as the communities become more overlapping, the number of visited nodes measure 
quickly becomes negatively correlated with the degree (possibly because random walks can “turn back”). These two effects taken together resulted in a large 
correlation between the perturbation centrality and number of visited nodes when there were pronounced modules, and a negative correlation when the 
modules became fuzzier, which is shown by the data in Panel C. 
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Figure S1. Comparison of perturbation centrality with the “number of visited nodes” measure of ITM-Probe as a function of node degree with 
different ratios of inter-modular edges of benchmark graphs.  
Scale-free benchmark graphs [1] with overlapping modules were generated as described in Supplementary Methods. Perturbation centrality (red, Panels A 
through F) and “number of visited nodes” measures (blue, Panels G through L) were calculated as described in Methods of the main text and in Supplementary 
Methods for ITM-Probe [2], respectively. For the generation of the benchmark graphs with ratios of inter-modular edges 0.05, 0,2, 0.35, 0.5, 0.65 and 0.80 
appearing on Panels A/G, B/H, C/I, D/J, E/K and F/L, respectively, a random seed of 87 was used. The results suggest that nodes in the networks with 
pronounced modules give similar results using Turbine and ITM-Probe (observe the same striping pattern showing the better perturbation propagation 
capability of nodes having inter-modular edges). On the contrary, in networks with fuzzy modules, the result is still correlated with the degree in Turbine, but 
ITM-Probe results do not seem to depend on the degree. These are the same results that can be obtained from Figure S2; this figure serves as an illustration of 
the possible underlying pattern behind the change in correlation: the number of nodes visited measure seems to have an upper saturation-like limit in ITM-
Probe in networks with largely overlapping modules. 
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Figure S4. A visual representation of the relation among different centrality measures.  
We calculated Spearman correlations between different centrality measures for the 10 benchmark and 
real-world networks shown in Table 2 of the main text. A 7-node graph was created from this data 
using the different centrality measures as nodes, and the average correlation between pairs of 
centralities as edge weights. The graph was thereafter laid out using the ForceAtlas 2 layout algorithm 
(which uses edge weights) of Gephi [4] with default settings except for the “Edge weight influence” 
option, which was set to 5.0. The layout generated this way can be a good approximation of the 
relations between different centralities, since the more correlated centrality measures are connected by 
more powerful “springs”; thereby their final position is closer to each other. It is visible on the figure 
that the perturbation centrality measure occupies a new position with largest correlations to closeness 
centrality, community centrality and weighted degree, just as the mean correlations of Table 2 in the 
main text show. 
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Figure S5. Distribution of perturbation centralities in 10 benchmark and real-world networks.  
Histograms were generated using the same data set for 2 benchmark and 8 real-world networks that were used for Table S1 and S2. Detailed descriptions of 
the networks are available in Supplementary Methods. Perturbation centralities were calculated according to Methods of the main text. Histograms from the 
perturbation centralities were generated using the “hist” command of R [3], with default settings. The tested social network (Panel F), the modular benchmark 
network [1] with pronounced modules (Panel I) and both conformations of Met-tRNA synthetase [5] (Panels G and H) had approximately normal distributions 
of perturbation centrality values. The Filtered Yeast Interactome [6] (Panel E) and the 2010 release of the Database of Interacting Proteins [7] (Panel D), as 
well as the modular benchmark network with fuzzy modules (Panel J) seemed to have approximately lognormal distributions for perturbation centrality. The 
histogram of the 2005 release of the Database of Interacting Proteins looked like a scale-free distribution (Panel C), and finally, the most skewed distributions 
were the perturbation centralities of the two metabolic networks [8,9], which looked like exponential distributions. However, all distributions failed the 
Shapiro-Wilk normality test (p=5*10-16, 5*10-22, 10-44, 10-31, 3*10-26, 0.0003, 0.0094, 2*10-7, 3*10-9, 3*10-45, respectively), so the Wilcoxon rank-sum test had 
to be used for statistical significance analysis instead of a t-test. 
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Figure S6. Average perturbation centralities for different sets of residues in protein structure 
networks.  
Protein structure networks of the substrate-free and substrate-bound forms of the E. coli Met-tRNA 
synthetase and rabbit cytochrome P450 2B4 proteins were generated as described in Methods and 
Supplementary Methods of Text S1. Assignment of secondary structures for different amino acids 
was done by PyMOL. Error bars show standard error of the mean. Different letters on top of the bars 
mean significantly different groups (α=0.01, Wilcoxon rank-sum test). Panels A and B show data 
calculated for the substrate-free and substrate (Met-AMP/tRNAMet)-bound form of Met-tRNA 
synthetase, respectively. Panels C and D show data calculated for the substrate-free and substrate 
(imidazole)-bound form of cytochrome P450 2B4. In all cases amino acids of loops had significantly 
(p=3.2*10-6, 9.5*10-6, 2.3*10-6, 0.0001 for the free and bound conformations of Met-tRNA synthetase 
and cytochrome P450, respectively; Wilcoxon rank-sum test, α=0.00625 adjusted with Bonferroni 
correction) lower perturbation centrality than average, while α-helices had significantly higher 
(p=0.00023, 0.00015, 0.00083 ,0.0014 for the free and bound conformations of Met-tRNA synthetase 
and cytochrome P450, respectively; Wilcoxon rank-sum test, α=0.00625 adjusted with Bonferroni 
correction) than average perturbation centrality. Panels E and F show the average perturbation 
centralities of amino acids belonging to intra-protein communication pathways predicted by Ghosh 
and Vishveshwara [5] (“Signaling residues”), as well as amino acids with experimentally verified 
importance [5] (“Experimental residues”). Light blue, dark red and green bars show average 
perturbation centralities of amino acids in loop, α-helical and β-sheet structures, while gray bars show 
the global average perturbation centrality calculated for the whole protein. Pink and brown bars of 
Panels E and F show average perturbation centralities of the Signaling and Experimental residues, 
respectively. Note that both betweenness and closeness centralities were less successful than 
perturbation centrality in differentiating between the above amino acid sets (cf. the current Figure with 
Figures S7 and S8 of Text S1). 
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Figure S7. Average betweenness centralities of different residue groups in Met-tRNA synthetase 
and cytochrome P450 enzymes.  
This figure is a direct parallel to Figure S6 and Figure S8, here using betweenness centrality instead 
of perturbation and closeness centralities, respectively. Protein structure networks of the substrate-free 
and substrate-bound forms of the E. coli Met-tRNA synthetase and rabbit cytochrome P450 2B4 
proteins were generated as described in Methods of the main text and Supplementary Methods. 
Assignment of secondary structures for different amino acids was performed by PyMOL. Error bars 
show standard error of the mean. Different letters mean significantly different groups (α=0.01, 
Wilcoxon rank-sum test). Panels A and B show data calculated for the substrate-free and substrate-
bound form of Met-tRNA synthetase, respectively. Panels C and D show data calculated for the 
substrate-free and imidazole-bound forms of cytochrome P450 2B4. Panels E and F show the average 
perturbation centralities of predicted communication pathways as described by Ghosh and 
Vishveshwara [5] (“Signaling residues”) and other residues with experimentally verified importance 
[5] (“Experimental residues”). Light blue, dark red and green bars on Panels A through D show 
average perturbation centralities for residues in loops, α-helices and β-sheets, while gray bars show the 
global average perturbation centrality calculated for the whole protein. Pink bars on Panels E and F 
show average perturbation centralities of the Signaling residues, and brown bars show the means of 
the Experimental residues of Met-tRNA synthetase. Betweenness centrality returned by far the largest 
deviations of the three tested centralities (i.e. closeness, betweenness and perturbation centralities). 
Loops still had significantly (p=0.0016, 0.011, 4.3*10-5, 6.8*10-7 for the free and bound conformations 
of Met-tRNA synthetase and cytochrome P450, respectively; Wilcoxon rank-sum test, α=0.00625 
adjusted with Bonferroni correction) lower mean centrality values than the global average in all 
networks (but the substrate-bound Met-tRNA synthetase). Using betweenness centrality α-helices can 
no longer be distinguished from the global mean (except for the substrate-bound form of cytochrome 
P450). Signaling residues could still be distinguished from the global mean (Panels E and F), but the 
differences in centralities for the Experimental residues were no longer significant. 
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Figure S8. Average closeness centralities of different residue groups in Met-tRNA synthetase 
and cytochrome P450 enzymes.  
This figure is a direct parallel to Figure S6 and Figure S7, here using closeness centrality instead of 
perturbation or betweenness centralities, respectively. Protein structure networks of the substrate-free 
and substrate-bound forms of the E. coli Met-tRNA synthetase and rabbit cytochrome P450 2B4 
proteins were generated as described in Methods of the main text and Supplementary Methods. 
Assignment of secondary structures for different amino acids was performed by PyMOL. Error bars 
show standard error of the mean. Different letters mean significantly different groups (α=0.01, 
Wilcoxon rank-sum test). Panels A and B show data calculated for the substrate-free and substrate-
bound form of Met-tRNA synthetase, respectively. Panels C and D show data calculated for the 
substrate-free and imidazole-bound form of cytochrome P450 2B4. Panels E and F show the average 
perturbation centralities of predicted communication pathways as described by Ghosh and 
Vishveshwara [5] (“Signaling residues”) and other residues with experimentally verified importance 
[5] (“Experimental residues”). Light blue, dark red and green bars on Panels A through D show 
average perturbation centralities for residues in loops, α-helices and β-sheets, while gray bars show the 
global average perturbation centrality calculated for the whole protein. Pink bars on Panels E and F 
show average perturbation centralities of the Signaling residues, and brown bars show the means of 
the Experimental residues of Met-tRNA synthetase. Closeness centrality returned smaller deviations 
than perturbation centrality. Interestingly, the distinction power of closeness centrality was slightly 
lower in Met-tRNA synthetase, and exactly the same in cytochrome P450 as the distinction power of 
perturbation centrality. In particular, the Experimental residues could no longer be distinguished from 
the global mean (Panels E and F, p=0.034, p=0.04, respectively; 0.007 and 0.006 with perturbation 
centrality), α-helices did not have significantly higher mean closeness centrality than the global 
average in the substrate-bound Met-tRNA synthetase (Panel B, p=0.014 vs. 0.00015 with perturbation 
centrality), and β-sheets were no longer distinguishable from loops in the substrate-free Met-tRNA 
synthetase (Panel A, p=0.035 vs. 0.0034 with perturbation centrality). P-values were calculated using 
the Wilcoxon rank-sum test, α=0.0125 adjusted with Bonferroni correction for a FWER of 0.05. 
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Figure S9. Amino acids of Met-tRNA synthetase directly bound to tRNAMet.  
The underlying protein structure network of Met-tRNA synthetase was calculated and visualized by 
the Turbine program as described in Methods, and was overlaid on the 3D image of the substrate-
bound form of the protein (and its tRNAMet complex) generated with PyMOL [10] using ray-tracing. 
The bottom of the image shows the structure of tRNAMet. The purple molecule in the middle of the 
protein structure is the substrate Met-AMP marking the active site of the enzyme, the white sphere on 
the right is the Zn2+ ion. Blue circles mark those amino acids, which are directly bound to the tRNAMet, 
evidenced by an atomic distance of less than 4.5Å between any atom of the residue and the tRNAMet, 
excluding hydrogen atoms.  
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Figure S10. Results for edgetic perturbations.  
We also tested the effects of edge-based perturbations as their importance have previously been stated in the literature  [11]. Silencing time for an edge was calculated 
by propagating a given amount of energy (10,000, 40,000 and 1,000,000 units) from both end-nodes of an edge, simultaneously. We calculated silencing times for all 
edges for two modular benchmark networks [1], one with pronounced modules (only 5% of the links were inter-modular), and one with fuzzy modules (40% inter-
modular links), both generated with the random seed 10. Silencing times were measured with a dissipation value of 1, and silencing threshold was also set to 1. Further 
definition of the silencing time is available in Methods of the main text. A link was termed inter-modular, if it was connecting two different communities. Dark red 
bars show data obtained on the network with pronounced modules, while light blue bars display data from the network with fuzzy modules. We could observe the very 
same effects for edge-based perturbations that we have observed for node-based perturbations. Panel A shows the mean perturbation centralities calculated for a large 
starting perturbation (1,000,000 units on both endpoints of an edge). There was a major (p=0, Wilcoxon rank-sum test) difference between the mean silencing times 
between fuzzy and pronounced modules in this case, and inter-modular edges were significantly (p=0.0094, α=0.025 with Bonferroni correction, Wilcoxon rank-sum 
test) better spreaders of perturbation in the network with pronounced modules. The disparity between the edgetic perturbations of networks with fuzzy versus 
pronounced modules was nearly eliminated, if a starting perturbation of 10,000 units was applied (Panel B). These effects were the same as what we have 
demonstrated with node-based perturbations on Figures 1 and 2 of the main text. Panel C shows silencing times calculated for 40,000 units of starting energy 
corresponding to the definition of perturbation centrality measure. (40,000 units of starting energy was used, since the benchmark networks contained 4000 nodes, and 
perturbation centrality was defined as the reciprocal of the silencing time resulting from applying a perturbation of 10*n units of energy, where n is the number of 
nodes in the network, see Methods of the main text.) Data of Panel C verifies that the choice of n*10 units as a starting perturbation is a nice compromise between 
weighing the nodes’ mesoscopic position, that is, the modular location (which can be detected using a large starting perturbation) and their local position, that is, the 
weighted degree of the node and its near neighbors (which can be detected using a small starting perturbation). 
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Supplementary Tables 
 

Table S1. Correlation between the reciprocal of fill time and closeness 
centrality  

 

 
aNetwork descriptions are given in Supplementary Methods of Text S1.  
bCorrelation data show the Spearman’s rho correlation of the reciprocal of the fill time versus the 
standard closeness centrality measure. Correlations between the reciprocal of fill time and closeness 
centrality are much stronger than those between perturbation centrality and closeness centrality (mean 
is 0.895 compared to 0.67 in Table 1, p=0.000487, Wilcoxon rank-sum test (correlations with 
closeness centrality in Table 1 failed the Shapiro normality test with p=0.0019). 
cFill time was calculated for each node in each network by applying a perturbation of size 10,000 to 
the selected node in each time step until more than 80% of the network nodes had an energy level 
larger than 1. Dissipation was set to 0. 

Networksa Correlationb Average fill timec 
Benchmark graphs with fuzzy modules 0.974 52 
Benchmark graphs with pronounced modules 0.930 151 
Substrate-free Met-tRNA synthetase protein structure network 0.957 76 
Substrate-bound Met-tRNA synthetase protein structure network 0.941 94 
Filtered Yeast Interactome 0.856 1344 
Database of Interacting Proteins yeast interactome (release 2005) 0.857 215 
Database of Interacting Proteins yeast interactome (release 2010) 0.941 168 
B. aphidicola metabolic network 0.824 1225 
E. coli metabolic network 0.746 1928 
School friendship network 0.921 28 
Mean and standard error 0.895 (0.023) 528 (219.9) 
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Table S2. Correlation of silencing times calculated for three different-sized starting perturbations in 8 real-world and two benchmark 
networks 
 

 
Parameters of the different networks are available in the Methods section of the main article. Only the two benchmark graphs were model networks, generated 
using the benchmark graph generator tool of Lancichinetti and Fortunato [1]. The other graphs originated from different real-world scenarios. Low-intensity 
perturbation corresponds to an n unit large Dirac-delta starting perturbation, medium-intensity perturbation corresponds to 10*n units, and high-intensity 
means that a 100*n unit-sized starting perturbation was applied to a single node when calculating its silencing time, n being the number of nodes in the 
network. Silencing time was calculated for each node in the network as described in the Methods section of the main article. The columns show Spearman’s 
correlation between silencing times calculated for nodes in the same network with different-sized starting perturbations. Correlations above 0.8 were marked 
with bold letters. It can be noticed that there are no abrupt changes in the importance in the perturbation dissipation capability of different nodes as the 
perturbation grows larger except for the benchmark network with disjunct modules, which means that real-world networks may display behavior closer to the 
benchmark graph with fuzzy modules. The table also underlines the choice of choosing n*10 as the size of the perturbation when calculating perturbation 
centrality, since it already seems to display module entrapment effects evidenced by the high correlation observed between medium- and high-intensity 
perturbations in the benchmark network with disjunct modules compared to the substantially lower correlation observed in the same network between low- 
and medium-intensity perturbations. 

Network Correlation between low- and 
medium-intensity perturbations 

Correlation between medium- 
and high-intensity perturbations 

Correlation between low- and high-
intensity perturbations 

Benchmark graph with pronounced modules 0.41 0.90 0.22 
Benchmark graph with fuzzy modules 0.94 0.95 0.80 
Substrate-free Met-tRNA synthetase protein structure network 0.84 0.78 0.52 
Substrate-bound Met-tRNA synthetase protein structure network 0.84 0.78 0.56 
Filtered Yeast Interactome 0.88 0.81 0.57 
Database of Interacting Proteins yeast interactome (release 2005) 0.94 0.93 0.80 
Database of Interacting Proteins yeast interactome (release 2010) 0.85 0.89 0.63 
E. coli metabolic network 0.99 0.97 0.96 
B. aphidicola metabolic network 0.99 0.96 0.95 
School-friendship network 0.87 0.81 0.66 
Mean and standard error 0.853 (0.053) 0.877 (0.024) 0.668 (0.070) 
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Table S3. Statistically significantly enriched terms in the top 100 protein set of the DIP yeast interactome (release 2005) [7] containing 
proteins with largest absolute perturbation centrality in differently stressed cases.  
 

A. Significantly enriched terms in the top 100 set of largest perturbation centrality in the unstressed DIP (2005) interactome 
P-value Term Proteins 
3.98e-06 non-homologous end-joining YGL090W, YOR005C, YMR224C, YCR014C, YMR284W 
0.000139 cell cycle YOR026W, YGR188C, YOR353C, YOR005C, YKR031C, YBR057C, YJR140C, YMR224C, YER018C, YEL061C, YLR254C, 

YHR184W, YIL132C, YOR368W, YLR045C, YLR190W, YPL253C, YER147C, YGL075C, YGL249W, YJL090C, YGL251C, YLR383W, 
YCR063W, YML049C, YDR253C, YHL024W, YMR198W, YJL006C 

0.00189 cellular response to stimulus YLR240W, YOR353C, YGL090W, YOR005C, YBR077C, YKR031C, YMR224C, YBR128C, YGL155W, YCR027C, YCR014C, 
YIL132C, YLR007W, YOR368W, YBR020W, YML112W, YNL145W, YHR134W, YOL043C, YER147C, YIL128W, YJL090C, 
YHR079C, YLR383W, YMR284W, YOR120W, YLR094C, YJL006C, YPL046C, YGL220W, YDR098C, YDL138W 

0.00484 M phase YOR026W, YGR188C, YKR031C, YBR057C, YMR224C, YER018C, YEL061C, YLR254C, YHR184W, YIL132C, YOR368W, 
YLR045C, YPL253C, YER147C, YGL075C, YGL249W, YGL251C, YHL024W, YMR198W 

0.00637 cell cycle phase YOR026W, YGR188C, YKR031C, YBR057C, YJR140C, YMR224C, YER018C, YEL061C, YLR254C, YHR184W, YIL132C, YOR368W, 
YLR045C, YPL253C, YER147C, YGL075C, YGL249W, YJL090C, YGL251C, YHL024W, YMR198W 

0.00886 response to DNA damage stimulus YGL090W, YOR005C, YMR224C, YCR014C, YIL132C, YLR007W, YOR368W, YML112W, YHR134W, YOL043C, YER147C, 
YIL128W, YJL090C, YLR383W, YMR284W, YJL006C, YPL046C 

0.0165 cell cycle process YOR026W, YGR188C, YKR031C, YBR057C, YJR140C, YMR224C, YER018C, YEL061C, YLR254C, YHR184W, YIL132C, YOR368W, 
YLR045C, YPL253C, YER147C, YGL075C, YGL249W, YJL090C, YGL251C, YLR383W, YCR063W, YHL024W, YMR198W 

0.0212 double-strand break repair YGL090W, YOR005C, YMR224C, YCR014C, YOR368W, YER147C, YJL090C, YLR383W, YMR284W 
0.023 DNA metabolic process YGL090W, YOR005C, YBR057C, YJR140C, YMR224C, YCR014C, YIL132C, YLR007W, YOR368W, YHR134W, YOL043C, 

YER147C, YGL249W, YIL128W, YJL090C, YGL251C, YLR383W, YMR284W, YLR010C, YDR082W, YHL024W, YPL046C 
0.0256 DNA repair YGL090W, YOR005C, YMR224C, YCR014C, YIL132C, YLR007W, YOR368W, YHR134W, YOL043C, YER147C, YIL128W, 

YJL090C, YLR383W, YMR284W, YPL046C 
0.048 double-strand break repair via non-

homologous end joining 
YGL090W, YOR005C, YMR224C, YCR014C, YMR284W 

B. Significantly enriched terms in the top 100 set of largest perturbation centrality in the heat-shocked DIP (2005) interactome 
P-value Term Proteins 
2.6e-05 condensed chromosome YOR026W, YGR188C, YBR156C, YER018C, YHR014W, YIL072W, YEL061C, YOL034W, YLR007W, YOR368W, YLR045C, 

YPL194W, YHR079C-A 
0.000126 double-strand break repair via 

nonhomologous end joining 
YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YJL092W, YDR369C 

0.000414 double-strand break repair YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YDR004W, YJL092W, YOR368W, YHR079C-A, YDR369C, YPR135W 
0.000638 non-recombinational repair YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YJL092W, YDR369C 
0.00304 condensed nuclear chromosome YOR026W, YGR188C, YER018C, YHR014W, YIL072W, YEL061C, YOR368W, YLR045C, YPL194W, YHR079C-A 
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0.0063 recombinational repair YMR224C, YDR004W, YIL132C, YOL034W, YPL194W, YHR079C-A, YDR369C, YPR135W 
0.00869 DNA repair YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YDR004W, YJL092W, YIL132C, YOL034W, YLR007W, YOR368W, 

YPL194W, YHR079C-A, YHR134W, YDR369C, YPR135W 
0.0112 cell cycle YOR026W, YGR188C, YOR353C, YOR005C, YKR031C, YJR140C, YMR224C, YKL092C, YPL255W, YER018C, YHR014W, 

YKR072C, YDR004W, YIL072W, YEL061C, YLR254C, YHR184W, YIL132C, YOL034W, YOR368W, YLR045C, YLR190W, 
YPL194W, YHR079C-A, YDR369C, YPR135W 

0.0127 nuclear part YDR312W, YOR026W, YGR188C, YJR002W, YNL075W, YGL090W, YOR005C, YNL182C, YMR033W, YJR140C, YNR054C, 
YMR224C, YHR056C, YKR092C, YDL148C, YMR025W, YPR112C, YBL018C, YIR009W, YER018C, YHR014W, YJL039C, YBL014C, 
YDR004W, YIL072W, YEL061C, YOR368W, YLR045C, YPL211W, YOR064C, YML112W, YOR191W, YHR004C, YPL194W, 
YHR079C-A, YHR134W, YDR369C, YPR135W 

0.0138 response to DNA damage stimulus YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YDR004W, YJL092W, YIL132C, YOL034W, YLR007W, YOR368W, 
YML112W, YPL194W, YHR079C-A, YHR134W, YDR369C, YPR135W 

0.0304 M phase YOR026W, YGR188C, YKR031C, YMR224C, YER018C, YHR014W, YDR004W, YIL072W, YEL061C, YLR254C, YHR184W, 
YIL132C, YOR368W, YLR045C, YPL194W, YHR079C-A, YDR369C, YPR135W 

0.0322 cellular response to stimulus YOR353C, YGL090W, YOR005C, YBR077C, YOL067C, YKR031C, YMR224C, YBR128C, YHR056C, YGL155W, YNL242W, 
YMR025W, YKL092C, YCR027C, YDL166C, YCR014C, YDR004W, YJL092W, YIL132C, YOL034W, YLR007W, YOR368W, 
YBR020W, YML112W, YNL145W, YPL194W, YHR079C-A, YHR134W, YDR369C, YPR135W 

C. Significantly enriched terms in the top 100 set of largest perturbation centrality in the oxidatively stressed DIP (2005) interactome 
P-value Term Proteins 
1.7e-05 cell cycle process YOR026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YLR383W, YCR063W, YHL024W, YMR198W, 

YNL152W, YDR439W, YKL049C, YIL132C, YLR045C, YJL090C, YKR010C, YOR368W, YER149C, YER132C, YEL061C, YJR140C, 
YER018C, YKL092C, YJL013C, YER147C, YGL174W 

2.94e-05 cell cycle YOR026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YLR383W, YCR063W, YHL024W, YMR198W, 
YJL006C, YNL152W, YDR439W, YKL049C, YIL132C, YLR045C, YJL090C, YKR010C, YOR368W, YER149C, YER132C, YEL061C, 
YJR140C, YDR253C, YER018C, YKL092C, YJL013C, YER147C, YGL174W 

0.000225 M phase YOR026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YHL024W, YMR198W, YNL152W, YDR439W, 
YKL049C, YIL132C, YLR045C, YKR010C, YOR368W, YER132C, YEL061C, YER018C, YJL013C, YER147C 

0.000284 microtubule motor activity YPL253C, YMR198W, YKL079W, YDR488C, YEL061C 
0.000354 cell cycle phase YOR026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YHL024W, YMR198W, YNL152W, YDR439W, 

YKL049C, YIL132C, YLR045C, YJL090C, YKR010C, YOR368W, YER132C, YEL061C, YJR140C, YER018C, YJL013C, YER147C 
0.00104 organelle fission YOR026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YKR010C, YIL065C, 

YEL061C, YER018C, YJL013C, YER147C 
0.00294 mitosis YOR026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YKR010C, YEL061C, 

YER018C, YJL013C, YER147C 
0.00331 nuclear division YOR026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YKR010C, YEL061C, 

YER018C, YJL013C, YER147C 
0.00386 chromosome segregation YGR188C, YPL253C, YLR383W, YMR198W, YDR439W, YKL049C, YIL132C, YKR010C, YEL061C, YER018C, YJL013C, YER147C 
0.00531 nucleus YOR026W, YGR188C, YKR031C, YKR092C, YBL014C, YCR014C, YLR254C, YHR134W, YPL253C, YDR020C, YJR119C, YGL075C, 

YHR079C, YGL251C, YLR383W, YCR063W, YKR022C, YMR198W, YJL006C, YPL046C, YGR278W, YDR439W, YKL049C, 
YFL049W, YGR006W, YBL010C, YIL132C, YGL131C, YLR045C, YPR112C, YHR004C, YJL090C, YNR011C, YDR082W, YKR010C, 
YDL080C, YOR368W, YLR010C, YLR094C, YIL128W, YHL006C, YAL051W, YEL061C, YJR140C, YDR253C, YGL220W, 
YMR284W, YER018C, YDR098C, YLR007W, YJL013C, YER147C, YML112W, YGL174W, YHR167W, YPR034W 
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0.00595 mitotic cell cycle YOR026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YLR045C, YJL090C, 
YKR010C, YEL061C, YJR140C, YDR253C, YER018C, YJL013C, YER147C 

0.00851 M phase of mitotic cell cycle YOR026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YKR010C, YEL061C, 
YER018C, YJL013C, YER147C 

0.0107 condensed chromosome YOR026W, YGR188C, YLR383W, YDR439W, YKL049C, YLR045C, YOR368W, YEL061C, YER018C, YLR007W 
0.0125 microtubule-based process YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YKL079W, YDR488C, YLR045C, YEL061C, YER018C 
0.0153 cellular response to stimulus YKR031C, YCR027C, YCR014C, YNL145W, YHR134W, YHR079C, YLR383W, YJL006C, YPL046C, YIL132C, YJL090C, YBR128C, 

YBR077C, YOR368W, YER149C, YLR094C, YIL128W, YHL006C, YAL051W, YGL220W, YMR284W, YDL138W, YDR098C, 
YPL002C, YKL092C, YLR007W, YER147C, YML112W, YBR020W, YLR240W 

0.0201 motor activity YPL253C, YMR198W, YKL079W, YDR488C, YEL061C 
0.0256 mitotic sister chromatid segregation YGR188C, YPL253C, YMR198W, YDR439W, YKL049C, YKR010C, YEL061C, YER147C 
0.0257 microtubule-based movement YLR254C, YMR198W, YKL079W, YDR488C, YEL061C 
0.0348 chromosome organization YGR188C, YPL253C, YJR119C, YGL251C, YMR198W, YNL152W, YDR439W, YKL049C, YFL049W, YIL132C, YDR082W, 

YKR010C, YLR010C, YHL006C, YEL061C, YJR140C, YMR284W, YER147C, YPR034W 
0.0413 sister chromatid segregation YGR188C, YPL253C, YMR198W, YDR439W, YKL049C, YKR010C, YEL061C, YER147C 
0.0443 condensed chromosome 

kinetochore 
YOR026W, YGR188C, YDR439W, YKL049C, YLR045C, YEL061C, YER018C 

0.0479 chromosomal part YOR026W, YGR188C, YLR383W, YDR439W, YKL049C, YGL131C, YLR045C, YJL090C, YDR082W, YOR368W, YLR010C, 
YEL061C, YMR284W, YER018C, YLR007W, YER147C 

D. Significantly enriched terms in the top 100 set of largest perturbation centrality in the osmotically stressed DIP (2005) interactome 
P-value Term Proteins 
0.000101 cell cycle process YGL075C, YGL251C, YLR383W, YCR063W, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YOR026W, YJL090C, 

YLR045C, YMR198W, YJR140C, YHR184W, YER132C, YKR031C, YEL061C, YGL174W, YHL023C, YJL013C, YMR224C, 
YGR262C, YPR135W, YOR368W, YER018C, YER147C 

0.000167 cell cycle YGL075C, YGL251C, YLR383W, YCR063W, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YJL006C, YOR026W, 
YOR005C, YJL090C, YLR045C, YMR198W, YJR140C, YHR184W, YER132C, YKR031C, YEL061C, YGL174W, YHL023C, YJL013C, 
YMR224C, YGR262C, YPR135W, YOR368W, YER018C, YER147C 

0.00027 microtubule motor activity YDR488C, YPL253C, YKL079W, YMR198W, YEL061C 
0.00028 M phase YGL075C, YGL251C, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YOR026W, YLR045C, YMR198W, YHR184W, 

YER132C, YKR031C, YEL061C, YHL023C, YJL013C, YMR224C, YPR135W, YOR368W, YER018C, YER147C 
0.00028 non-homologous end-joining YCR014C, YOR005C, YGL090W, YMR224C 
0.000453 cell cycle phase YGL075C, YGL251C, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YOR026W, YJL090C, YLR045C, YMR198W, 

YJR140C, YHR184W, YER132C, YKR031C, YEL061C, YHL023C, YJL013C, YMR224C, YPR135W, YOR368W, YER018C, YER147C 
0.00389 combined immunodeficiency YGR188C, YOR005C, YJL013C 
0.00769 nuclear part YGL075C, YCR063W, YGR278W, YDR439W, YKR092C, YLR010C, YGR188C, YDR082W, YKL049C, YKR022C, YGL131C, 

YMR219W, YJL006C, YOR026W, YFL049W, YOR005C, YGR006W, YJL090C, YBL014C, YLR045C, YJR140C, YPL046C, YNL286W, 
YLR051C, YEL061C, YGL174W, YML112W, YGL090W, YHL006C, YJL013C, YMR224C, YKR086W, YPR034W, YPR135W, 
YOR368W, YER018C, YER147C, YOR064C 

0.0109 nucleus YJR119C, YGL075C, YGL251C, YLR383W, YCR063W, YGR278W, YDR439W, YBL010C, YCR014C, YPL253C, YKR092C, 
YLR010C, YGR188C, YDR082W, YKL049C, YHR079C, YKR022C, YGL131C, YMR219W, YJL006C, YOR026W, YLR007W, 
YFL049W, YOR005C, YGR006W, YJL090C, YBL014C, YLR045C, YMR198W, YGL220W, YJR140C, YDR098C, YPL046C, 
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YNL286W, YLR051C, YKR031C, YLR014C, YEL061C, YGL174W, YIL128W, YML112W, YGL090W, YDR020C, YNR011C, 
YHL006C, YJL013C, YMR224C, YKR086W, YGR262C, YPR034W, YOL043C, YPR135W, YOR368W, YER018C, YER147C, 
YOR064C 

0.011 condensed chromosome YLR383W, YDR439W, YGR188C, YKL049C, YOR026W, YLR007W, YLR045C, YEL061C, YOR368W, YER018C 
0.0128 upslanted palpebral fissure YJR119C, YGR188C, YOR005C, YEL061C, YJL013C 
0.0133 chromosomal part YLR383W, YDR439W, YLR010C, YGR188C, YDR082W, YKL049C, YGL131C, YOR026W, YLR007W, YJL090C, YLR045C, 

YEL061C, YGR262C, YPR135W, YOR368W, YER018C, YER147C 
0.019 motor activity YDR488C, YPL253C, YKL079W, YMR198W, YEL061C 
0.0216 double-strand break repair YLR383W, YCR014C, YOR005C, YJL090C, YGL090W, YMR224C, YPR135W, YOR368W, YER147C 
0.0252 chromosome segregation YLR383W, YDR439W, YPL253C, YGR188C, YKL049C, YMR198W, YEL061C, YJL013C, YPR135W, YER018C, YER147C 
0.0253 macromolecular complex YLR383W, YCR063W, YGR278W, YDR439W, YDR488C, YPL253C, YLR010C, YBR128C, YGR188C, YDR082W, YKL049C, 

YKR022C, YGL131C, YLR439W, YJL006C, YOR026W, YLR007W, YFL049W, YOR005C, YNL014W, YKL079W, YGR006W, 
YNR049C, YJL090C, YBL014C, YLR045C, YMR198W, YLR185W, YJR140C, YPL046C, YNL286W, YEL061C, YGL174W, 
YML112W, YGL090W, YHL023C, YLR240W, YPL002C, YHL006C, YJL013C, YMR224C, YKR086W, YGR262C, YBR077C, 
YPR034W, YPR135W, YIL068C, YOR368W, YER018C, YER147C, YOR064C 

0.0255 mitotic sister chromatid segregation YDR439W, YPL253C, YGR188C, YKL049C, YMR198W, YEL061C, YPR135W, YER147C 
0.0256 DNA metabolic process YGL251C, YLR383W, YDR439W, YCR014C, YLR010C, YDR082W, YKL049C, YHL024W, YLR007W, YOR005C, YJL090C, 

YJR140C, YPL046C, YIL128W, YGL090W, YHL006C, YMR224C, YGR262C, YOL043C, YPR135W, YOR368W, YER147C 
0.0289 cafe-au-lait spot YJR119C, YGR188C, YOR005C, YJL013C 
0.0322 organelle fission YGL075C, YDR439W, YPL253C, YGR188C, YKL049C, YOR026W, YMR198W, YIL065C, YEL061C, YJL013C, YPR135W, YER018C, 

YER147C 
0.0369 protein complex YLR383W, YDR439W, YDR488C, YPL253C, YBR128C, YGR188C, YKL049C, YGL131C, YJL006C, YOR026W, YLR007W, 

YFL049W, YOR005C, YKL079W, YNR049C, YJL090C, YBL014C, YLR045C, YMR198W, YJR140C, YPL046C, YEL061C, YGL174W, 
YML112W, YGL090W, YHL023C, YLR240W, YPL002C, YHL006C, YJL013C, YMR224C, YGR262C, YBR077C, YPR034W, 
YPR135W, YIL068C, YOR368W, YER018C, YER147C, YOR064C 

0.0395 response to DNA damage stimulus YLR383W, YCR014C, YJL006C, YLR007W, YOR005C, YJL090C, YPL046C, YIL128W, YML112W, YGL090W, YHL006C, YMR224C, 
YOL043C, YPR135W, YOR368W, YER147C 

0.0411 sister chromatid segregation YDR439W, YPL253C, YGR188C, YKL049C, YMR198W, YEL061C, YPR135W, YER147C 
0.0433 condensed chromosome 

kinetochore 
YDR439W, YGR188C, YKL049C, YOR026W, YLR045C, YEL061C, YER018C 

 
Perturbation centralities were calculated with the Turbine software as described in Methods of the main text. Term enrichment analysis was performed with 
the R plug-in of g:Profiler [12], which returns both the enriched terms, and the proteins connected with the term. A term was stated as statistically significant, 
if the resulting p-value was strictly less than 0.05 after applying Bonferroni correction. Results show the high importance of cell cycle maintenance and DNA 
repair in both stressed and unstressed cases. 
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Table S4. Statistically significantly enriched terms in the top 100 protein set of the DIP yeast interactome (release 2005) [7] containing 
proteins with largest increase of perturbation centrality in differently stressed cases.  
 

A. Significantly enriched terms in the top 100 set of proteins having largest increase of perturbation centrality on heat shock (compared to the unstressed case) 
P-value Term Proteins 
5.18e-08 cellular carbohydrate metabolic 

process 
YLR273C, YJL137C, YIL045W, YNL216W, YPR160W, YMR261C, YML100W, YDR074W, YCR005C, YLR258W, YPL201C, 
YNR001C, YBR149W, YIL053W, YER062C, YJL089W, YMR105C, YPL180W 

6.15e-07 response to stimulus YDL190C, YDL059C, YNL076W, YBR169C, YNL103W, YNL216W, YER103W, YMR261C, YEL060C, YML100W, YDR074W, 
YFL021W, YDL124W, YBL075C, YNL314W, YIR023W, YIL113W, YLR178C, YPL022W, YLR019W, YOL128C, YGR088W, 
YPL154C, YFL016C, YPR054W, YIL053W, YDR168W, YDR214W, YER062C, YOR363C, YKL109W, YDR200C, YOR120W, 
YGL163C, YLR259C, YDL017W, YMR250W, YJL089W, YHR186C, YLL021W, YPL180W, YNR007C, YBR274W, YJR032W 

1.25e-06 cellular carbohydrate biosynthetic 
process 

YLR273C, YJL137C, YIL045W, YMR261C, YML100W, YDR074W, YLR258W, YPL201C, YIL053W, YER062C, YMR105C 

2.31e-05 carbohydrate biosynthetic process YLR273C, YJL137C, YIL045W, YMR261C, YML100W, YDR074W, YLR258W, YPL201C, YIL053W, YER062C, YJL089W, YMR105C 
0.000188 response to stress YDL190C, YDL059C, YBR169C, YNL216W, YER103W, YMR261C, YEL060C, YML100W, YDR074W, YDL124W, YBL075C, 

YPL022W, YLR019W, YOL128C, YGR088W, YPL154C, YFL016C, YIL053W, YDR168W, YDR214W, YER062C, YOR120W, 
YGL163C, YLR259C, YDL017W, YMR250W, YHR186C, YPL180W, YNR007C, YBR274W, YJR032W 

0.000323 organic substance catabolic 
process 

YPL065W, YJL172W, YIR032C, YDL190C, YLR270W, YCL008C, YCL052C, YNL216W, YOR173W, YPR160W, YPR111W, 
YNL230C, YEL060C, YER143W, YNL314W, YCR005C, YIR023W, YPL022W, YNR001C, YPL154C, YFL016C, YKL148C, YDR214W, 
YOR363C, YOR120W, YGR058W, YLL041C, YNL311C, YMR250W, YMR105C, YMR287C 

0.000354 catalytic activity YJL137C, YML016C, YJL172W, YIR032C, YMR315W, YDL190C, YLR270W, YCL008C, YAL060W, YBR265W, YOR173W, 
YOR317W, YER103W, YPR160W, YLR096W, YIL177C, YMR261C, YPR111W, YPL074W, YEL060C, YML100W, YDR074W, 
YDL124W, YBL075C, YER143W, YCR005C, YLR258W, YMR104C, YIL113W, YER081W, YML065W, YPL022W, YLR019W, 
YOL128C, YGR088W, YNR001C, YBR149W, YPL154C, YIL108W, YPR054W, YIL053W, YBL045C, YNL092W, YKL148C, 
YPR191W, YER062C, YOR120W, YGL163C, YLR259C, YDL017W, YLL041C, YMR250W, YMR105C, YKL210W, YNR007C, 
YMR287C, YBR274W, YJR032W 

0.00046 catabolic process YPL065W, YJL172W, YIR032C, YDL190C, YLR270W, YCL008C, YCL052C, YNL216W, YOR173W, YPR160W, YPR111W, 
YNL230C, YEL060C, YER143W, YNL314W, YCR005C, YIR023W, YPL022W, YGR088W, YNR001C, YPL154C, YFL016C, YKL148C, 
YDR214W, YOR363C, YOR120W, YGR058W, YLL041C, YNL311C, YMR250W, YMR105C, YNR007C, YMR287C 

0.000616 cellular catabolic process YPL065W, YJL172W, YIR032C, YDL190C, YLR270W, YCL008C, YCL052C, YNL216W, YOR173W, YPR111W, YNL230C, YEL060C, 
YER143W, YNL314W, YCR005C, YIR023W, YPL022W, YGR088W, YNR001C, YPL154C, YFL016C, YKL148C, YDR214W, 
YOR363C, YGR058W, YLL041C, YNL311C, YMR250W, YNR007C, YMR287C 

0.00102 energy derivation by oxidation of 
organic compounds 

YLR273C, YJL137C, YIL045W, YPR160W, YCR005C, YLR258W, YNR001C, YBL045C, YKL148C, YPR191W, YKL109W, YLL041C, 
YMR105C 

0.00105 oxidation-reduction process YLR273C, YJL137C, YMR315W, YIL045W, YAL060W, YBR265W, YPR160W, YDL124W, YCR005C, YLR258W, YER081W, 
YGR088W, YNR001C, YBR149W, YBL045C, YKL148C, YPR191W, YOR363C, YKL109W, YOR120W, YLL041C, YMR105C 

0.00116 carbohydrate metabolic process YLR273C, YJL137C, YIL045W, YNL216W, YPR160W, YMR261C, YML100W, YDR074W, YCR005C, YLR258W, YPL201C, 
YNR001C, YBR149W, YIL053W, YER062C, YOR120W, YJL089W, YMR105C, YPL180W 

0.00276 glycoside biosynthetic process YMR261C, YML100W, YDR074W, YMR105C 
0.00276 oligosaccharide biosynthetic YMR261C, YML100W, YDR074W, YMR105C 
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process 
0.00276 disaccharide biosynthetic process YMR261C, YML100W, YDR074W, YMR105C 
0.00276 trehalose biosynthetic process YMR261C, YML100W, YDR074W, YMR105C 
0.00547 alditol biosynthetic process YPL201C, YIL053W, YER062C 
0.00547 glycerol biosynthetic process YPL201C, YIL053W, YER062C 
0.00873 generation of precursor 

metabolites and energy 
YLR273C, YJL137C, YIL045W, YNL216W, YPR160W, YCR005C, YLR258W, YNR001C, YBL045C, YKL148C, YPR191W, 
YKL109W, YLL041C, YMR105C 

0.0139 glycogen metabolic process YLR273C, YJL137C, YIL045W, YPR160W, YLR258W, YMR105C 
0.0156 glycogen biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YMR105C 
0.0188 glycogen breakdown 

(glycogenolysis) 
YJL137C, YPR160W, YMR105C 

0.0191 organic substance metabolic 
process 

YLR273C, YDR034C, YJL137C, YPL065W, YML016C, YJL172W, YIR032C, YMR315W, YDL190C, YLR270W, YDL059C, 
YNL076W, YCL008C, YIL045W, YBR169C, YAL060W, YNL103W, YBR265W, YCL052C, YNL216W, YOR173W, YOR317W, 
YER103W, YPR160W, YLR096W, YMR261C, YPR111W, YNL230C, YEL060C, YML100W, YDR074W, YFL021W, YDL124W, 
YBL075C, YLR453C, YER143W, YNL314W, YCR005C, YLR258W, YIR023W, YMR104C, YIL113W, YER081W, YLR178C, 
YPL201C, YML065W, YPL022W, YOL128C, YNR001C, YBR149W, YPL154C, YIL108W, YFL016C, YPR054W, YIL053W, YBL045C, 
YDR168W, YKL148C, YPR191W, YDR214W, YER062C, YOR363C, YKL109W, YOR120W, YGL163C, YLR259C, YGR058W, 
YDL017W, YLL041C, YNL311C, YMR250W, YJL089W, YMR105C, YKL210W, YPL180W, YNR007C, YMR287C, YDR515W, 
YBR274W, YJR032W 

0.0199 energy reserve metabolic process YLR273C, YJL137C, YIL045W, YPR160W, YLR258W, YMR105C 
0.0217 alpha,alpha-trehalose-phosphate 

synthase complex (UDP-forming) 
YMR261C, YML100W, YDR074W 

0.0248 trehalose metabolic process YMR261C, YML100W, YDR074W, YMR105C 
0.0368 fungal-type vacuole lumen YJL172W, YEL060C, YLR178C, YPL154C 
0.0437 single-organism metabolic process YLR273C, YDR034C, YJL137C, YPL065W, YML016C, YJL172W, YIR032C, YMR315W, YDL190C, YLR270W, YDL059C, 

YNL076W, YCL008C, YIL045W, YBR169C, YAL060W, YNL103W, YBR265W, YCL052C, YNL216W, YOR173W, YOR317W, 
YER103W, YPR160W, YLR096W, YMR261C, YPR111W, YNL230C, YEL060C, YML100W, YDR074W, YFL021W, YDL124W, 
YBL075C, YLR453C, YER143W, YNL314W, YCR005C, YLR258W, YIR023W, YMR104C, YIL113W, YER081W, YLR178C, 
YPL201C, YML065W, YPL022W, YOL128C, YGR088W, YNR001C, YBR149W, YPL154C, YIL108W, YFL016C, YPR054W, 
YIL053W, YBL045C, YDR168W, YKL148C, YPR191W, YDR214W, YER062C, YOR363C, YKL109W, YOR120W, YGL163C, 
YLR259C, YGR058W, YDL017W, YLL041C, YNL311C, YMR250W, YJL089W, YMR105C, YKL210W, YPL180W, YNR007C, 
YMR287C, YDR515W, YBR274W, YJR032W 

B. Significantly enriched terms in the top 100 set of proteins having largest increase of perturbation centrality in oxidative stress (compared to the unstressed case) 
P-value Term Proteins 
4.24e-07 cellular carbohydrate metabolic 

process 
YLR273C, YJL137C, YIL045W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YPR160W, YBR149W, YGR166W, 
YCR005C, YOR178C, YNR001C, YJL089W, YDR001C, YBL058W 

2.2e-05 cellular carbohydrate biosynthetic 
process 

YLR273C, YJL137C, YIL045W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YGR166W, YOR178C 

8.53e-05 glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL058W 
8.53e-05 cellular glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL058W 
0.000254 carbohydrate biosynthetic process YLR273C, YJL137C, YIL045W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YGR166W, YOR178C, YJL089W 
0.000585 glucan biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YGR166W, YOR178C 
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0.000596 cellular polysaccharide metabolic 
process 

YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL058W 

0.000649 TRAPP complex YOR115C, YDR246W, YGR166W, YMR218C, YDR407C 
0.000928 glycogen metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YPR160W, YOR178C, YBL058W 
0.00102 carbohydrate metabolic process YLR273C, YJL137C, YIL045W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YPR160W, YBR149W, YBR229C, 

YGR166W, YCR005C, YOR178C, YMR200W, YNR001C, YJL089W, YDR001C, YBL058W 
0.00143 energy reserve metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YPR160W, YOR178C, YBL058W 
0.00194 response to stimulus YLR309C, YJL173C, YNL076W, YER103W, YPR019W, YML032C, YDL124W, YMR250W, YDR453C, YDR179C, YLR178C, 

YPL026C, YML100W, YMR261C, YDR074W, YBR202W, YPL154C, YHL035C, YDL059C, YOL128C, YBR216C, YFR014C, 
YOR018W, YMR038C, YOR178C, YDR049W, YMR200W, YMR218C, YJL201W, YKL213C, YJL089W, YDR168W, YDR001C, 
YDL216C, YDL101C, YBL058W, YDR407C 

0.00249 polysaccharide metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL058W 
0.00852 cellular polysaccharide biosynthetic 

process 
YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YGR166W, YOR178C 

0.00993 polysaccharide biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YGR166W, YOR178C 
0.0142 oxidation-reduction process YMR315W, YLR273C, YJL137C, YIL045W, YDL124W, YBR265W, YDR453C, YLR258W, YPR160W, YDR231C, YBR149W, 

YBR213W, YMR038C, YNL202W, YLL051C, YCR005C, YOR178C, YER023W, YNR001C, YBL058W 
0.0168 acetyl-CoA + H2O + oxaloacetate 

=> citrate + CoA 
YCR005C, YNR001C 

0.0196 glycogen biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YOR178C 
0.0196 cis-Golgi network YOR115C, YDR246W, YGR166W, YMR218C, YDR407C 
0.0289 alpha,alpha-trehalose-phosphate 

synthase complex (UDP-forming) 
YML100W, YMR261C, YDR074W 

0.0321 trehalose metabolic process YML100W, YMR261C, YDR074W, YDR001C 
0.0477 protein phosphatase type 1 

regulator activity 
YLR273C, YIL045W, YOR178C, YBL058W 

C. Significantly enriched terms in the top 100 set of proteins having largest increase of perturbation centrality in osmotic stress (compared to the unstressed case) 
P-value Term Proteins 
4.42e-09 cellular carbohydrate biosynthetic 

process 
YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFR015C, YML100W, YDR074W, YMR105C, 
YOR178C 

2.66e-06 carbohydrate biosynthetic process YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFR015C, YML100W, YDR074W, YMR105C, 
YOR178C 

5.85e-06 cellular carbohydrate metabolic 
process 

YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFR015C, YIR031C, YML100W, YDR074W, 
YCR005C, YDR001C, YMR105C, YOR178C 

1.98e-05 glycogen biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
0.000582 glucan biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
0.000586 trehalose metabolic process YMR261C, YML100W, YDR074W, YDR001C, YMR105C 
6e-04 protein phosphorylation YJR059W, YKL116C, YKL048C, YDL025C, YLR096W, YFL033C, YGR052W, YPL203W, YLR210W, YMR104C, YDR460W, 

YFL029C, YER129W, YDR052C, YDR490C 
0.000619 protein serine/threonine kinase 

activity 
YJR059W, YKL116C, YKL048C, YDL025C, YLR096W, YFL033C, YGR052W, YPL203W, YMR104C, YFL029C, YER129W, 
YDR490C 

0.000922 glycogen metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
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0.00104 protein kinase activity YJR059W, YKL116C, YKL048C, YDL025C, YLR096W, YFL033C, YGR052W, YPL203W, YMR104C, YFL029C, YER129W, 
YDR490C 

0.00141 energy reserve metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
0.00306 glycoside biosynthetic process YMR261C, YML100W, YDR074W, YMR105C 
0.00306 oligosaccharide biosynthetic 

process 
YMR261C, YML100W, YDR074W, YMR105C 

0.00306 disaccharide biosynthetic process YMR261C, YML100W, YDR074W, YMR105C 
0.00306 trehalose biosynthetic process YMR261C, YML100W, YDR074W, YMR105C 
0.00316 phosphorylation YJR059W, YKL116C, YKL048C, YKL067W, YDL025C, YLR096W, YHR033W, YFL033C, YGR052W, YPL203W, YLR210W, 

YMR104C, YDR460W, YFL029C, YER129W, YDR052C, YDR490C, YKL141W 
0.00372 response to stress YDR159W, YIL053W, YER103W, YBR169C, YER062C, YDR501W, YMR261C, YKL048C, YML100W, YDR074W, YDL124W, 

YKL067W, YCR065W, YOR141C, YDL190C, YJL173C, YDR217C, YJR032W, YFL033C, YDL020C, YDR001C, YDR460W, 
YDL059C, YGR088W, YBR066C, YDR113C, YGL163C, YLR183C, YOR178C 

0.00586 response to stimulus YDR159W, YIL053W, YER103W, YNL076W, YBR169C, YER062C, YDR379W, YDR501W, YMR261C, YKL116C, YKL048C, 
YML100W, YDR074W, YDL124W, YKL067W, YCR065W, YAL024C, YOR141C, YDL190C, YJL173C, YDR217C, YJR032W, 
YFL033C, YHL035C, YDL020C, YPL203W, YDR001C, YDR460W, YDL059C, YOR018W, YGR088W, YBR066C, YDR113C, 
YGL163C, YLR183C, YOR178C, YDR490C 

0.00595 alditol biosynthetic process YPL201C, YIL053W, YER062C 
0.00595 glycerol biosynthetic process YPL201C, YIL053W, YER062C 
0.007 kinase activity YJR059W, YKL116C, YKL048C, YKL067W, YDL025C, YLR096W, YHR033W, YFL033C, YGR052W, YPL203W, YMR104C, 

YFL029C, YER129W, YDR490C 
0.00716 carbohydrate metabolic process YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFR015C, YIR031C, YKL048C, YML100W, 

YDR074W, YCR005C, YDR001C, YMR105C, YER129W, YOR178C 
0.00839 cellular polysaccharide biosynthetic 

process 
YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 

0.00958 cell cycle phase YDR159W, YJR059W, YDR285W, YOR058C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C, YOR177C, 
YJL173C, YDR217C, YFL033C, YLR210W, YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YOR178C 

0.00977 polysaccharide biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
0.0127 glycogen synthesis YJL137C, YLR258W, YFR015C, YMR105C 
0.0133 glycoside metabolic process YMR261C, YML100W, YDR074W, YDR001C, YMR105C 
0.0156 single-organism carbohydrate 

metabolic process 
YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFR015C, YKL048C, YML100W, YDR074W, 
YDR001C, YMR105C, YER129W, YOR178C 

0.0173 glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
0.0173 cellular glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C 
0.0235 alpha,alpha-trehalose-phosphate 

synthase complex (UDP-forming) 
YMR261C, YML100W, YDR074W 

0.0252 cell cycle process YDR159W, YJR059W, YDR285W, YOR058C, YKL048C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C, 
YOR177C, YJL173C, YDR217C, YFL033C, YLR210W, YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YLR457C, YOR178C 

0.0323 cell cycle YDR159W, YJR059W, YDR285W, YOR058C, YKL048C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C, 
YOR177C, YJL173C, YDR217C, YFL033C, YLR210W, YDR460W, YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YNL007C, 
YLR457C, YOR178C 

0.0365 mitotic cell cycle YDR159W, YJR059W, YOR058C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C, YDR217C, YLR210W, 
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YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YOR178C 
 
Perturbation centralities were calculated with the Turbine software as described in Methods of the main text. Term enrichment analysis was performed with 
the R plug-in of g:Profiler [12], which returns both the enriched terms, and the proteins connected with the term. A term was stated as statistically significant, 
if the resulting p-value was strictly less than 0.05 after applying Bonferroni correction. Results clearly show the stress response as displayed by the significant 
enrichment of the terms “response to stimulus” and “response to stress”. Furthermore, the strong up-regulation of carbohydrate metabolism is also obvious 
from the data, and it is a well-known stress response [13–15] successfully identified by the perturbation centrality measure. 
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Table S5. Most significantly enriched terms in the top 100 protein set of the DIP yeast interactome (release 2005)  [7] containing proteins 
with largest decrease of perturbation centrality in differently stressed cases. 
 

A. Significantly enriched terms in the top 100 set of proteins having largest decrease of perturbation centrality in heat shock 
P-value Term Proteins 
1.81e-59 ribosome biogenesis YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 

YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, 
YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHR066W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, 
YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YHR081W, YMR093W, YJL069C, 
YOR243C, YIR026C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNR053C, YER006W, YKR081C, YOL142W, 
YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YLR397C, YDL060W 

6.76e-57 nucleolus YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YOL077C, YLR186W, YPL217C, YFR001W, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, 
YOR206W, YGR128C, YHR148W, YHR066W, YJR002W, YDL148C, YOR340C, YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, 
YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YMR093W, YJL069C, YJL076W, YGR081C, YPR144C, 
YNL308C, YER126C, YKL082C, YMR229C, YNR053C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, 
YNL232W, YNR054C, YPL020C, YDL060W, YNL175C 

4.68e-56 ribonucleoprotein 
complex biogenesis 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, 
YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHR066W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, 
YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YOR276W, YHR081W, 
YMR093W, YJL069C, YOR243C, YIR026C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNR053C, YER006W, 
YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YLR397C, YDL060W 

7.16e-52 preribosome YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YHR088W, YLL008W, YGL171W, YOL077C, YLR186W, 
YPL217C, YFR001W, YOR310C, YKL099C, YDL031W, YKL009W, YOR206W, YGR128C, YHR148W, YJR002W, YDL148C, YKR060W, 
YPL211W, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YDR087C, YGL078C, YLR221C, YMR093W, YJL069C, YGR081C, YPR144C, 
YER126C, YMR229C, YNR053C, YER006W, YKR081C, YHR052W, YMR128W, YER002W, YLR397C, YDL060W, YNL175C 

1.75e-49 cellular component 
biogenesis at cellular 
level 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, 
YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHR066W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, 
YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YOR276W, YHR081W, 
YMR093W, YJL069C, YOR243C, YIR026C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNR053C, YER006W, 
YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YLR397C, YDL060W 

3.56e-48 nuclear lumen 
 
 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C, 
YHR072W-A, YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, 
YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, 
YGL078C, YLR221C, YOR207C, YHR081W, YMR093W, YJL069C, YJL076W, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, 
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C, 
YPL233W, YPL020C, YDL060W, YNL175C 
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1.91e-47 rRNA processing YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, 
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, 
YBR247C, YDR087C, YGL078C, YHR081W, YMR093W, YJL069C, YOR243C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, 
YMR229C, YER006W, YKR081C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDL060W 

1.84e-46 rRNA metabolic 
process 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, 
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, 
YBR247C, YDR087C, YGL078C, YHR081W, YMR093W, YJL069C, YOR243C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, 
YMR229C, YER006W, YKR081C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDL060W 

2.09e-41 ncRNA processing YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, 
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, 
YBR247C, YDR087C, YGL078C, YNL062C, YHR081W, YMR093W, YJL069C, YOR243C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, 
YKL082C, YMR229C, YER006W, YKR081C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDL060W 

1.78e-39 ncRNA metabolic 
process 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, 
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, 
YBR247C, YDR087C, YGL078C, YNL062C, YHR081W, YMR093W, YJL069C, YOR243C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, 
YKL082C, YMR229C, YER006W, YKR081C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDR037W, YDL060W 

7.58e-39 organelle lumen YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C, 
YHR072W-A, YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, 
YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, 
YGL078C, YLR221C, YOR207C, YHR081W, YMR093W, YJL069C, YJL076W, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, 
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C, 
YPL233W, YPL020C, YDL060W, YNL175C 

7.58e-39 intracellular organelle 
lumen 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C, 
YHR072W-A, YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, 
YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, 
YGL078C, YLR221C, YOR207C, YHR081W, YMR093W, YJL069C, YJL076W, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, 
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C, 
YPL233W, YPL020C, YDL060W, YNL175C 

1.14e-38 membrane-enclosed 
lumen 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C, 
YHR072W-A, YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, 
YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, 
YGL078C, YLR221C, YOR207C, YHR081W, YMR093W, YJL069C, YJL076W, YGR081C, YPR144C, YNL308C, YER126C, YFR011C, YNL182C, 
YKL082C, YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, 
YNR054C, YPL233W, YPL020C, YDL060W, YNL175C 

2.48e-34 nuclear part YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C, 
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YHR072W-A, YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, 
YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, 
YGL078C, YLR221C, YOR207C, YHR081W, YMR093W, YJL069C, YJL076W, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, 
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C, 
YPL233W, YPL020C, YDL060W, YNL175C 

6.61e-32 RNA processing YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, 
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, 
YBR247C, YDR087C, YGL078C, YNL062C, YHR081W, YMR093W, YJL069C, YOR243C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, 
YKL082C, YMR229C, YER006W, YKR081C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDL060W 

1.67e-31 cellular component 
biogenesis 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, 
YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHR066W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, 
YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YOR276W, YHR081W, 
YMR093W, YJL069C, YOR243C, YIR026C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNR053C, YER006W, 
YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YLR397C, YDL060W 

1.47e-28 ribosomal large 
subunit biogenesis 

YCL054W, YPL093W, YLR276C, YHR088W, YLL008W, YOL077C, YFR001W, YDL031W, YKL009W, YBR267W, YHR066W, YHR197W, 
YPL211W, YKL021C, YGL111W, YGR245C, YGL078C, YLR221C, YIR026C, YER126C, YNL182C, YKL082C, YMR229C, YKR081C, YHR052W, 
YCR072C, YER002W, YLR397C 

4.33e-27 maturation of 5.8S 
rRNA from 
tricistronic rRNA 
transcript (SSU-
rRNA, 5.8S rRNA, 
LSU-rRNA) 

YCL054W, YLR129W, YOL010W, YDR449C, YHR088W, YGL171W, YLR186W, YFR001W, YOR310C, YKL099C, YDL031W, YJR002W, 
YDL148C, YKL021C, YJL109C, YBR247C, YGL078C, YHR081W, YJL069C, YPR144C, YNL308C, YER126C, YMR229C, YKR081C, YOL142W, 
YNL232W, YNR054C 

6.41e-27 maturation of 5.8S 
rRNA 

YCL054W, YLR129W, YOL010W, YDR449C, YHR088W, YGL171W, YLR186W, YFR001W, YOR310C, YKL099C, YDL031W, YJR002W, 
YDL148C, YKL021C, YJL109C, YBR247C, YGL078C, YHR081W, YJL069C, YPR144C, YNL308C, YER126C, YMR229C, YKR081C, YOL142W, 
YNL232W, YNR054C 

2.17e-25 non-membrane-
bounded organelle 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YFR031C-A, YHR088W, YLL008W, 
YGR159C, YNL248C, YGL171W, YJL033W, YOL077C, YLR186W, YPL217C, YFR001W, YOR310C, YKL099C, YDL031W, YHR072W-A, 
YKL009W, YOR206W, YGR128C, YHR148W, YHR066W, YJR002W, YDL148C, YOR340C, YHR143W-A, YKR060W, YPL211W, YKL021C, 
YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, YGL078C, YLR221C, YMR093W, YJL069C, YJL076W, 
YGR081C, YPR144C, YNL308C, YER126C, YKL082C, YMR229C, YNR053C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, 
YMR128W, YER002W, YNL232W, YNR054C, YPL233W, YPL020C, YDL060W, YNL175C 

2.17e-25 intracellular non-
membrane-bounded 
organelle 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YFR031C-A, YHR088W, YLL008W, 
YGR159C, YNL248C, YGL171W, YJL033W, YOL077C, YLR186W, YPL217C, YFR001W, YOR310C, YKL099C, YDL031W, YHR072W-A, 
YKL009W, YOR206W, YGR128C, YHR148W, YHR066W, YJR002W, YDL148C, YOR340C, YHR143W-A, YKR060W, YPL211W, YKL021C, 
YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHR031C, YGL078C, YLR221C, YMR093W, YJL069C, YJL076W, 
YGR081C, YPR144C, YNL308C, YER126C, YKL082C, YMR229C, YNR053C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, 
YMR128W, YER002W, YNL232W, YNR054C, YPL233W, YPL020C, YDL060W, YNL175C 

5.69e-25 ribonucleoprotein 
complex 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YFR031C-A, YHR088W, YLL008W, YGL171W, YNL124W, 
YOL077C, YLR186W, YPL217C, YFR001W, YOR310C, YKL099C, YDL031W, YHR072W-A, YKL009W, YOR206W, YGR128C, YHR148W, 
YJR002W, YDL148C, YKR060W, YPL211W, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YDR087C, YGL078C, YLR221C, 
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YMR093W, YJL069C, YGR081C, YPR144C, YER126C, YMR229C, YCL037C, YNR053C, YER006W, YKR081C, YHR052W, YMR128W, 
YER002W, YPL226W, YLR397C, YDL060W, YAL036C, YNL175C 

2.39e-24 preribosome, large 
subunit precursor 

YCL054W, YPL093W, YHR088W, YLL008W, YOL077C, YFR001W, YDL031W, YKL009W, YOR206W, YPL211W, YGL111W, YDR087C, 
YGL078C, YLR221C, YER126C, YNR053C, YER006W, YKR081C, YHR052W, YER002W, YLR397C 

5.36e-24 nucleus YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YNL151C, YOR310C, YKL099C, YDL031W, 
YKL144C, YDR399W, YHR072W-A, YKL009W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, 
YHR197W, YOR340C, YHR143W-A, YKR060W, YPL211W, YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, 
YDR087C, YHR031C, YGL078C, YNL062C, YLR221C, YOR207C, YHR081W, YMR093W, YJL069C, YJL076W, YOR243C, YIR026C, YGR081C, 
YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNR053C, YDR045C, YMR310C, YER006W, YML021C, YKR081C, YOL142W, 
YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YPL233W, YPL020C, YPR189W, YDL060W, YNL175C 

2.08e-22 ribosomal small 
subunit biogenesis 

YLR129W, YOL010W, YDR324C, YDR449C, YGR159C, YGL171W, YLR186W, YFR001W, YDL166C, YOR310C, YKL099C, YGR128C, 
YJR002W, YDL148C, YKR060W, YJL109C, YEL026W, YBR247C, YMR093W, YJL069C, YGR081C, YPR144C, YNL308C, YKL082C, YMR229C, 
YMR128W, YPL226W, YNR054C 

3.22e-22 RNA metabolic 
process 

YCL054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL008W, YGR159C, 
YNL248C, YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C, 
YHR072W-A, YKL009W, YGR128C, YHR148W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, YHR143W-A, YKR060W, YPL211W, 
YKL021C, YNL075W, YJL109C, YEL026W, YGL111W, YBR247C, YDR087C, YGL078C, YNL062C, YOR207C, YHR081W, YMR093W, YJL069C, 
YJL076W, YOR243C, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YDR045C, YER006W, YKR081C, YOL142W, 
YMR128W, YER002W, YNL232W, YNR054C, YDR037W, YPR189W, YDL060W 

3.68e-22 90S preribosome YLR129W, YOL010W, YPR137W, YDR324C, YDR449C, YGL171W, YLR186W, YPL217C, YOR310C, YOR206W, YGR128C, YHR148W, 
YJR002W, YDL148C, YKR060W, YNL075W, YJL109C, YBR247C, YMR093W, YJL069C, YGR081C, YPR144C, YMR229C, YMR128W, YDL060W 

6.62e-21 cleavage involved in 
rRNA processing 

YLR129W, YOL010W, YDR449C, YGL171W, YLR186W, YFR001W, YOR310C, YKL099C, YHR072W-A, YJR002W, YDL148C, YJL109C, 
YBR247C, YGL078C, YHR081W, YJL069C, YPR144C, YNL308C, YMR229C, YOL142W, YNL232W, YNR054C 

9.54e-21 RNA phosphodiester 
bond hydrolysis 

YLR129W, YOL010W, YDR449C, YGL171W, YLR186W, YFR001W, YOR310C, YKL099C, YHR072W-A, YJR002W, YDL148C, YJL109C, 
YBR247C, YGL078C, YHR081W, YJL069C, YPR144C, YNL308C, YMR229C, YOL142W, YNL232W, YNR054C 

4.42e-20 maturation of SSU-
rRNA from 
tricistronic rRNA 
transcript (SSU-
rRNA, 5.8S rRNA, 
LSU-rRNA) 

YLR129W, YOL010W, YDR324C, YDR449C, YGL171W, YLR186W, YFR001W, YDL166C, YOR310C, YKL099C, YGR128C, YJR002W, 
YDL148C, YJL109C, YEL026W, YBR247C, YMR093W, YJL069C, YGR081C, YPR144C, YNL308C, YMR229C, YMR128W, YNR054C 

B. Significantly enriched terms in the top 100 set of proteins having largest decrease of perturbation centrality in oxidative stress 
P-value Term Protein 
6.62e-38 ribosome biogenesis YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKR060W, YPR137W, 

YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YPL226W, YLR129W, YOR206W, YPR144C, 
YLR002C, YBR267W, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YJR002W, YMR093W, YLL008W, YOR078W, 
YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YHR170W, YOR243C, YDR398W, YPR112C, YNL075W, 
YHR081W, YKL021C, YGL099W, YHR197W, YBR247C, YKR024C, YHR052W, YNL224C 

5.98e-37 preribosome YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YOL077C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, YPL211W, 
YHR088W, YGL078C, YMR229C, YGR128C, YLR129W, YOR206W, YPR144C, YLR002C, YFR001W, YHR148W, YLR409C, YLR221C, 
YJR002W, YMR093W, YLL008W, YOR078W, YHR196W, YFL002C, YER002W, YJL069C, YNL175C, YDR398W, YPR112C, YNL075W, 
YBR247C, YHR052W, YNL224C 
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1.99e-35 ribonucleoprotein 
complex biogenesis 

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKR060W, YPR137W, 
YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YPL226W, YLR129W, YOR206W, YPR144C, 
YLR002C, YBR267W, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YJR002W, YMR093W, YLL008W, YOR078W, 
YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YHR170W, YOR243C, YDR398W, YPR112C, YNL075W, YIR005W, 
YHR081W, YKL021C, YGL099W, YHR197W, YBR247C, YKR024C, YHR052W, YNL224C 

4.58e-34 nucleolus YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKR060W, 
YPR137W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YOR206W, YPR144C, YLR002C, 
YEL055C, YFR001W, YHR066W, YHR148W, YLR409C, YLR221C, YOR340C, YJR002W, YMR093W, YLL008W, YOR078W, YNR054C, 
YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YNL175C, YDR398W, YPR112C, YNL075W, YKL021C, YBR247C, YKR024C, YNL113W, 
YHR052W 

2.38e-32 rRNA processing YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, 
YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR001W, YHR148W, YNL182C, 
YLR409C, YJR002W, YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, 
YOR243C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C 

1.39e-31 rRNA metabolic 
process 

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, 
YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR001W, YHR148W, YNL182C, 
YLR409C, YJR002W, YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, 
YOR243C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C 

1.82e-30 cellular component 
biogenesis at cellular 
level 

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKR060W, YPR137W, 
YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YPL226W, YLR129W, YOR206W, YPR144C, 
YLR002C, YBR267W, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YJR002W, YMR093W, YLL008W, YOR078W, 
YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YHR170W, YOR243C, YDR398W, YPR112C, YNL075W, YIR005W, 
YHR081W, YKL021C, YGL099W, YHR197W, YBR247C, YKR024C, YHR052W, YNL224C 

9.66e-30 nuclear lumen YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W, 
YKR060W, YPR137W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W, 
YOR206W, YPR144C, YLR002C, YEL055C, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W, 
YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W, 
YNL175C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, YOL012C, 
YHR052W, YOR207C 

1.34e-26 ncRNA processing YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, 
YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR001W, YHR148W, YNL182C, 
YLR409C, YJR002W, YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, 
YOR243C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C 

3.12e-25 ncRNA metabolic 
process 

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, 
YPL211W, YHR088W, YOL097C, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR001W, YHR148W, 
YNL182C, YLR409C, YJR002W, YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, 
YOR243C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C 

1.01e-23 90S preribosome YPL217C, YDL148C, YGL171W, YDR324C, YLR186W, YDR299W, YKR060W, YPR137W, YMR229C, YGR128C, YLR129W, YOR206W, 
YPR144C, YHR148W, YLR409C, YJR002W, YMR093W, YOR078W, YHR196W, YFL002C, YJL069C, YDR398W, YPR112C, YNL075W, 
YBR247C, YNL224C 

1.2e-22 organelle lumen YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W, 
YKR060W, YPR137W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W, 
YOR206W, YPR144C, YLR002C, YEL055C, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W, 
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YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W, 
YNL175C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, YOL012C, 
YHR052W, YOR207C 

1.2e-22 intracellular organelle 
lumen 

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W, 
YKR060W, YPR137W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W, 
YOR206W, YPR144C, YLR002C, YEL055C, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W, 
YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W, 
YNL175C, YDR398W, YPR112C, YNL075W, YHR081W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, YOL012C, 
YHR052W, YOR207C 

1.64e-22 membrane-enclosed 
lumen 

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W, 
YKR060W, YPR137W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W, 
YOR206W, YPR144C, YLR002C, YEL055C, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W, 
YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W, 
YNL175C, YDR398W, YPR112C, YNL075W, YFR011C, YHR081W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, 
YOL012C, YHR052W, YOR207C 

4.57e-21 nuclear part YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W, 
YKR060W, YPR137W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W, 
YOR206W, YPR144C, YLR002C, YEL055C, YFR001W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W, 
YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W, 
YNL175C, YDR398W, YPR112C, YDR303C, YNL075W, YIR005W, YHR081W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, 
YNL113W, YOL012C, YHR052W, YOR207C 

2.28e-20 RNA processing YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, 
YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR001W, YHR148W, YNL182C, 
YLR409C, YJR002W, YMR093W, YLL008W, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, 
YOR243C, YDR398W, YPR112C, YNL075W, YIR005W, YHR081W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C 

C. Significantly enriched terms in the top 100 set of proteins having largest decrease of perturbation centrality in osmotic stress 
P-value Term Proteins 
1.29e-40 ribosome biogenesis YGL111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C, 

YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, 
YLR129W, YOR243C, YNL124W, YGR128C, YHR170W, YGR081C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, 
YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YGL099W, YLR409C, 
YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

2.56e-39 ribonucleoprotein 
complex biogenesis 

YGL111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C, 
YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, YIR005W, 
YLR129W, YOR243C, YNL124W, YGR128C, YHR170W, YGR081C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, 
YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YGL099W, YGR178C, 
YLR409C, YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

5.54e-37 preribosome YGL111W, YGL078C, YOL077C, YFL002C, YOR206W, YKL172W, YLR002C, YMR229C, YDL148C, YDR299W, YDR324C, YKL009W, 
YKL099C, YCL054W, YNL175C, YGR103W, YLR221C, YLR129W, YGR128C, YGR081C, YOR294W, YPL211W, YHR052W, YHR088W, 
YPR137W, YKR081C, YFR001W, YHR148W, YNL061W, YDR087C, YLR409C, YPR112C, YNL002C, YOL010W, YPR144C, YNL075W, 
YPL126W, YLR186W, YNL224C 

2.1e-35 nucleolus YGL111W, YNL308C, YMR239C, YGL078C, YNL248C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YEL055C, YLR276C, YLR002C, 
YMR229C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL175C, YGR103W, YLR221C, YOR340C, YLR129W, 
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YGR128C, YGR081C, YOR294W, YPL211W, YHR052W, YHR088W, YPR137W, YKL021C, YKR081C, YHR072W-A, YFR001W, YHR143W-A, 
YHR148W, YNL061W, YDR087C, YPL020C, YLR409C, YPR112C, YNL002C, YOL010W, YPR144C, YNL075W, YPL126W, YLR186W, YGR159C, 
YNL113W 

4.88e-34 cellular component 
biogenesis at cellular 
level 

YGL111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C, 
YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, YIR005W, 
YLR129W, YOR243C, YNL124W, YGR128C, YHR170W, YGR081C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, 
YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YGL099W, YGR178C, 
YLR409C, YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

2.21e-32 rRNA processing YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C, 
YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, YOR294W, YPL211W, 
YHR088W, YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YLR409C, 
YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

1.29e-31 rRNA metabolic 
process 

YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C, 
YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, YOR294W, YPL211W, 
YHR088W, YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YLR409C, 
YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

1.67e-27 ncRNA metabolic 
process 

YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YOL097C, YDL148C, YDR299W, 
YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR102C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, 
YOR294W, YPL211W, YHR088W, YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, 
YDR087C, YLR409C, YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YHR019C, YGR159C 

1.24e-26 ncRNA processing YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C, 
YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, YOR294W, YPL211W, 
YHR088W, YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YLR409C, 
YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

1.69e-25 nuclear lumen YGL111W, YNL308C, YMR239C, YGL078C, YNL248C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YEL055C, YLR276C, YLR002C, 
YMR229C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YNL175C, YGR103W, YLR221C, YOR340C, 
YLR129W, YNL124W, YKL144C, YGR128C, YHR170W, YGR081C, YOR294W, YPL211W, YHR052W, YHR088W, YPR137W, YKL021C, 
YHR197W, YKR081C, YHR072W-A, YFR001W, YHR143W-A, YHR148W, YNL061W, YDR087C, YPL020C, YCR092C, YLR409C, YPR112C, 
YNL002C, YOL010W, YPR144C, YNL075W, YPL126W, YLR186W, YMR167W, YHR031C, YGR159C, YNL113W 

2.12e-25 ribosomal large 
subunit biogenesis 

YGL111W, YGL078C, YHR066W, YOL077C, YFL002C, YLR276C, YMR229C, YIR026C, YKL009W, YCL054W, YNL182C, YGR103W, 
YBR267W, YLR221C, YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, YKL021C, YHR197W, YKR081C, YFR001W, YDR091C, 
YGL099W, YNL002C 

1.41e-22 preribosome, large 
subunit precursor 

YGL111W, YGL078C, YOL077C, YOR206W, YKL172W, YLR002C, YKL009W, YCL054W, YGR103W, YLR221C, YOR294W, YPL211W, 
YHR052W, YHR088W, YKR081C, YFR001W, YNL061W, YDR087C, YNL002C, YNL224C 

2.19e-21 RNA processing YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C, 
YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YIR005W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, YOR294W, 
YPL211W, YHR088W, YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, 
YGR178C, YLR409C, YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

3.37e-20 ribonucleoprotein 
complex 

YGL111W, YGL078C, YOL077C, YFL002C, YOR206W, YKL172W, YLR002C, YMR229C, YDL148C, YDR299W, YDR324C, YKL009W, 
YKL099C, YCL054W, YNL175C, YGR103W, YLR221C, YIR005W, YLR129W, YNL124W, YGR128C, YGR081C, YPL226W, YGR054W, 
YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, YPR137W, YKR081C, YFR031C-A, YHR072W-A, YFR001W, YDR091C, YAL035W, 
YHR148W, YNL061W, YDR087C, YGR178C, YLR409C, YPR112C, YNL002C, YOL010W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C 

9.28e-20 cellular component YGL111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C, 
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biogenesis YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, YIR005W, 
YLR129W, YOR243C, YNL124W, YGR128C, YHR170W, YGR081C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, 
YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDR087C, YGL099W, YGR178C, 
YLR409C, YPR112C, YNL002C, YOL010W, YNL207W, YPR144C, YNL075W, YPL126W, YLR186W, YNL224C, YGR159C 

 
Perturbation centralities were calculated with the Turbine software as described in Methods of the main text. Term enrichment analysis was performed with 
the R plug-in of g:Profiler [12], which returns both the enriched terms, and the proteins connected with the term. A term was stated as statistically significant, 
if the resulting p-value was strictly less than 0.05 after applying Bonferroni correction. The list was cut at p=10-20 for brevity of the table. The full list can be 
obtained by running the „stressed_profile.R” script available at the Turbine web-site http://turbine.linkgroup.hu. The data suggests a very strong down-
regulation of ribosome biogenesis and protein translation in all types of stress, which is a well-studied change in stress [16–18] successfully identified by the 
perturbation centrality measure. 
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Table S6. Run-time and memory usage of the Turbine program during simulation of 
different synthetic networks 

 
Network1 Number of nodes Number of links Run-time2 Peak memory 

usage 
Disk space 

usage 
Data-on-

disk3 
BA-100/2 100 200 0.03 s 4,452 kB 796 kB no 
BA-1K/2 1,000 2,000 0.33 s 11,892 kB 7,908 kB no 
BA-10K/2 10,000 20,000 4.16 s 86,008 kB 78,980 kB no 
BA-100K/2 100,000 200,000 50.24 s 828,292 kB 771 MB no 
BA-100K/2 100,000 200,000 51.36 s 45,476 kB 771 MB yes 
BA-1M/2 1,000,000 2,000,000 8 m 32 s 421,640 kB 7713 MB yes 
BA-1M/6 1,000,000 6,000,000 14 m 3 s 921,668 kB  7797 MB yes 
 
1Networks were generated with the “grown” plug-in of the netgen tool of the Turbine toolkit. This 
plug-in creates Barabási–Albert-type scale-free networks given the total requested number of nodes 
and the degree of newly added nodes. 
2Run-times are reported as measured by Turbine. This is only the raw simulation time, without 
accounting for loading and saving the file to/from the hard disk in the cases, where data-on-disk3 mode 
is switched off. 1000 time steps were simulated with the communicating vessels model, on a server 
with a Xeon 3.6 GHz processor, using only one CPU. Column-major matrix ordering was used for 
better performance. The run-time is linear function of both the number of nodes and the simulation 
time. Note that the calculation of the perturbation centrality measure for all nodes in a network 
requires a separate simulation for each node, thus having a quadratic computational complexity with 
respect to the number of nodes. 
3Data-on-disk mode is a special feature of Turbine enabling long simulations that would otherwise not 
fit in the computer memory. In this mode, data files are accessed directly on the disk without 
consuming any memory, at the price of lower access speed. The performance penalty for using data-
on-disk mode is actually surprisingly small according to the data in the Table. Using row-major 
ordering with data-on-disk mode leads to lower performance, because sequential writes in each time 
step will become random writes on the disk. 
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Table S7. Details of the used realizations of modular benchmark graphs 
A. Networks used for testing fuzzy versus pronounced modules (all except the ITM-Probe series) 

Pre-set ratio of inter-
modular links 

Random 
seed 

Number of 
links 

Number of intra-
modular links 

Number of inter-
modular links 

Overlapa 

5% 10 13491 12819  672 No 
5% 10 13695 13326  369 Yes 
5% 19 13583 12872  711 No 
5% 19 13755 13614  141 Yes 
5% 20 13938 13237  701 No 
5% 20 13583 13392  191 Yes 
5% 42 13966 13263  703 No 
5% 42 14206 13942  264 Yes 
5% 85 13619 12919  700 No 
5% 85 13908 13830  78 Yes 
5% 87 13772 13086  686 No 
5% 87 13884 13595  289 Yes 
5% 88 13818 13134  684 No 
5% 88 13772 13445  327 Yes 
40% 10 13491  8111 5380 No 
40% 10 13695  9590 4105 Yes 
40% 19 13583  8140 5443 No 
40% 19 13755 10444 3311 Yes 
40% 20 13938  8361 5577 No 
40% 20 13583 10052 3531 Yes 
40% 42 13966  8383 5583 No 
40% 42 14206 10331 3875 Yes 
40% 85 13619  8170 5449 No 
40% 85 13908 10746 3162 Yes 
40% 87 13772  8269 5503 No 
40% 87 13887  9913 3974 Yes 
40% 88 13818  8292 5526 No 
40% 88 13772  9748 4024 Yes 

B. Networks used in comparing ITM-Probe and Turbine with different fuzziness values 
Pre-set ratio of inter-
modular links 

Random 
seed 

Number of 
links 

Number of intra-
modular links 

Number of inter-
modular links 

Overlap 

5% 59 7717 7319  398 No 
5% 87 7824 7429  395 No 
5% 88 7788 7395  393 No 
10% 59 7692 6916  776 No 
10% 87 7837 7054  783 No 
10% 88 7820 7035  785 No 
15% 59 7755 6581 1174 No 
15% 87 7837 6653 1184 No 
15% 88 7827 6653 1174 No 
20% 59 7780 6213 1567 No 
20% 87 7852 6279 1573 No 
20% 88 7850 6269 1581 No 
25% 59 7795 5844 1951 No 
25% 87 7850 5891 1959 No 
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25% 88 7824 5861 1963 No 
30% 59 7776 5438 2338 No 
30% 87 7849 5485 2364 No 
30% 88 7857 5499 2358 No 
35% 59 7803 5059 2744 No 
35% 87 7850 5103 2747 No 
35% 88 7857 5102 2755 No 
40% 59 7792 4670 3122 No 
40% 87 7848 4710 3138 No 
40% 88 7858 4710 3148 No 
45% 59 7805 4292 3513 No 
45% 87 7845 4309 3536 No 
45% 88 7849 4305 3544 No 
50% 59 7794 3885 3909 No 
50% 87 7850 3923 3927 No 
50% 88 7858 3937 3921 No 
55% 59 7805 3509 4296 No 
55% 87 7848 3528 4320 No 
55% 88 7850 3524 4326 No 
60% 59 7805 3124 4681 No 
60% 87 7850 3127 4723 No 
60% 88 7858 3147 4711 No 
65% 59 7797 2716 5081 No 
65% 87 7849 2750 5099 No 
65% 88 7852 2743 5109 No 
70% 59 7803 2340 5463 No 
70% 87 7850 2359 5491 No 
70% 88 7851 2340 5511 No 
75% 59 7801 1939 5862 No 
75% 87 7852 1961 5891 No 
75% 88 7853 1963 5890 No 
80% 59 7803 1556 6247 No 
80% 87 7849 1572 6277 No 
80% 88 7855 1560 6295 No 
85% 59 7805 1166 6639 No 
85% 87 7852 1169 6683 No 
85% 88 7857 1180 6677 No 

 
The used networks were generated with the benchmark network generator tool of Lancichinetti and 
Fortunato  [1] with the random seed (“seed.dat” file) set to the value in the second column. The exact 
commands used for generation were the following: 
benchmark ‐N 4000 ‐k 6 ‐maxk 100 ‐mu %fuzziness% ‐t1 3 ‐t2 0.2 ‐minc 20 ‐maxc 100 ‐on 200 ‐om 2 
benchmark ‐N 4000 ‐k 6 ‐maxk 100 ‐mu %fuzziness% ‐t1 3 ‐t2 0.2 ‐minc 20 ‐maxc 100 ‐on 0 ‐om 0 

for networks in part A with and without overlapping communities, respectively. Networks in part B 
were generated with the command 
benchmark ‐N 1000 ‐k 15 ‐maxk 50 ‐mu %fuzziness% ‐t1 2 ‐t2 1 

The variable %fuzziness% was substituted with the corresponding values of the first column in all 
commands. 
a”Yes” indicates that the network was generated with overlapping modules, that is, 200 nodes were 
selected as “overlapping nodes” having two parent communities and receiving intra-modular links 
from both of them. “No” indicates that no such nodes were present in the network. 



 38 

Table S8: Average perturbation centrality of inter-modular nodes and inter-modular hubs as compared to the average perturbation centrality of 
intra-modular, non-hub nodes 
 
Networksa Relative perturbation centrality of inter-

modular non-hubsb 
Relative perturbation centrality of intra-

modular hubsb 
Benchmark graphs with pronounced modulese 126% 115% 
Benchmark graphs with fuzzy modules 102% 149% 
Substrate-bound Met-tRNA synthetase protein structure network 118% 126% 
Substrate-free Met-tRNA synthetase protein structure network 113% 125% 
Filtered Yeast Interactome 96% 273% 
Database of Interacting Proteins yeast interactome (release 2010) 129% 193% 
Database of Interacting Proteins yeast interactome (release 2005) 153% 256% 
E. coli metabolic network 90% 479% 
B. aphidicola metabolic network 112% 281% 
School friendship network 107% 149% 
Mean and standard error 115% (5.81%) 215% (35.6%) 
 
Perturbation centralities were calculated as described in Methods for each node of the network, and their average was taken. Hubs were nodes with a degree 
in the top 10%. Modularization was performed using the ModuLand Cytoscape plug-in [19]. Inter-modular nodes were defined as nodes having more than 
40% inter-modular edges. 
aNetwork descriptions are given in Supplementary Methods of Text S1.  
bPercentages reported are the percentage of the average perturbation centrality of the node set marked in the description of the column header compared to the 
average perturbation centrality of intra-modular, non-hub nodes. 



 39

Table S9. Signaling residues and residues of experimentally verified importance in Met-
tRNA synthetase protein structure network  
 

A. List of individual perturbation properties of residues with experimentally verified importance  [5] 
Residue High importance in 

the substrate-free 
conformation 

High importance in 
the substrate-bound 
conformation 

High increase of 
importance on 
binding 

High decrease of importance on 
binding 

ASP-456   Y  
ASN-452     
ASP-353 Y Y   
ALA-352 Y Y  Y 
TYR-357 Y Y   
LEU-355     
TYR-359     
ARG-356 Y Y   
ARG-395     
ASN-348     
PHE-350     
HIS-349     
ASP-351 Y Y   
TRP-461 Y  Y  
ASP-449     
TYR-358    Y 
THR-360 Y Y   
ALA-361 Y Y   
LYS-362 Y Y   
SER-354 Y Y   

B. List of individual perturbation properties of residues predicted to participate in intra-protein signaling  [5] 
Residue High importance in 

the substrate-free 
conformation 

High importance in 
the substrate-bound 
conformation 

High increase of 
importance on 
binding 

High decrease of importance on 
binding 

GLN-538    Y 
VAL-543     
PHE-484     
MET-488     
PHE-437 Y Y   
ASP-456   Y  
ASN-452     
LEU-495 Y Y   
TRP-432 Y Y   
THR-499 Y   Y 
HIS-21     
ARG-36 Y Y   
ASP-32 Y Y   
LEU-13 Y Y   
PHE-377    Y 
VAL-381     
PHE-84 Y Y   
ASN-391     
LEU-392     
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PHE-87 Y Y   
ILE-89 Y Y   
ASP-384 Y Y   
MET-25 Y Y   
LYS-388  Y   
TYR-357 Y Y   
ILE-385 Y Y   
HIS-323 Y Y   
LEU-26  Y Y  
HIS-28 Y Y   
LEU-355     
TYR-531     
VAL-326   Y  
TYR-359     
TRP-346     
LEU-498    Y 
MET-333   Y Y 
ARG-395     
PHE-350     
TYR-37 Y Y   
TRP-461 Y  Y  
LYS-492 Y Y   
LEU-363 Y Y   

 
The list of amino acids of E. coli Met-tRNA synthetase predicted to participate in the transmission of 
conformational changes was taken according to the text and Figure 5 of the paper of Ghosh and 
Vishveshwara [5]. The list of amino acids with experimentally verified importance was taken from the 
same article [5] listing earlier findings. Protein structure networks of the substrate-free and substrate-
bound forms of E. coli Met-tRNA synthetase were constructed as described in Supplementary 
Methods. Perturbation centralities were calculated as described in Methods of the main text. 
Differences of perturbation centralities were obtained by subtracting the rank of the perturbation 
centrality of the substrate-bound conformation from the rank of the perturbation centrality of the 
substrate-free conformation. Residues in the top 20% of largest perturbation centrality in either the 
substrate-free or the substrate-bound conformation, and residues having an increase or decrease of 
perturbation importance in the top 20% are shown in the respective column marked by letter “Y”. 
Boldface Y-s signify a top 10% level of importance. Starting and ending residues of the predicted 
communication pathways, Leu-13 and Trp-461 were also marked with bold letters. 
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Supplementary Results  
 

Connection of the communicating vessels model with perturbation dissipation using 
shortest paths and having an exponential decay 
 
In the communicating vessels model the change of the energy of a node is given by the 
following differential equation: 
 
 
         (1) 
 
 
where S is the energy of the current node, l is the number of edges of the current node, iw is 
the weight of the ith edge, iS  is the current energy of the node on the other end of the ith edge, 
and 0D  is a parameter defining the amount of energy dissipated by a node in a given time 
step. 
 
Let us define the case of unobstructed propagation as iSS >> . The consequence of the above 
definition is that at any given time step, the amount of perturbation transmitted to neighbors is 
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using the same logic, which results in an exponential decline with distance. If 1≥iw , transfer 
will stop after a second or less in simulation with energy levels evening out to S/2, S/2 for the 
two affected nodes, which results in the same exponential decline, if the condition iSS >>  
holds for the other nodes as well. If there is a connection between nodes at the same distance 
from the origin, no energy will be transmitted, since iSS =  if the edge weight from the origin 
is the same for both nodes. Generally, if there are no large differences between edge weights, 
nodes with the same distance from the origin will tend to have similar values. If there are 
multiple edges at a given network shell (i.e. distance from the node where perturbation 
started) to the next one, this only changes the amount of energy propagated by a proportional 
amount. According to this logic, we can hypothesize that these perturbations tend to travel on 
shortest paths.  
 
The dissipation of energy in time will be exponential in the unobstructed case. This comes 
from integrating equation (1) with the condition iSS >> , which yields the result  
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If the flow of perturbation is totally obstructed (all nodes in the neighborhood have the same 
energy level) then iSS = , thus tDStS 00)( −= , which is a simple linear dissipation with time, 
resulting in no energy transfer with distance. Most real world cases are somewhere between 
the above two extremes. 
 
Module entrapment occurs when the energy level of a module is too high for the number and 
weight of inter-modular edges to propagate the perturbation outwards the module, so the 
energy level inside the module is raised to ij SS =  for every i and j node inside the module. 

Comparison of the communicating vessels model with the random walk model of ITM-
Probe 
 
ITM-Probe is an algorithm modeling information propagation in complex networks using a 
random walk model  [2]. For the comparison of the communicating vessels model used by 
Turbine with the ITM-Probe method, perturbation centralities obtained on networks with 
different ratios of inter-modular edges were compared with the “number of visited nodes” 
measure of the emitting model of the ITM-Probe method as described in the Supplementary 
Methods section. 
 
The “number of visited nodes” measure used by the emitting model of the ITM-Probe method 
is theoretically quite similar to the perturbation centrality of the communicating vessels model 
used by Turbine, since in the ITM-Probe model the random walk has a defined probability 
(with a default value of 15%) to end at every node visited. This means that the average 
distance of the last node of the random walk is proportional with the distance from the 
originating node, so in the end the nodes closer to the origin tend to dissipate more walks in 
ITM-Probe  [2] in the same manner as nodes closer to the origin dissipate more energy in our 
communicating vessels model.  
 
In the comparison of Turbine with ITM-Probe a total of 51 benchmark graphs  [1] were 
tested, with a ratio of inter-modular edges increasing from 0.05 to 0.85 with steps of 0.05. 
Three networks were generated with each ratio of inter-modular edges value, with three 
different random seeds to make the results more robust as described in Supplementary 
Methods. Perturbation centrality and the “number of visited nodes measure” were calculated 
for each node (1,000 in each network).  
 
In the first simulation perturbation centrality and the “number of visited nodes” measure were 
averaged for all the 3 randomly generated networks for each inter-modular edge ratio. 
Spearman correlation of perturbation centrality and the “number of visited nodes” measure 
was calculated with the R program package  [3]. Results are shown in Figure S1. Spearman 
correlation of the average number of visited nodes with the average perturbation centrality 
calculated for low-intensity perturbations was a perfect 1 meaning that the limitation of 
perturbation propagation imposed by modular boundaries decreased in exactly the same 
manner, when assessed by either the Turbine or the ITM-Probe method as the modular 
structure was coalescing by the gradual increase of the number of inter-modular edges.  
 
Despite the above effect, large differences were observed between the tested measures of 
ITM-Probe and Turbine. Correlations of degrees, number of visited nodes and perturbation 
centrality were much lower in different simulations depending on the level of modularity as 
shown on Figure S2. The correlation between perturbation centrality and the “number of 
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visited nodes” measure (Figure S2C) was high when the modularity of the network was 
noticeable (the ratio of inter-modular edges was smaller than 0.3). However, when the 
modules started to merge, the correlation diminished, and even turned to negative at the 
highest ratios of inter-modular edges. An explanation of this effect lies in the fact that in the 
ITM-Probe method, the degree of a node is inversely correlated with the “number of visited 
nodes” measures at ratios of inter-modular edges higher than 0.2 (Figure S2B). The 
diminished importance of hubs in information spread is rather counter-intuitive. For low ratios 
of inter-modular edges, the correlation between the “number of visited nodes” measure and 
node degree was positive, which shows that high-degree inter-modular nodes are the most 
important information spreaders in highly modular networks, and in the scale-free benchmark 
graphs nodes having a higher degree also have a higher chance of gaining inter-modular 
edges. Correlation of perturbation centrality with node degree varied with a much lower effect 
size (Δr=0.25), as shown on Figure S2A. The differences observed can be explained by the 
limiting effect of modular boundaries on perturbation propagation described in the main text.  
 
Figure S3 illustrates the individual perturbation centralities and “number of visited nodes” 
measures for a single scale-free benchmark graph generated using the random seed value of 
87. Perturbation centrality was positively correlated with the node degree in all ratios of inter-
modular edges analyzed, but the limiting effect of modular boundaries on the propagation of 
perturbations was noticeable at low ratios of inter-modular edges. This effect was evident by 
the segregation of perturbation centrality data to stripes at the ratio of inter-modular edges of 
0.05. At this benchmark graph configuration nodes had only one or two inter-modular edges, 
if any. The top segregated layer of perturbation centrality data corresponds to nodes having 
two inter-modular edges, while the middle layer of perturbation centrality values corresponds 
to nodes having one inter-modular edge. The highest “number of visited nodes” values did not 
change with growing ratios of inter-modular edges (cf. Panels G through L of Figure S3), 
only the lowest “number of visited nodes” values – and thus the average – got higher as ratio 
of inter-modular nodes increased, resulting in a saturation-like effect for the “number of 
visited nodes” measure possibly explaining the inverse correlation with degree in networks 
with highly overlapping modules. 
 
Dissipation-free propagation of perturbation is characterized by fill time, which 
reciprocally correlates with closeness centrality 
 
Fill time was defined as a measure assessing the propagation of a continuous perturbation in 
the communicating vessels model without dissipation as stated in the main text. The fill time 
of node i is the time needed to raise the energy level of 80% of the nodes above 1 unit (0.01% 
of initial perturbation) in a simulation, where a perturbation of 10,000 units was added to node 
i in each time step, and was propagated without dissipation. Fill time was calculated for all 
nodes in several benchmark graphs and in real-world networks. Table S1 shows that the 
reciprocal of the fill time of node i strongly correlated with the closeness centrality of the 
same node ( 11102.1;946.0843.0%95;895.0 −⋅=−== pCIr , one-sample t-test, Shapiro–Wilk 
normality test successful with p=0.178). We note that the two metabolic networks, where the 
correlation with the fill time was the lowest, correspond to a different class of networks 
according to Guimerà et al. [20] Since the closeness centrality of node i is defined as the 
mean geodesic distance (mean shortest path) between node i and all other nodes, the high 
correlation between the reciprocal of fill time and closeness centrality meant that the shortest 
paths determined most of the dissipation-free propagation of perturbations. This agrees with 
the expectations [21], and validates the use of the communication vessels model, which has 
this property as shown in the Supplementary Results of Text S1. 
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Comparing the effect of degree and modular position on perturbation centrality in real-
world networks 
 
In the experiment comparing the silencing times of the Lancichinetti [1] benchmark networks, 
the ratio of perturbation dissipation efficiencies of two node categories out of the 4, namely: 
inter-modular non-hubs and intra-modular hubs, had interesting changes with the modular 
structure. As we noted earlier, modules of real world networks seem to be more overlapping 
than the pronounced modules of our benchmark graphs. Starting from these notions we 
compared the mean perturbation centrality of intra-modular hubs against inter-modular non-
hubs as the percentage of the mean perturbation centrality of intra-modular non-hubs in 
multiple real-world networks (Table S8). Hubs were nodes with the top 10% degree, and 
inter-modular non-hubs were those with at least 40% inter-modular edges – just as in the 
previous calculations. Inter-modular non-hubs had only a 15% larger perturbation centrality, 
while hubs had a 115% larger perturbation centrality than intra-modular non-hubs. The large 
(87%) difference between the effect of hubs versus the effect of inter-modular non-hubs 
suggest that from a perturbation perspective real-world networks resemble the benchmark 
graphs with fuzzy modules more, than the benchmark graphs with pronounced modules. 
(Note that the same observation was obtained when we compared the low-intensity and high-
intensity silencing times – see Table S2.) 
 

Amino acids participating in intra-protein signaling have a high perturbation centrality 
in the protein structure network 
 
We have assessed the perturbation centrality of amino acids forming α-helices, β-sheets and 
loops in two pairs of protein structure networks corresponding to the substrate-free and 
substrate-bound conformations of E. coli Met-tRNA synthetase and rabbit cytochrome P450 
2B4, respectively. The Wilcoxon rank-sum test (α=0.00625 adjusted with Bonferroni 
correction) indicated significantly (p=0.00023, 0.00015, 0.00083, 0.0014 for the free and 
bound conformations of Met-tRNA synthetase and cytochrome P450, respectively) larger 
perturbation centralities of α-helices compared to the global mean, while the same test 
indicated significantly (p=3.2*10-6, 9.5*10-6, 2.3*10-6, 0.0001 for the free and bound 
conformations of Met-tRNA synthetase and cytochrome P450, respectively) smaller 
perturbation centralities for loops compared to the global mean. (Figure S6A through S6D; 
α=0.001). The average perturbation centrality for β-sheets showed a larger variation. The 
same data calculated for betweenness and closeness centralities is shown on Figures S7 and 
S8 of Text S1. Betweenness centrality had a much larger deviation than perturbation 
centrality, and both closeness and betweenness centralities could differentiate less between 
amino acids in different secondary structures than perturbation centrality. 
 
We continued the analysis of protein structure networks by assessing the perturbation 
centralities of E. coli Met-tRNA synthetase amino acids participating in intra-protein 
signaling. We selected Met-tRNA synthetase, since an earlier molecular dynamics study [5] 
identified key amino acids involved in the transmission of conformational changes upon 
substrate binding (termed as “Signaling residues” on Figures S6E and S6F). We have also 
checked a set of residues, whose importance have already been experimentally established [5] 
termed as “Experimental residues” on Figures S6E and S6F). Figures S6E and S6F show 
that the perturbation centrality was significantly (Wilcoxon rank-sum test, α=0.0125 adjusted 
with Bonferroni correction for a FWER of 0.05) higher for both the Signaling (p=1.7*10-6, 
1.1*10-6 for the free and Met-tRNA-bound conformations, respectively) and Experimental 
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residues (p=0.0072, 0.061 for the free and Met-tRNA-bound conformations, respectively) 
than average. Data in Figures S7 and S8 of Text S1 show that both closeness and 
betweenness centralities could differentiate Signaling residues, but neither closeness nor 
betweenness centralities could differentiate the Experimental residues from the average 
centrality of the whole protein. 67 or 60% of Signaling or Experimental residues, respectively, 
were in the top 20% of amino acids having the largest perturbation centrality and/or the 
largest change of perturbation centrality upon substrate binding (Table S9 of Text S1). 
 
Testing the effects of edgetic perturbations 
 
The definition of perturbation centrality described in the main text: “the reciprocal of 
silencing time retrieved by using a Dirac delta type starting perturbation of 10*n units, where 
n is the number of nodes in the network, using a dissipation value of 1 can be extended to 
describe the perturbation centrality of an edge, where the perturbation centrality of the edge 
connecting nodes i and j is the reciprocal of the silencing time obtained when the same 
perturbation was started from nodes i and j at the same time. Testing these edgetic 
perturbations on benchmark networks revealed that edgetic perturbations show the same basic 
properties as (single) node-based perturbations (cf. Figure 1 and Figure S10 of Text S1). 
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Supplementary Methods 
 
Description of the networks used 
 
Benchmark graphs 
 
Scale-free, modular benchmark graphs were generated using the unweighted, undirected 
benchmark graph generating tool of Lancichinetti and Fortunato [1]. Double edges were 
removed from the generated networks. Random seed values of 59, 87 and 88 were used to 
generate three sets of networks. When 7 sets of networks were generated, the additional seeds 
19, 20, 42 and 85 were used. These benchmark graphs had 4,000 nodes and 13,785 ± 421 
edges. The ratio of inter-modular edges was set to 0.05 in the case of the networks termed as 
“networks with pronounced modules”, and 0.4 for the networks termed as “networks with 
fuzzy modules”. Networks with no overlapping nodes were used in all cases except for the 
testing of inter-modular nodes (Figure 2 of the main text), where 200 overlapping nodes were 
generated, each belonging to two separate modules. A total of 28 networks of this type were 
created. For the ITM-Probe simulations in this Supplementary Information the number of 
nodes was 1,000 and the number of edges was 7,825 ± 133 with the ratio of inter-modular 
edges varying between 0.05 and 0.85 in steps of 0.05 for a total of 51 networks. None of the 
networks generated for the ITM-Probe comparison contained overlapping nodes. Detailed 
information about the generated benchmark graphs, as well as the exact commands used for 
generation is available in Table S7. Benchmark graph data can be downloaded from our web-
site: http://turbine.linkgroup.hu. 
 
Protein structure networks 
 
The protein structure networks of Escherichia coli Met-tRNA synthetase were generated from 
the starting and equilibrated state of the molecular simulation of the E. coli Met-tRNA 
synthetase/tRNAMet/Met-AMP complex corresponding to the substrate-free and substrate-
bound forms of the enzyme, respectively. The structure for the substrate-free form of E. coli 
Met-tRNA synthetase is available (pdb ID: 1QQT) [22]. However, the substrate-bound 
conformation containing tRNAMet and Met-ATP was not experimentally solved yet, but was 
created using molecular simulation software using the known substrate-bound structure of 
Aquifex aeolicus Met-tRNA synthase as a template, as described and kindly shared by Ghosh 
and Vishveshwara [5]. The protein structure network was obtained from the PDB data with 
the help of the RINerator software [23], which uses the Probe program [24] for calculating 
interaction strengths. Probe returns negative values for repulsive interactions; we have taken 
the absolute value of the interaction strength for all interactions, since both repulsive and 
attractive interactions transmit perturbations. In contrast with the previous article of Szalay-
Bekő et al  [19], where multiple edges adversely affect calculations, in Turbine, multiple 
edges are neutral, so the full network was used with every edge and self-loop intact instead of 
averaging the strengths of multiple links into a single one. The rationale behind this is to 
retain as much information as possible from the original file. The protein structure network 
had 547 nodes, since the first 3 N-terminal amino acids were not participating in the network 
and all ligands and cofactors, including the tRNA were removed. The final weighted, 
undirected protein structure networks of the substrate-free and substrate-bound enzyme 
contained 6,901 and 6,744 edges, respectively. 
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Protein structure networks of the substrate-free and substrate-bound forms of rabbit 
cytochrome P450 2B4 protein were also created with the RINerator software [23] by using the 
1PO5 and 1SUO pdb files of the Protein Data Bank, and taking the absolute value of the 
resulting interaction strengths. The surrounding water molecules, the ligands and the cofactors 
were removed from the networks, resulting in 465 nodes with 6,278 edges in the substrate-
free (open) conformation and 465 nodes with 6,409 edges in the substrate-bound (closed) 
conformation, both undirected, weighted networks. Protein structure network data can be 
downloaded from our web-site: http://turbine.linkgroup.hu.  
 
Yeast protein-protein interaction networks 
 
The Filtered Yeast Interactome (FYI) is a high-fidelity yeast protein-protein interaction 
dataset containing data consistently obtained using several different methods [6]. The 
downloadable data set in the Supplement of the article contained 1,302 proteins (nodes) 
having 2,312 interactions (edges). The giant component of this network had 695 nodes and 
1,614 edges.  
 
The “Database of Interacting Proteins yeast interactome (release 2005)” network is the giant 
component of the unweighted and undirected yeast protein-protein interaction network 
assembled by Ekman et al. [25] using the 2005 March compilation of the Database of 
Interacting Proteins [26] consisting of 2,444 nodes and 6,271 edges covering approximately 
half the proteins of yeast genome. Besides the rather high confidence of its data, we choose 
this network, because it was used in the identification of party and date hubs, an interesting 
dynamic feature of protein-protein interaction networks [25] and its properties were assessed 
in our earlier publications [19].  
 
The “Database of Interacting Proteins yeast interactome (release 2010)” network was created 
from the 2010 October compilation of the Database of Interacting Proteins [26]. Only high-
fidelity interactions marked as “core” were included in the network, yielding a giant 
component of 1,884 nodes and 4,234 edges.  
 
Interaction weights of yeast proteins were obtained from the yeast whole-genome mRNA 
expression dataset of Holstege et al. [27] containing data of 6,180 yeast genes (5461 with 
expression levels, and one gene with two different expression levels). Missing data (719 
nodes total, less than 12%) were substituted as the ln-transformed average expression level of 
all other proteins, 0.9205, taking into account that the distribution of expression data is 
approximately lognormal [28]. For calculating the changes of expression levels in different 
types of stress, the datasets of Gasch et al. [29] were used, which describe the relative changes 
of expression levels based on a set of microarray data. Thus, the stressed expression levels 
were calculated by multiplying the Holstege baseline with the Gasch relative changes 
according to the previous article [30]. The particular datasets used for the different stresses 
were the following: “Heat Shock 15 minutes hs-1” (25°C to 37°C heat shock for 15 minutes) 
for the heat-shocked network; “constant 0.32 mM H2O2 (30 min) redo” (0.32 mM hydrogen-
peroxide treatment for 30 minutes) for the oxidative stress, and “1 M sorbitol - 15 min” 
(hyper-osmotic shock using 1 M sorbitol for 15 minutes) for the osmotic stress. Detailed 
experimental data is available in the article describing the dataset [29]. Edge-weights of non-
stressed and stressed protein-protein interaction networks were generated from the expression 
data by multiplying the abundances of the two connected proteins as described earlier [30], 
since larger concentrations of involved proteins make their interaction more likely. Thus all 
final interactomes were weighted and undirected. 
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The use of even larger interactomes such as BioGRID or STRING were also considered, but 
was dropped due to computational constraints, since there were 6 magnitudes of difference 
between weighted out-degrees. Adding the fact that the weight distribution was approximately 
lognormal (so most of the nodes had low weighted outdegrees), and the required constraint 

that the maximum weighted outdegree should be no more than 1 ( 11
0

≤Δ≤− ∑
=

l

i
iwt ) meant 

that unrealistically high analysis times would have been required to attenuate the 
perturbations, since enforcing an upper limit for the maximum weighted outdegree results in 
median weighted outdegrees becoming extremely low, which in turn makes propagation 
speed disproportionately slow. Protein-protein interaction network data can be downloaded 
from our web-site: http://turbine.linkgroup.hu. 
 
Metabolic networks 
 
Metabolic networks were created by Balázs Szappanos (Biological Research Centre, 
Hungarian Academy of Sciences, Szeged, Hungary), and were the same as used in the papers 
of Mihalik and Csermely [30] and Szalay-Bekő et al. [19]. Escherichia coli metabolic 
network contained 249 metabolites (nodes) and their 730 transformations (edges), while the 
Buchnera aphidicola metabolic network contained 190 nodes and 563 edges. These networks 
were constructed based on the primary data of Feist et al. [9] and Thomas et al. [8], 
respectively. Frequent cofactors were deleted from the networks, except of those metabolic 
reactions, where cofactors were considered as main components. For the better comparison of 
networks, metabolic reactions were taken irreversible, and flux balance analyses (FBA) were 
performed resulting in weighted networks. All flux quantities were minimized, whereas 
reactions non-affecting the biomass production were considered having zero flux. Weights 
were generated as the mean of the appropriate flux quantities in absolute value, except the 
case when one of the fluxes was zero that automatically resulted in a zero weight [30]. For E. 
coli, data from rich medium was used to make the metabolic network more similar to the 
network of B. aphidicola. Final networks were thus weighted and undirected. Metabolic 
network data can be downloaded from our web-site: http://turbine.linkgroup.hu. 
 
School friendship network 
 
The social network was community-44 from the Add Health survey2 as described by James 
Moody [31] and Mark Newman [32]. This network has an approximately equal number of 
black and white students and 4 well-developed, rather dense communities. The network 
contains 1,147 students with 6,189 directed edges between them. In our current study directed 
parallel edges were merged into a single undirected edge with a weight equal to the sum of the 
original weights, and only the giant component of the network was used. This process resulted 
in a weighted undirected network consisting of 1,127 nodes and 5,096 edges with weights 
between 1 and 12. Network data can be downloaded from our web-site: 
http://turbine.linkgroup.hu. 

                                                 
2This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman, and 
Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and 
Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald 
R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files 
from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, 
NC 27516-2524 (addhealth@unc.edu). 
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Network measures and their calculation 
 
The degree of a node is defined as the number of edges of the node. More precisely for the 
perturbation simulations we have to consider the number of outgoing edges (i.e. the out-
degree). However, all networks we used were undirected, so the degree of a node was 
equivalent to its out-degree in all cases. Weighted degree was calculated by summarizing the 
edge weights of all edges for a given node. Degree and weighted degree were calculated using 
the built-in algorithm of Turbine. 
 
PageRank is a random-walk based measure [33], where the outbound edges of a node increase 
the centrality of those nodes for which the given edge is an inbound edge. The exact value of 
increase is proportional to the current PageRank value of the edge’s outbound node. Multiple 
iterations of this method yielded a converging result [33]. PageRank values were calculated 
using the algorithm of the igraph [34] package. 
 
Closeness centrality [35] is defined as the mean geodesic distance (mean shortest path) 
between a given node and all other nodes reachable from it. Betweenness centrality [36] gives 
the (relative) number of shortest paths between every two nodes in the network, which include 
the examined node. Closeness centrality and betweenness centrality were calculated using the 
Pajek [37] package. 
 
Community centrality is a measure coined for the ModuLand overlapping community 
structure determination program [19], which measures the centrality of a node separately for 
different communities. Community centrality was calculated by the ModuLand Cytoscape 
plug-in [19]. 
 
Network modularization 
 
Community structures of networks were determined by the ModuLand Cytoscape plug-in [19] 
with basic settings. A threshold of 0.9 was used for merging highly correlated modules in all 
networks. For the school friendship network, modules of the second hierarchical level were 
used (where meta-nodes of the level represent modules of the original network and meta-
edges of the level represent the overlap of the modules of the original network as described in 
[19]) to obtain the 4 densely connected communities of the network [32,38].  
 
Determination of the “number of visited nodes” measure of the ITM-Probe method 
 
To compare the “number of visited nodes” measure of the ITM-Probe method [39] with the 
perturbation centrality obtained by using the Turbine program, the recently released 
standalone version of the ITM-Probe method [39] was used, since calculating the ITM-Probe 
results for all nodes on a network would take a tremendous amount of time using the web-
based interface. A plug-in was written for Turbine that converts any complex network in 
Turbine format (needed for the fast-calculation of the Turbine program) to the format required 
by ITM-Probe (JSON). This plug-in can be downloaded from the Turbine web-site at 
http://turbine.linkgroup.hu. The ITM-Probe method was used with its emitting model with a 
damping factor of 0.85. The main script file of the ITM-Probe method was executed 
separately for every single node in a certain network, and all output was concatenated into a 
single text file. The “number of visited nodes” measures were extracted from the resulting 
ITM Probe text file with an awk script. 
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